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Abstract: We propose a simple formal ontology model for the uniform presentation of ontologies across different areas
of SemanticWeb (SW) research. On the one hand, the models simplicity allows for abstracting from technical
details in a selective way, while on the other hand it captures the essential characteristics of an ontology com-
mon to most ontology languages and formalisms. To demonstrate the compatibility of our model to existing
SW research, we provide mappings to several languages and formalisations ranging from expressive language
standards to light-weight semantical models. Moreover, we specify an extension of the UML metamodel for
the graphical visualisation of ontologies, and we sketch a software architecture for the programmatic access
to ontologies in terms of an API.

1 INTRODUCTION

Ontologies play a key role in theSemantic Web(SW)
as conceptual yet computational models for the ex-
plicit representation of domain knowledge in infor-
mation systems. One particular aspect of ontologies
as computational knowledge representation artifacts
is their formality according to a well-known defini-
tion in (Gruber, 1993), which allows for their auto-
mated processing by machines in a meaningful and
clearly defined way based on the principles of for-
mal semantics. In various areas that influence the
SW, such as knowledge representation and reasoning,
ontology alignment or Web 2.0 and light-weight se-
mantics, however, the formal aspects of ontologies
are perceived in different ways, emphasising differ-
ent characteristics. In consequence, formal models
used to describe ontologies in these areas deviate from
each other and each sub-community has its own for-
mal definition of an ontology.

To mediate between the various areas in the SW
community, striving for synergy in different strands
of ontology research, it would be beneficial to have a
common basis for a formal model of an ontology that
provides a unified view on the subject across different
perspectives of processing techniques and use cases.
Such a common formal model should, on the one
hand, be powerful and expressive enough to capture

all the specific characteristics of an ontology across
the various fields. On the other hand, such a model
should not be overly formal in cases where certain as-
pects are to be abstracted from, providing a simple
view that is easily and intuitively understood by re-
searchers from all areas.

Besides the unifying framework for the technical
formalities of an ontology that such a model provides,
there are aspects of usage towards graphical visuali-
sation of and programmatic access to ontologies.

In this paper, we propose a unifying formal model
for the presentation and investigation of ontologies
across SW research strands. We demonstrate its com-
patibility to current SW research by providing map-
pings to existing ontology languages and formalisa-
tions in different SW areas. Moreover, we sketch a
UML metamodel extension for graphical visualisa-
tion of and a software API for programmatic access to
ontologies, both in accordance with our formal model.

2 ONTOLOGY ESSENTIALS

According to the well-established definition in (Gru-
ber, 1993), an ontology is a “formal explicit specifi-
cation of a shared conceptualisation of a domain of
interest”. Hence, it combines various aspects, such

327
Grimm S. (2009).
A UNIFYING FORMAL ONTOLOGY MODEL - A Simple Formal Model for Unifying the Presentation of Ontologies in Semantic Web Research.
In Proceedings of the International Conference on Knowledge Engineering and Ontology Development, pages 327-335
DOI: 10.5220/0002331003270335
Copyright c© SciTePress



hasPartEngine Car Ship

Vehicle

V8x Maseratiy

differentFrom

isA isA

hasPart 250horsePower

Figure 1: An example ontology as semantic network.

as formality and explicitnessof represented knowl-
edge for machine-processing,consensusfor commu-
nity agreement, andconceptualityanddomain speci-
ficity for the capturing of domain knowledge in form
of a conceptual model. In contrast to other conceptual
models used in computer science, such as UML dia-
grams of software systems or entity-relationship dia-
grams for data storage, the primary purpose of an on-
tology is to serve as a source of domain knowledge to
be queried by an information system that bases run-
time decisions on the respective answers.

Ofttimes, ontologies are visualised and thought of
assemantic networksthat display interrelated concep-
tual nodes, as exemplarily depicted in Figure 1.

2.1 Essential Characteristics

Although there are various ontology languages with
different semantics for similar language constructs
next to a multitude of differing ontology formalisa-
tions, we can identify someessential characteristics
that seem to be common to all presentations of on-
tologies across different research areas.

• interrelation – Without any interconnection, the
plain nodes in a semantic network like the one
depicted in Figure 1 would rather be a list of
keywords.Relationsbetween concepts allow for
such an interconnection, enriching the conceptual
nodes with structure. In the example, cars are re-
lated to engines by means of ahasPartconnection.

