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Abstract: The past two decades have witnessed tremendous research activities in optimization methods for 
communication networks.  One important problem in communication networks is the Terminal Assignment 
Problem. This problem involves determining minimum cost links to form a network by connecting a 
collection of terminals to a collection of concentrators. In this paper, we propose a Hybrid Ant Colony 
Optimization Algorithm to solve the Terminal Assignment Problem. We compare our results with the 
results obtained by the standard Genetic Algorithm, the Tabu Search Algorithm and the Hybrid Differential 
Evolution Algorithm, used in literature. 

1 INTRODUCTION 

In the last decades the literature on 
telecommunication network problems has grown 
explosively. This is mainly due to the dramatic 
growth in the use of the Internet (Salcedo-Sanz and 
Yao, 2004; Yao et al. 2005). Terminal assignment 
(TA) is an important issue in telecommunication 
networks optimization.  

The target of the TA problem implies fixing the 
minimum cost links to form a network between a 
specified set of terminals and concentrators (Khuri 
and Chiu, 1997). The objective is to connect 
terminals to concentrators under three constraints:  

1. each terminal is assigned to one (and only 
one) concentrator;  

2.  the total number of terminals assigned to 
any concentrator does not overload that 
concentrator, i.e. is within the concentrators 
capacity and, 

3.  balanced distribution of terminals among 
concentrators. 

Under these constraints, an assignment with the 
lowest possible cost is sought.  

The TA problem is a NP-complete combinatorial 
optimization problem (Salcedo-Sanz and Yao, 

2004). This means that the time required to solve the 
problem increases very quickly as the size of the 
problem grows. The intractability of this problem is 
a motivation for the pursuits of a metaheuristic that 
produce approximate, rather than exact, solutions. In 
(Dorigo, 1991; Dorigo et al. 1991; Dorigo et al. 
1996) the use of an Ant Colony Optimization 
algorithm as a new metaheuristic was proposed in 
order to solve combinatorial optimization problems. 

An Ant Colony Optimization algorithm (ACO) is 
essentially a system based on agents which simulate 
the natural behavior of ants, including mechanisms 
of cooperation and adaptation. This new 
metaheuristic has been shown to be both robust and 
versatile. The ACO algorithm has been successfully 
applied to a range of different combinatorial 
optimization problems (ACO HomePage). 

In this paper we present a Hybrid Ant Colony 
Optimization (HACO) algorithm coupled with a 
local search, applied to the TA problem. Our 
algorithm is based on the HACO algorithm proposed 
by Gambardella et al. (1999) for solving the 
quadratic assignment problem. The HACO uses 
pheromone trail information to perform 
modifications on TA solutions, unlike more 
traditional ant systems that use pheromone trail 
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information to construct complete solutions. The 
HACO uses also a diversification mechanism that 
periodically reinitializes all the pheromone trails. 

We compare the performance of HACO with 
three algorithms: Genetic Algorithm (GA), Tabu 
Search (TS) Algorithm, Hybrid Differential 
Evolution (HDE) Algorithm, used in literature. 

The paper is structured as follows. In Section 2 
we describe the TA problem; in Section 3 we 
describe the implemented HACO algorithm; in 
Section 4 we present the studied examples; in 
Section 5 we discuss the computational results 
obtained and, finally, in Section 6 we report about 
the conclusions. 

2 TA PROBLEM 

The TA Problem can be described as follows: 

1. a set N of n distinct terminals;  
2. a set M of m distinct concentrators;  
3. a vector C, with the capacity required for 

each concentrator (each concentrator is 
limited in the amount of traffic that it can 
accommodate);  

4. a vector T, with the capacity required for 
each terminal (the capacity requirement of 
each terminal is known and may vary from 
one terminal to another). The capacities are 
positive integers and Ti is smaller or equal 
to min (Ci…Cn);  

5. a matrix CP, with the location (x,y) of 
each concentrator (the concentrators sites 
have fixed and known locations). The M 
concentrators are placed on the Euclidean 
grid.  