• instantiation – An essential distinction is that
made between concrete individual objects of the
domain of interest and more general categories
that group together objects with some common
characteristics. Instantiation is the mechanism
to allow for this distinction by assigning individ-
ual objects to classes as their instances, such as
the specific Maserati in Figure1 is an instance
of the class of all cars. This mechanism can be
found across almost all forms of conceptual mod-
els, sometimes even in the form of metamodelling
(Motik, 2005) allowing for classes to be instances
of (meta-) classes themselves.

• subsumption– The most common way of inter-
linking general conceptual nodes is bysubsump-
tion, expressing akindOf-relationship that re-
flects the notion of specialisation/generalisation.
In the example, cars are stated to be kinds of vehi-
cles, and thus, inherit their properties being their
specialisation. Subsumption is the mechanism be-
hind the feature of inheritance hierarchies preva-
lent in conceptual modelling.

• exclusion– A rather sophisticated means of repre-
sentation is to state “negative” knowledge in form
of classexclusion, preventing two general concep-
tual nodes from overlapping in their extensions.
In the example, cars are stated to be different from
ships, meaning that being a car excludes being a
ship. This form of negative knowledge is found
in rather expressive ontology languages that allow
for negation.

• axiomatisation – The interrelated conceptual
nodes as such are often not sufficient to ex-
press rich knowledge – they need to take part in
complex statements about the domain of interest,
which accounts for the notion ofaxiomatisation.
Besides subsumption, exclusion or instantiation
as simple forms of axiomatisation, many ontology
languages allow for the formulation of more com-
plex statements in form of generalaxioms. Com-
plex axioms are typically neglected in the graph-
ical presentation of an ontology in lack of an ap-
propriate means for visualisation.

• attribution – Although not motivated by the un-
derlying logical formalisms for knowledge rep-
resentation, the inclusion of statements about
datatypes and their values are a common feature
in ontology languages, which accounts for theat-
tribution of conceptual nodes by strings, numbers,
etc. In the example, cars are attributed with a
number indicating their horsepower. Datatypes
and values are often an indispensable feature in
many applications of ontologies.

2.2 Model Design Goals

Our primary goal is to design a formal ontology
model that is on the one hand simple to suit a con-
cise presentation of ontologies, and on the other hand
rich enough to account for all the essential character-
istics identified above. It should allow for emphasis-
ing any of these characteristics while abstracting from
any of the others. In particular, it should be possible
to either take an axiomatic view on an ontology not
being concerned with structural aspects, or to take a
graph-like view not mixing in logic-based axiomati-
sation. Despite all abstraction, the model should be
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compatible to the common ontology languages and
formalisms for cases in which details of formal se-
mantics and other knowledge representation specifics
are to be discussed.

As the main use of such a unifying formal model
we see the possibility of presenting ontology-based
work in the course of Semantic Web research in a
uniform way across different areas. Once such a
model is established, however, it can facilitate more
far-ranging uniform handling of ontologies. On the
one hand, it can form the basis for a uniform graphical
visualisation of ontologies that accounts for the above
characteristics, e.g. in the widely accepted UML stan-
dard. On the other hand, it can serve as a structural
framework for a uniform programmatic access to on-
tologies in software systems in form of an API lay-
ered on top of existing ontology software back-ends,
e.g. in the widely used Java programming language.

3 A FORMAL MODEL FOR
ONTOLOGIES

In this section, we present our formal ontology model
as such, describing the constituents of an ontology as
well as a set of conditions that determine their char-
acteristics. Moreover, we report on some design deci-
sions that have influenced the model.

3.1 Constituents of an Ontology

An ontologyO is a tuple

O = (S,A) (1)

of a signatureS and a set ofaxiomsA. The signature
comprises several sets

S = C∪ I∪P (2)

of classesC, instancesI andpropertiesP. They are
further divided in sets

C = C ∪D , I = I ∪V , P = R ∪T (3)

of conceptsC and data typesD , individuals I and
data valuesV , as well asrelationsR andattributes
T . We also call the elements of the signature theen-
titiesof an ontology.

An axiom α ∈ A is an expression in a first-order
logical language over the signatureS with the follow-
ing restrictions:

• any entityE ∈ S occurs in someα ∈ A

• predicate symbols inα are taken fromC ∪ P,
where symbols taken fromC must be used as
unary predicates inα

• constant symbols inα are taken fromI

• anyt ∈ T must be used as a binary predicatet(i,v)
with i ∈ I andv∈ V (or i,v first-order variables)

Based on the essential characteristics from Sec-
tion 2, we identify some special types of axioms that
are common to most ontology languages and formal-
isations, for which we introduce a special notation in
Table 1. Their intuitive meaning is as follows.

• instantiation– An instantiation axiom assigns an
instance to a class.

• assertion– An assertion axiom assigns two in-
stances by means of a property.

• subsumption– A subsumption axiom for two
classes states that any instance of any one class
is also an instance of the other class, while for
two properties it states that any two instances con-
nected by the one property are also connected by
the other one.

• domain – A domain axiom for a property and
a class states that for any connection of two in-
stances by that property the source element is an
instance of the domain class.

• range– A range axiom for a property and a class
states that for any connection of two instances by
that property the target element is an instance of
the range class.

• disjointness – A disjointness axiom for two
classes states that no instance of the one class can
also be an instance of the other class, and thus, the
classes exclude each other.

3.2 Normative and Semantic Conditions

We define some conditions that can be employed to
further restrict the use of an ontology’s entities and
axioms. We divide them intonormative conditions
for restricting the signature andsemantic conditions
for restricting the semantics of axioms.

3.2.1 Normative Conditions

Some normative conditions that reflect basic aspects
of formalisms for conceptual models are listed in Ta-
ble 2. By separating axioms from entities,N1 pre-
vents reification of the form of axioms about entities
that are axioms themselves, such as statements about
triples in RDF (Klyne and Carroll, 2004). Moreover,
N2 prevents any form of metamodelling by clearly
separating instances, classes and properties (no class
can be used in place of an instance). Furthermore,N3
separates abstract domain objects from concrete data
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Table 1: Special axioms common in ontology formalisms.

Axiom Type Notation first-order expression
instantiation α∧(i,C) [C(i)], i ∈ I,C∈ C

assertion α→(i1, p, i2) [p(i1, i2)], i1, i2 ∈ I, p∈ P
subsumption α△(E1,E2) [∀x : E1(x) → E2(x)], E1,E2 ∈ C∪P

domain αD→(p,D) [∀x,y : p(x,y) → D(x)], p∈ P,D ∈ C
range α→R(p,R) [∀x,y : p(x,y) → R(y)], p∈ P,R∈ C

disjointness α⊕(C1,C2) [∀x : C1(x)∧C2(x) →⊥], C1,C2 ∈ C

Table 2: Normative conditions.

ID Name Condition(s)
N1 non-reifiability A∩S = ∅

N2 non-metalayering a) I∩C = ∅

b) I∩P = ∅

c) C∩P = ∅

d) ∀r ∈ R : arity(r) > 1
N3 data-separation a)C ∩D = ∅

b) I ∩V = ∅

c) R ∩T = ∅

N4 relation-binarity ∀r ∈ R : arity(r) = 2
N5 non-instantiation ∀α ∈ A :

for α = [. . . p(t) . . .],
if p∈ C thent 6∈ I

values and their types, as e.g. done in OWL (Patel-
Schneider et al., 2004). ByN4, only binary rela-
tions are allowed, andN5 prevents the instantiation
of classes by restricting terms of class predicates in
axioms to not be constants.

3.2.2 Semantic Conditions

The notion ofimplicit knowledgeassociated with an
ontologyO in terms ofdeductionis reflected in our
model by the symbol〈A〉, which denotes the deduc-
tive closure of the setA of axioms inO . Although dif-
ferent ontology languages and knowledge representa-
tion formalisms exhibit different semantics that yield
varying sets〈A〉 for an ontology, we identify some se-
mantic conditions that hold for most of the commonly
used semantics, regardless of the underlying ontology
language or model. These conditions characterise the
“meaning” of the specific axioms outlined in Table 1
and are listed in the following.
S1: (superclass instantiation) ifα∧(i,C1) ∈ 〈A〉 and
α△(C1,C2) ∈ 〈A〉 thenα∧(i,C2) ∈ 〈A〉
S2: (superproperty instantiation) ifα→(i1, p1, i2) ∈
〈A〉 andα△(p1, p2) ∈ 〈A〉 thenα→(i1, p2, i2) ∈ 〈A〉
S3: (subsumption transitivity) ifα△(E1,E2) ∈ 〈A〉
andα△(E2,E3) ∈ 〈A〉 thenα△(E1,E3) ∈ 〈A〉
S4: (property domain) if αD→(p,D) ∈ 〈A〉 and
α→(i1, p, i2) ∈ 〈A〉 thenα∧(i1,D) ∈ 〈A〉
S5: (property range) if α→R(p,R) ∈ 〈A〉 and
α→(i1, p, i2) ∈ 〈A〉 thenα∧(i2,R) ∈ 〈A〉