6. a matrix CT, with the location (x,y) of 
each terminal (the terminals sites have fixed 
and known locations). The N terminals are 
placed on the Euclidean grid.  

The first objective is to assign each terminal to 
one node of the set of concentrators, in such a way 
that no concentrator oversteps its capacity. The 
second objective is to minimize the distances 
between concentrators and terminals assigned to 
them. Finally, the third objective is to ensure a 
balanced distribution of terminals among 
concentrators. 
Figure 1 illustrates an assignment to a problem with 
N = 10 terminal sites and M = 3 concentrator 
sites. The figure shows the coordinates for the 
concentrators, terminal sites and also their 
capacities.  

 
Figure 1: TA Problem - Example. 

3 PROPOSED HACO 

ACO is a population-based optimization method for 
solving hard combinatorial optimization problems. 
ACO is based on the indirect communication of a 
colony of simple agents, called (artificial) ants, 
mediated by (artificial) pheromone trails. In ant 
colony natural, ants indirectly communicate with 
each other by depositing pheromone trails on the 
ground and thereby influencing the decision 
processes of other ants. This simple form of 
communication between individual ants gives rise to 
complex behaviours and capabilities of the colony as 
a whole.  

The first algorithm which can be classified 
within this framework was presented by Dorigo, 
Maniezzo and Colorni (1991, 1996), and Dorigo 
(1991) and, since then, many diverse variants of the 
basic principle have been reported in the literature. 

The real ants behaviour is transposed into an 
algorithm by making an analogy between: 

1. real ants search - set of feasible solutions to 
the problem; 

2. amount of food in a source - fitness 
function; 

3. pheromone trail - adaptive memory. 

In ant colony natural, while walking from food 
sources to the nest or the nest to food sources, each 
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ant deposits a pheromone on the ground. All ants 
can smell the pheromone while they walks. 
Therefore, more pheromone on the path will 
increase the probability of all ants to follow. In 
short, the best paths will receive a greater deposit of 
pheromones.  

The pheromone trails in ACO serve as a 
distributed, numerical information which the ants 
use to probabilistically construct solutions to the 
problem being solved and which the ants adapt 
during the algorithm execution to reflect their search 
experience.   

The essential trait of ACO algorithms is the 
combination of a priori information about the 
structure of a promising solution with a posterior 
information about the structure of previously 
obtained good solutions. 

Any high performing metaheuristic algorithm 
has to achieve an appropriate balance between the 
exploitation of the search experience gathered so far 
and the exploration of unvisited or relatively 
unexplored search space regions. In ACO several 
ways exist of achieving such a balance, typically 
through the management of the pheromone trails. In 
fact, the pheromone trails induce a probability 
distribution over the search space and determine 
which parts of the search space are effectively 
sampled. The management of pheromone trails is the 
most important component of an ant system. 
Exploration is a stochastic process in which the 
choice of the component used to construct a solution 
to the problem is made in a probabilistic way. 
Exploitation chooses the component that maximises 
a blend of pheromone trail values and partial 
objective function evaluations. 

The standard ACO algorithm uses pheromones 
trail information to construct complete solutions. 
Gambardella et al. (1999) in their paper present a 
Hybrid Ant Colony System coupled with a local 
search (HAS_QAP), applied to the quadratic 
assignment problem (QAP). HAS-QAP uses 
pheromone trail information to perform 
modifications on QAP solutions. Our HACO 
algorithm uses also pheromone trail information to 
perform modifications on TA solutions, unlike 
traditional ant systems that use pheromone trail 
information to construct complete solutions.  

In this paper we will also explore one of the most 
successful emerging ideas combining local search 
with a population based search algorithm. HACO 
uses a modified ACO to explore several regions of 
the search space and simultaneously incorporates a 
mechanism (LS algorithm) to intensify the search 
around some selected regions.  

The first step for the HACO implementation 
involves choosing a representation for the problem. 
In this work, the solutions are represented using 
integer vectors. We use the terminal-based 
representation (Figure 2).  Each position in the 
vector corresponds to a terminal. The value carried 
by position i of the chromosome specifies the 
concentrator that terminal i is to be assigned to. 