S6: (disjointness) if α⊕(C1,C2) ∈ 〈A〉 then
α⊕(C2,C1) ∈ 〈A〉 and there is noi ∈ I such that
bothα∧(i,C1) ∈ 〈A〉 andα∧(i,C2) ∈ 〈A〉
S7: (negativity) forC1,C2 ∈ S there is a set of axioms
α1, . . . ,αn such thatα⊕(C1,C2) ∈ 〈A∪{α1, . . . ,αn}〉

3.3 Design Decisions

A major design goal for the presented ontology model
was to achieve simplicity for use cases in which an
overly formal presentation of an ontology would be
hindering. This simplicity is employed in a gradual
way providing several layers of detail that can be cho-
sen to present the constituents of an ontology at the
desired granularity.

At the top-most level (1), an essential distinction
is made between the vocabulary elements in the sig-
natureS and the actual statements that use these ele-
ments to express knowledge about the domain as ax-
iomsA. Hence, this level is appropriate when viewing
an ontology as a semantic vocabulary without further
distinction of the elements inS in terms of concepts,
relations, etc., or when working with the statements
about the domain inA as such without investigat-
ing their axiomatic structure or semantic properties.
This level already provides sufficient detail for many
Semantic Web applications, such as semantically en-
hanced document retrieval where the elements of an
ontology’s signature are used for indexing. A partic-
ularly crucial design decision at this level is the clear
separation of axioms, which are often neglected in use
cases associated with light-weight semantics. In our
model, axioms are the statements about the domain,
whereas entities in the signature form the vocabulary
used within these statements, and the two are clearly
distinguished.

At the second level (2), the distinction between
classesC, instancesI and propertiesP is introduced,
which is an essential feature in almost all forms of
conceptual knowledge representation ranging from
UML in software design to logically expressive on-
tology languages like OWL. Hence, this level intro-
duces the notions of instantiation and interrelation,
and is appropriate when explicitly working with the
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constituents of an ontology’s signature as classes, in-
stances and properties. This level will be sufficient
for most Semantic Web applications that exploit the
structural features of an ontology but do not rely on
the formal semantics that underlies the left out ax-
iomatic details of the elements inA. Examples are
various works on ontology mapping, Web 2.0 or many
approaches that take a graph-oriented view on ontolo-
gies as interconnected classes and their instances.

At the third level (3), the participants of instanti-
ation, namely classes and instances, are further split,
and abstract conceptsC are distinguished from data
typesD like string or integer, while abstract individ-
ual objectsI of the domain are separated from con-
crete data valuesV . Accordingly, properties are split
into relationsR , which involve abstract domain ob-
jects only, and attributesT , which involve also data
values. This design decision reflects the natural sep-
aration of abstract domain objects from attributes of
such objects, which are merely data values attached to
them, and thus accounts for attribution.1 In this sense,
individuals serve as instances of concepts, while data
values serve as instances of data types. Hence, this
level is appropriate when working with the explicit
distinction between abstract objects of the domain and
concrete data values, which is often the case in e.g.
information integration scenarios where an ontology
serves as a unifying schema for databases.

At an even finer-grained level, touching the
grounds of formal semantics attached to ontology
languages and deduction mechanisms, our ontology
model renders the statements about the domain inA
as expressions of a first-order logical language that
employs the elements of an ontology’s signatureS as
the symbols for predicates and constants. Although
we do not aim at providing a comprehensive ontol-
ogy language with formal syntax and semantics, we
make use of the well established first-order logic no-
tation as a unifying syntactical framework for axioms
in an ontology.2 In this notation the statements of
most ontology languages can be expressed and it nat-
urally accounts for the notions of class, relation and
instance by means of unary predicates, binary predi-
cates and constants. Furthermore, we provide a min-
imal set of semantic conditions that formalise the es-
sential characteristics shared by most knowledge rep-

1This distinction is also made in entity-relationship
modelling in the field of databases, in object-oriented soft-
ware design, and in ontology languages like OWL, where
object properties are separated from datatype properties.

2First-order predicate logic (FOL) has been used as a
unifying umbrella formalism for many different forms of
knowledge representation, such as description logics or
logic programming, which can be understood as syntactic
and/or semantic deviations of FOL.

resentation formalisms and ontology languages in our
model, such as the interplay between instantiation and
subclassing (S1,S2,S3), the restriction of a relation’s
domain and range classes (S4,S5), the symmetric ex-
clusion of class extensions (S6) and the ability of de-
riving class disjointness (S7).

4 CONFORMANCE WITH
SEMANTIC WEB RESEARCH

In this section, we demonstrate the compatibility and
conformance of our proposed ontology model to ex-
isting notions of an ontology in various areas of Se-
mantic Web research, such as ontology language stan-
dards, light-weight semantics or ontology mapping.
We do so by specifying mappings from different on-
tology formalisations used in those areas to our sim-
ple ontology model.

4.1 Mapping from OWL

The Web Ontology Language(OWL)(Patel-Schneider
et al., 2004) is currently the most prominent of the
W3C standard languages for expressing ontologies
on the web. It provides for expressive knowledge
representation based on the underlyingdescription
logic (DL) formalism (Baader et al., 2003).

In Table 3, we specify how the various elements
of an OWL ontology can be mapped to the signature
and axioms of our ontology model, where we use the
DL style notation for presenting the OWL elements.
An OWL ontology is seen as a DL knowledge base
KB that consists of DL axioms, whileNI ,NC,Nr ,Nt
are sets of named entities (individuals, classes, ob-
ject properties and datatype properties) used within
these axioms andDi are concrete domains that repre-
sent datatypes in OWL.

By means of the syntactical first-order logic um-
brella that we use for axioms in our model, the DL
statements directly map to the axioms inA, since
DLs are fragments of first-order predicate logic. For
named classesC(i) ∈ NC, individuals a(i) ∈ NI and
propertiesr(i) ∈ Nr , we specify some particular DL
axioms in terms of the notation introduced in Table 1.

The imposed conditionsN1 - N4 render OWL as
a rather strictly defined ontology language with only
binary relations and a clear separation of the different
types of entities that prevents any form of metamod-
elling or reification. Moreover, the conditionsS1 -
S7 ensure all the semantic properties common in rich
knowledge representation formalisms, such as transi-
tivity of or propagation of instances along subsump-
tion hierarchies as well as negativity.
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Table 3: Mapping OWL.

OWL element signature element
NC C
{D1, . . . ,Dn} D
NI I
D1∪·· · ∪Dn V
Nr R
Nt T
KB A
DL expression axiom
C(a) ∈ KB α∧(i,C) ∈ A
r(a1,a2) ∈ KB α→(a1, r,a2) ∈ A
C1 ⊑C2 ∈ KB α△(C1,C2) ∈ A
r1 ⊑ r2 ∈ KB α△(r1, r2) ∈ A
∃r.⊤⊑C∈ KB αD→(r,C) ∈ A
⊤⊑ ∀r.C∈ KB α→R(r,C) ∈ A
C1⊓C2 ⊑⊥∈ KB α⊕(C1,C2) ∈ A
conditions: N1 - N4, S1 - S7

4.2 Mapping from RDFS

The Resource Description Framework RDF (Klyne
and Carroll, 2004) with its schema extension RDFS
(Brickley and Guha, 2004) is the prevalent standard
for many applications in the area of linked open data.
For an RDF graphG with triples 〈r1, r2, r3〉, Table 4
specifies the mapping of an RDFS ontology repre-
sented byG to the simple ontology model, whereR
is the set of resources that occur inG andr i ∈ R are
specific resources.

Table 4: Mapping RDFS.