 
Figure 2: Terminal Based Representation. 

For the TA, the set of pheromone trails is 
maintained in a matrix T of size N*M, where the 
entry Tij measures the desirability of assigning 
terminal i to concentrator j. 

The simplest way to exploit the ants search 
experience is to make the pheromone update a 
function of the solution quality achieved by each 
particular ant. In HACO only the best solution found 
during the search contributes to pheromone trail 
updating (Gambardella et al. 1999). This makes the 
search more aggressive and requires less time to 
reach good solutions. Moreover, this has been 
strengthened by an intensification mechanism. The 
intensification mechanics is used to explore 
neighbourhood more completely.  

The algorithm uses also a diversification 
mechanism after a pre-defined number of S 
iterations without improving the best solution found 
so far. Gambardella et al. (1999) have shown that 
pheromone trail reinitialization, when combined 
with appropriate choices for the pheromone trail 
update can be very useful to refocus the search on a 
different search space region and avoid the early 
convergence of the algorithm.  

HACO is based on the schematic algorithm of 
Figure 3. 

The main steps of HACO are the following: 

 Initialization of solutions – the initial solutions 
can be created randomly or in a deterministic 
form. The deterministic form is based in the 
Greedy Algorithm proposed by Abuali et al. 
(1994). This algorithm assigns terminals to the 
closest feasible concentrator.  

 Evaluation of solutions – the fitness function is 
responsible for performing this evaluation and 
returning a positive number (fitness value) 
that reflects how optimal the solution is. The 
fitness function is based on the fitness 
function used in (Salcedo-Sanz and Yao, 
2004). The fitness function is based on: (1)  
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the total number of terminals connected to 
each concentrator (the objective is to 
guarantee the balanced distribution of 
terminals among concentrators); (2) the 
distances between the concentrators and the 
terminals assigned to them (the objective is to 
minimize the distances between concentrators 
and terminals assigned to them); (3) the 
penalization if a solution is not feasible (the 
objective is to penalize the solutions when the 
total capacity of one or more concentrators is 
overloaded). The objective is to minimize the 
fitness function. 
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 Pheromone trail initialization – all pheromone 
trails Tij are set to the same value 
T0=1/(Q*f(X*)) (Gambardella et al. 
1999). X* is the best solution found so far and 
Q a parameter. 

 Modification of solutions – it consists in 
repeating R modifications. A modification 
consists on assigning a terminal t to a 
concentrator c. First a terminal t is randomly 
chosen (between 1 and N) and after a 
concentrator c is chosen. A random number x 
is generated between 0 and 1. If x is smaller 
than q (parameter), the best concentrator c is 
chosen in such a way that Ttc is maximum. 
This policy consists in exploiting the 
pheromone trail. If x is higher than q the 
concentrator c is chosen with a probability 
proportional to the values contained in the 
pheromone trail. This consists in exploring the 
solution space. 

 Local Search – the LS algorithm consists on 
applying a partial neighbourhood examination. 

We generate a neighbour by swapping two 
terminals between two concentrators C1 and 
C2 (randomly chosen). If isn’t find a better 
solution then is created another set of 
neighbours.  In this case, one neighbour 
results of assign one terminal of C1 to C2 or 
C2 to C1. The neighbourhood size is 
N(C1)*N(C2) or N(C1)*N(C2) + 
N(C1)+N(C2). The LS algorithm consists 
on the following steps: 

C1 = random (number of concentrators) 
C2 = random (number of concentrators) 
NN = neighbours of ACTUAL-SOL (one 
neighbour results of interchange one 
terminal of C1 or C2 with one terminal 
of C2 or C1) 
SOLUTION = FindBest (NN) 
If ACTUAL-SOL is best than SOLUTION 
    NN = neighbours of ACTUAL-SOL (one  
    neighbour results of assign one 
    terminal of C1 to C2 or C2 to C1) 
    SOLUTION = FindBest (NN) 
    If SOLUTION is best than ACTUAL-SOL 
       ACTUAL-SOL = SOLUTION 
Else 
    ACTUAL-SOL = SOLUTION 

 Intensification – the intensification mechanism 
permits to explore the neighbourhood more 
completely and permits to return to previous 
best solutions. If the intensification is active 
and the solution X in the beginning of the 
iteration is better, the ant comes back to the 
initial solution X. The intensification is 
activated when the best solution found so far 
has been improved and remains active while at 
least one ant succeeds on improving its 
solution during the iteration. 