RDFS element signature element
{r1 | 〈r1, rdf:type, r2〉 ∈ G∨ I

〈r1, r2, r3〉 ∈ G, r2 6∈ VocRDF∨
〈r3, r2, r1〉 ∈ G, r2 6∈ VocRDF}

{r1 | 〈r2, rdf:type, r1〉 ∈ G∨ C
〈r1, rdf:type, rdfs:Class〉 ∈ G∨
〈r1, rdfs:subClassOf, r2〉 ∈ G∨
〈r2, rdfs:subClassOf, r1〉 ∈ G∨
〈r2, rdfs:domain, r1〉 ∈ G∨
〈r2, rdfs:range, r1〉 ∈ G}

{r2 | 〈r1, r2, r3〉 ∈ G∨ P
〈r1, rdf:type, rdfs:Property〉 ∈ G∨
〈r1, rdfs:subPropertyOf, r2〉 ∈ G∨
〈r2, rdfs:subPropertyOf, r1〉 ∈ G∨
〈r2, rdfs:domain, r1〉 ∈ G∨
〈r2, rdfs:range, r1〉 ∈ G}

{rdfs:Literal} D
< string > V
RDF(S) triple axiom
〈r1, rdf:type, r2〉 ∈ G α∧(r1, r2) ∈ A
〈r1, r2, r3〉 ∈ G, r2 6∈ VocRDF α→(r1, r2, r3) ∈ A
〈r1, rdfs:subClassOf, r2〉 ∈ G α△(r1, r2) ∈ A
〈r1, rdfs:subPropertyOf, r2〉 ∈ G α△(r1, r2) ∈ A
〈r1, rdfs:domain, r2〉 ∈ G αD→(r1, r2) ∈ A
〈r1, rdfs:range, r2〉 ∈ G α→R(r1, r2) ∈ A
conditions: N4, S1 - S5

We map the triples to axioms in a way such that
plain triples not containing any predefined RDF(S)
vocabulary terms are interpreted as assertion axioms
connecting instances. Special triples that contain
RDF(S) vocabulary likerdf:type, rdf:subClassOf, etc., map
to instantiation axioms, subclass axioms, etc.

Of the normative conditions, onlyN4 is imposed,
which renders RDFS as a rather unconstraint lan-
guage that allows for reification and metamodelling.
The imposed semantic conditionsS1 - S5 reflect some
semantic features of RDFS, such as the instance-class
connection along subsumption hierarchies and do-
main/range properties. Moreover, the lack of condi-
tions S6,S7 renders RDFS as a formalism that does
not have the expressivity for negation to state or de-
tect logical inconsistencies due to class disjointness.

4.3 Mapping from SKOS

The Simple Knowledge Organization System SKOS
(Miles and Bechhofer, 2008) is a prominent light-
weight representation formalism in the area of
Web 2.0 and light-weight semantics based on
RDF(S). In Table 5, we specify a mapping from
SKOS concept schemes to our simple ontology
model. Similar to the mapping from RDFS, we base
the SKOS mapping on an RDF graphG that contains
the respective concept scheme, while we take into ac-
count specific SKOS vocabulary.

Table 5: Mapping SKOS.

SKOS element signature element
{r | 〈r, rdf:type, skos:Concept〉 ∈ G} I = C
{string} D
{skos:related} R = {rrel}
{skos:XLabel, skos:Note} T = {txLab,tNote}
< string > V
SKOS RDF triple axiom
〈r1, skos:broader, r2〉 ∈ G α△(r1, r2) ∈ A
〈r1, skos:narrower, r2〉 ∈ G α△(r2, r1) ∈ A
〈r1, skos:related, r2〉 ∈ G α→(r1, rrel , r2) ∈ A
〈r, skos:XLabel,v〉 ∈ G α→(r,txLab,v) ∈ A
〈r, skos:note,v〉 ∈ G α→(r,tNote,v) ∈ A
conditions: N1, N3, N4, N5

Since in SKOS classes are not explicitly distin-
guished from instances, we let the two respective
sets coincide and include all elements from a con-
cept scheme. This allows for using SKOS concepts
both in place of classes to build class hierarchies and
in place of instances to interlink them. As there are
no custom relations or attributes in SKOS, the respec-
tive sets comprise the specific SKOS vocabulary only.
Subclass axioms reflect the broader/narrower hierar-
chy essential to SKOS, while other axioms represent
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relatedness of concepts and their string attributes with
the labels, notes, etc. predefined in SKOS.3

Besides the imposed normative conditionsN1 for
preventing reification,N3 for separation of data val-
ues and their types andN4 for the restriction to binary
predicates, conditionN5 supports the class/instance
coincidence mentioned above by preventing concepts
from being used to predicate about individuals. On
the semantic side, SKOS does not support rich deduc-
tive features for its predefined vocabulary, which is
reflected by not imposing any semantic conditions.

4.4 Mapping to OA Model

Another area in Semantic Web research is concerned
with the mapping and alignment of ontologies (OA),
where similar entities across different ontologies are
to be identified. We specify a mapping from the
formalisation of ontologies in this area, taken from
(Euzenat and Shvaiko, 2007), to our simple ontology
model. According to this formalisation, an ontology
is characterised by classesC, instancesI, relations
R, datatypesT and their valuesV, while specific re-
lation over these sets denoted by≤,⊥,ε,= express
subsumption, exclusion, instantiation and assertion.

Table 6: Mapping OA Model.

OA model element signature element
I I
C C
R P
T D
V V
OM model statement axiom
(C1,C2) ∈≤ ∩C×C α△(C1,C2) ∈ A
(p1, p2) ∈≤ ∩R×R α△(p1, p2) ∈ A
(C1,C2) ∈⊥∩C×C α⊕(C1,C2) ∈ A
(p1, p2) ∈⊥∩R×R [∀x,y : p1(x,y) →¬p2(x,y)] ∈ A
(i,C) ∈ ε α∧(i,C) ∈ A
(i1, r, i2) ∈= ∩I×R×Iα→(i1, r, i2) ∈ A
conditions: N1, N2, N4, S1 - S7

The basic elements of the ontology formalisation
from the alignment and mapping area are very similar
to the signature in our model and map almost one-to-
one, while the various axioms are determined by the
relations≤,⊥,ε,=.

Except for the clear separation between object
properties and datatype properties, all the normative
conditionsN1, N2, N4 can be imposed, together with
the expressive set of semantic conditionsS1 - S7 as in
the OWL case, which reflects the fact that this formal-
isation builds on a similar model-theoretic semantics.

3In Table 5,skos:XLabel stands for the various label ele-
ments andskos:note represents the different documentation
properties defined in SKOS.

5 UML VISUALISATION

Next to their formal notation, the presentation of on-
tologies in research works often also requires the
graphical illustration of conceptual models that dis-
play an ontology’s constituents in an intuitively gras-
pable way, for example, to give an overview on a
back-bone taxonomy containing the most essential
concepts. The Unified Modelling Language UML4,
well established in the software development com-
munity, is a prevalent instrument for displaying con-
ceptual models of all kinds, in particular by means of
UML class diagrams, and we propose to use it for this
purpose in connection to our formal model.

Applied in the standard way, however, UML class
diagrams offer some freedom in the use of their man-
ifold elements, which results in a multitude of dif-
ferent styles of diagrams when used for ontologies,
similar to the many different formal ontology models
found in research works. This calls for a well-defined
uniform way of using the graphical UML elements
for displaying at least the essential characteristics of
ontologies common to most research contexts. As
an additional requirement, the graphical visualisation
should be inline with the formal notation and reflect
an ontology’s formal structure as close as possible,
whereas in many presentations ontology diagrams are
rather vague with no clear interpretation of graph ele-
ments in relation to the underlying formal model.

To provide a uniform way of displaying ontolo-
gies in UML, we propose a UML metamodel exten-
sion that guides the use of UML class diagrams for
graphical presentation of ontologies in accordance to
our formal ontology model, as depicted in Figure 2. It
defines the entities inS of an ontologyO as extensions
of predefined UML metaclasses, such asUML::Class or
UML::Association in form of new UML stereotypes for
classes, instances and properties.5 The axiomsA are
accounted for by an abstract stereotype with special-
isations for the different axiom typesα△, α⊕, α∧,
αD→/α→R andα→.6 The connections between stereo-
types for axioms and entities indicate how an axiom is
expressed in terms of UML relations. For example, an
axiom of typeα∧ is a UML association that involves
one instance and one class.

In summary, the UML metamodel extension pro-
vides means to visualise the essential characteristics
of ontologies in a way consistent to our formal model.