 Pheromone trail update – to speed-up the 
convergence the pheromone trails are updated 
by taking into account only the best solution 
found so far (Gambardella et al. 1999). The 
pheromone trails are updating by setting: 
Tij=(1-x1)*Tij, where 0<x1<1 is a 
parameter that controls the evaporation of the 
pheromone trail 
TiXi*=TiXi*+x2/f*(X*), where 0<x2<1 
is a parameter that controls the influence of 
the best solution X* in the pheromone trail. 

 Diversification – this mechanism restarts the 
pheromone trails and creates new solutions for 
each ant. We kept for the following iteration 
the best solution found so far.  

More information about ACO can be found in 
(ACO HomePage). 

(1) 

(2) 

(3) 

c(t)= concentrator of terminal t 
t  =  terminal                               c = concentrator 
M = number of concentrators     N =  number of terminals 
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Figure 3: HACO Algorithm. 

4 EXAMPLES 

In order to test the performance of our approach, we 
use a collection of TA instances of different sizes.  
We take 9 problems from literature (Bernardino et 
al. 2008). 

Table 1 presents the 9 problems that were used to 
test our algorithm. 

Table 1: TA Instances. 

Problem N M Total  T Total C 
1 10 3 35 39 
2 20 6 55 81 
3 30 10 89 124 
4 40 13 147 169 
5 50 16 161 207 
6 50 16 173 208 
7 70 21 220 271 
8 100 30 329 517 
9 100 30 362 518 

5 RESULTS 

To compare our results we consider the results 
produced with the classical Genetic Algorithm, the 
Tabu Search Algorithm and the Hybrid Differential 
Evolution Algorithm. The GA was first applied to 
TA by Abuali et al. (1994). The GA is widely used 
in literature to make comparisons with other 
algorithms. The GA adopted uses “one-point” 
method for recombination, “change order” method 
for mutation and tournament method for selection. 
In “change order”, two genes are randomly selected 
and exchanged. TS was applied to this problem by 
Xu et al. (2004) and Bernardino et al. (2008). We 
compare our algorithm with the TS algorithm 
proposed by Bernardino et al. (2008). HDE was 
applied to this problem by Bernardino et al. ( 2009). 

Table 2 presents the best-obtained results with 
HACO, GA, TS and HDE. The first column 
represents the problem number (Prob) and the 
remaining columns show the results obtained 
(Fitness, Time – Run Times) by the four algorithms. 

The algorithms have been executed using a 
processor Intel Core Duo T2300.  

The HDE and GA were applied to populations of 
200 individuals. The initial solutions were created 
using the Greedy Algorithm.  

The run time corresponds to the average time 
that the algorithms need to obtain the best feasible 
solution. 

The values presented have been computed based 
on 100 different executions for each test instance.  

The four algorithms reach feasible solutions for 
all test instances. In comparison, the HACO obtains 
better solutions for larger instances. The TS is the 
faster algorithm because can find good solutions in a 
better running time. In HDE the crossover 
probability is applied to each gene, generating 
several perturbations by generation, for which the 
algorithm slows down. Besides, in HDE is necessary 
to carry out a concentrator conversion so that the 
concentrator obtained stays always inside of the 
defined range.  

The better results obtained with HACO use R 
between N/20 and N/3, x1>0.4 and x2>0.4 
(Figure 4), Q=100, S between N*2 and N*4, 
q>0.4 (Figure 4) and Number of ants ={30,40}. 
These parameters were experimentally found to be 
good and robust for the problems tested. 