4http://www.uml.org/#UML2.0
5For simplicity, we left out stereotypes for the more spe-

cific concepts, individuals, data values, etc.
6The axiom types for domain and range restriction are

combined in the graphical model with the idea that a di-
rected association between classes expresses both.
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Figure 2: UML metamodel for ontology visualisation.

In this way, we can benefit from the existing tool
support for the visual creation of graphical ontology
models by means of UML editors, which also enables
the possibility for the generation of code in various
ontology languages, e.g. through EMF7 transforma-
tions based on the mappings presented in Section 4.

6 AN ONTOLOGY API

Our formal ontology model can also form the basis for
a unified programmatic access to ontologies by means
of a software API that is layered on top of existing
ontology back-end systems. This allows information
systems to take a simplified view on ontologies on the
software side.

In Figure 3, we sketch an architecture for such an
API and its implementation in form of a UML dia-
gram. An ontology and its axioms can be accessed by

OOntologyImpl OSignature

OAxiomImpl OEntity

OOntology

OAxiom

Figure 3: An ontology software API.

respective interfaces whose implementing classes es-
tablish the connection to the ontology’s signature and
entities. For sake of simplicity, we left out specialised
types for specific axioms and entities.

Through implementations for various ontology
back-end systems, such as e.g. the OWL-API (Hor-
ridge et al., 2007), an ontology-based application can
access and manipulate ontologies in an easy way, ab-
stracting from the details of the underlying ontology
language layer if desired.

7http://www.eclipse.org/modeling/emf/

7 CONCLUSIONS

We have proposed a unifying formal model for on-
tologies that allows for both simplicity in presenta-
tion and representation of the essential characteristics
of an ontology. We have demonstrated compatibility
to SW research works by having provided mappings
to various existing ontology languages and formali-
sations. Moreover, we have sketched the further use
of our model as a basis for graphical visualisation in
terms of UML and for a simplified programmatic ac-
cess to ontologies via a specific API.

We argue that our unifying model can help to me-
diate between different strands of SW research, pro-
viding a common view on ontologies that captures
their essentials while abstracting from details of spe-
cific languages. We aim to work towards a more thor-
ough system of normative and semantic conditions, as
well as the realisation of UML-based ontology visu-
alisation and a unifying software API with implemen-
tations for various ontology frameworks.

ACKNOWLEDGEMENTS

This work is partially supported by the German Fed-
eral Ministry of Economics (BMWi) under the project
THESEUS (number 01MQ07019).

REFERENCES

Baader, F., Calvanese, D., McGuinness, D., Nardi, D., and
Patel-Schneider, P., editors (2003).The Description
Logic Handbook. Cambridge University Press.

Brickley, D. and Guha, R. (2004). RDF Vo-
cabulary Description Language – RDF Schema.
http://www.w3.org/TR/rdf-schema/.

Euzenat, J. and Shvaiko, P. (2007).Ontology Matching.
Springer-Verlag, Heidelberg.

KEOD 2009 - International Conference on Knowledge Engineering and Ontology Development

334



Gruber, T. (1993). A Translation Approach to Portable
Ontology Specifications. Knowledge Acquisition,
6(2):199–221.

Horridge, M., Bechhofer, S., and Noppens, O. (2007). Ig-
niting the OWL 1.1 Touch Paper: The OWL API. In
OWLED, volume 258 ofCEUR Workshop Proceed.

Klyne, G. and Carroll, J. (2004). RDF Concepts and Ab-
stract Syntax. http://www.w3.org/TR/rdf-primer/.

Miles, A. and Bechhofer, S. (2008). SKOS Simple Knowl-
edge Organization System Reference. W3C draft.

Motik, B. (2005). On the Properties of Metamodeling in
OWL. In Proceedings of the 4th International Se-
mantic Web Conference (ISWC’05), volume 3729 of
LNCS, pages 548–562. Springer-Verlag.

Patel-Schneider, P., Hayes, P., and Horrocks, I. (2004).
OWL Web Ontology Language; Semantics and Ab-
stract Syntax. http://www.w3.org/TR/owl-semantics/.

A UNIFYING FORMAL ONTOLOGY MODEL - A Simple Formal Model for Unifying the Presentation of Ontologies in
Semantic Web Research

335