In our experiments we use a growing number of 
ants. The number of ants was set to {10, 20, 
30, 40, 50, 60, 70, 80, 90, 100}. We 
studied the impact on the execution time, the 
average fitness and the number of best solutions
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Table 2: TA Instances. 

Prob GA Tabu Search HDE HACO 
 Fitness Time Fitness Time Fitness Time Fitness Time 
1 65,63 <1s 65,63 <1s 65,63 <1s 65,63 <1s 
2 134,65 <1s 134,65 <1s 134.65 <1s 134.65 <1s 
3 284,07 <1s 270,26 <1s 270,26 <5s 270,26 <1s 
4 286,89 <1s 286,89 <1s 286,89 <5s 286,89 <1s 
5 335,09 <1s 335,09 <1s 335.09 <5s 335.09 2s 
6 371,48 1s 371,12 <1s 371,12 58s 371,12 3s 
7 401,45 2s 401,49 1s 401,21 118s 401,21 4s 
8 563,75 4s 563,34 1s 563,19 274s 563,19 14s 
9 703,78 5s 642,86 2s 642,83 456s 642,83 25s 

 

 
found. A higher number of ants significantly 
increase algorithm execution time (Figure 5).  

 
Figure 4: Influence of parameters – Problem 7. 

 
Figure 5: Number of Ants – Execution Time – Problem 7. 

The results show that the best values are 30 and 
40. With these values the algorithm can reach in a 
reasonable amount of time a higher number of best 
solutions (Figure 7). With a higher number of ants 
the algorithm can reach a better average fitness 
(Figure 6) but it needs much more time. 

 
Figure 6: Number of Ants – Average Fitness – Problem 7. 

  
Figure 7: Number of Ants – Number of Best Solutions – 
Problem 7. 

We also observe that a small number of ants 
allows an initial faster convergence, but a worse 
final result, following to an increased amount of 
suboptima values (Figure 8). This can be explained 
because the quality of the initial best-located 
solution previous to the first restart, depends highly 
on the population size: they need more population 
diversity – it depends on the population size – to 
avoid premature stagnation. 

For parameter R, the number of swaps executed 
using pheromone trail information, R between 
[N/20...N/3] has been shown experimentally to 
be more efficient (Figure 9). In our experiments R 
was set to {0, 1, 2, …, N}.  

In case of a high R the resulting permutation 
tends to be too close to the best solution used to 
perform global pheromone trail updating, which 
makes it more difficult to generate new improving 
solutions. A high R has also a significant impact on 
the execution time (Figure 10). On the contrary, a 
small R did not allow the system to escape from 
local minima because after the local search, the 
resulting solution was in most cases the same as the 
starting permutation. 

For S<N*2 and S>N*4 phenomena of 
stagnation and insufficient intensification have been 
observed (Figure 11). 
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Figure 8: Number of Ants – Convergence – Three 
different initial populations – Problem 7. 

 
Figure 9: Number of modifications – Average Fitness – 
Problem 7. 

Large types of experiments and considerations 
have been made to define other parameters. 

In general, experiments have shown that the 
proposed parameter setting is very robust to small 
modifications. 

 
Figure 10: Number of modifications – Execution Time – 
Problem 7. 

 
Figure 11: Diversification – Average Fitness – Problem 7. 

6 CONCLUSIONS 

In this paper we present a new Hybrid Ant Colony 
Optimization Algorithm to solve the Terminal 
Assignment Problem. The performance of' our 
algorithm is compared with three algorithms: a 
classical GA, a TS algorithm and a HDE algorithm.  

Experimental results demonstrate that the 
proposed HACO algorithm is an effective and 
competitive approach in composing fairly 
satisfactory results with respect to solution quality 
and execution time for the Terminal Assignment 
Problem. 

The HACO presents better results for larger 
problems. Our algorithm provides better solutions 
with smaller fitness values for larger problems. The 
TS is the faster algorithm. 

In literature the application of HACO for this 
problem is nonexistent, for that reason this article 
shows its enforceability in the resolution of this 
problem.  

The implementation of parallel algorithms will 
speed up the optimization process. 
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