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Abstract: Data mining deals with finding hidden knowledge patterns in often huge data sets. The work presented in
this paper elaborates on defining data mining tasks in terms of fine-grained composable operators instead of
coarse-grained black box algorithms. Data mining tasks in the knowledge discovery process typically need
one relational table as input and data preprocessing and integration beforehand. The possible combination of
different kind of operators (relational, data mining and data preprocessing operators) represents a novel holistic
view on the knowledge discovery process. Initially, as described in this paper, for the low-level execution phase
but yielding the potential for rich optimization similar to relational query optimization. We argue that such
macro-optimization embracing the overall KDD process leads to improved performance instead of focusing
on just a small part of it via micro-optimization.

1 INTRODUCTION

The rapidly growing wealth, complexity and diversity
of data open many new opportunities in business, re-
search, design, policy formulation and decision mak-
ing. These opportunities will not be explored un-
less we advance the state of the art in data integra-
tion and analysis. The European project ADMIRE
(Advanced Data Mining and Integration Research for
Europe) (Atkinson et al., 2008) is pioneering archi-
tectures and models that will deliver a coherent, ex-
tensible and flexible framework for data mining and
integration to make the best use of a wide range of
distributed data resources. Research in the area of re-
lational query processing pioneered the definition of
re-usable standard sub-components dividing the over-
all task into smaller pieces, so called relational op-
erators. First into logical ones and later into con-
crete physical ones, allowing advanced query opti-
mization (Ioannidis, 1996) and well elaborated cen-
tralized, distributed and parallel query execution ar-
chitectures (Kossmann, 2000). Many data mining al-
gorithms have similar behavior during, at least, an
important part of their execution too. This led us to
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Figure 1: (a) Traditional black box DM algorithm imple-
mentation. (b) Composable operators. (c) Implementation
of a KDD process in OGSA-DQP.

consider to apply a similar operator-based approach
to decompose KDD processes in order to achieve re-
usability, flexibility and extensibility.

This requires a transition from traditional black
box data mining algorithm implementation towards
re-usable operator based implementations as shown
in Figure 1. The current state-of-the art approach
is presented in Figure 1 (a) where the functionality
and intermediate steps of the used data mining algo-
rithm is hidden. The open source data mining toolkit
WEKA (Witten et al., 1999) is a well known repre-
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sentative following this approach. Figure 1 (b) pic-
tures an arbitrary set of re-usable data mining oper-
ators needed to realize the functionality of one spe-
cific data mining algorithm. Figure 1 (c) presents a
high-level view of how we implemented the required
set of operators for a KDD process, in our case re-
quiring sequential pattern mining, by extending the
service-oriented distributed query processing engine
OGSA-DQP (Alpdemir et al., 2004) with fine-grained
data mining operators. As data mining tasks in the
knowledge discovery process typically need one rela-
tional table as input and data preprocessing and inte-
gration beforehand, the possible combination of dif-
ferent kind of operators (relational, data mining and
data preprocessing operators) represents a novel way
of tight integration of data access, data integration and
data mining.

The rest of the paper is structured as follows. Sec-
tion 2 introduces needed background while Section
5 discusses related work. Section 3 elaborates on
data mining operators for sequential patterns and de-
scribes their proof of concept implementation via the
OGSA-DQP framework. Section 4 discusses macro
optimization of KDD process enabled by an operator
based view on it. Section 6 concludes the paper and
outlines future work.

2 BACKGROUND

Sequential Patterns were first introduced in
(Agrawal and Srikant, 1995) and deals with the
extraction of knowledge which consists of frequently
occurring events or elements. Let us suppose that T =
{I1,I2,I3,..In} be the non empty set of items or events.
Then a sequence is an ordered list of items or events
which can be represented as S=〈s1,s2,sn〉,wheresi is
an itemset. The order of itemsets depends upon time
or date. To extract the frequent sequences different
constrains are being defined by the user.Sequential
pattern is a frequent pattern which satisfies the
minimum threshold frequency calledsupport, defined
as

support(S) =
Total occurrence of Sequence S in DB

Total number of transactions in DB
A sequences is a maximal sequenceif it is not
contain in any other sequence. To get the maximal
frequent sequence the non-maximal sequences have
to be eliminated.

Relational Operators are the building blocks of a
query tree representing some SQL statement to re-
trieve data. To perform its tasks operators typically
follow the iterator model (Graefe, 1993) which con-

sists of open, fetch-next, and close methods. The
open-function allocates memory for an operator’s in-
put(s) and output while fetch-next retrieves all the tu-
ples iteratively from its child operators and process
them according to the task of the operator. When
all input tuples have been processed and related out-
put was generated the close-function is called to de-
allocate the resources which were allocated during
processing. The operators can be divided into two cat-
egories, blocking and non-blocking query operators.

• blocking: An operator which produces output
only when it goes through all the input tuples first.
An example for a blocking relational operator is
thegroup-byoperator.

• non-blocking: Such operators produce the output
without reading all the available input tuples. An
example for a non-blocking relational operator is
theselectoperator.

OGSA-DQP (Alpdemir et al., 2004) is a ser-
vice based framework capable of performing dis-
tributed query processing over OGSA-DAI (Antonio-
letti et al., 2005) data services and other Web services
on the Grid. OGSA-DAI is a de-facto standard mid-
dleware to access databases on the Grid. The OGSA-
DQP coordinator service produces a query plan from
the user query. This query is translated into differ-
ent query partitions which are being executed by the
evaluator services.

The process ofrelational query optimization
and its components is pictured in Figure 2. The sin-
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Figure 2: Components of relational query optimization and
processing.

gle node optimizer produces a query plan as it would
run on one processor. The parser transforms the query
into an internal logical representation which gets op-
timized by the logical optimizer. The physical op-
timizer transforms the logical expression into exe-
cutable physical query plans by selecting algorithms
that implement each of the operations in the logical
plan, e.g. hash join for a join operation. If multiple
processors are available, the multi node optimizer di-
vides the query plan into several partitions (by the par-
titioner) which are allocated to machine resources (by
the scheduler). Optimizations are typically based on
cardinality estimation, data distribution and knowl-
edge about the runtime behavior and requirements of
the operators (Ioannidis, 1996).
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3 OPERATORS

The sequential pattern mining process is divided into
six logical operators. One of these six operators is a
common relational operator and five are specific data
mining operators to find sequential patterns. The fol-
lowing sections elaborates on their definitions, rela-
tions and implementation.

3.1 Definition

SeqTableScanη Operator. This common relational
operator retrieves all the tuples from a data source.
The definition of this operator is shown below:

T1 = η(id,date,items)(table)

The operator takes as argument the input table and tar-
get columns in it. The output of this operator consists
of a table with columnsid, dateand items. The op-
erator1 sorts the input tuples according toid anddate
respectively in ascending order.
Conversion ρ Operator. This operator is used to
create sequence perid. It receives its input tuples
from theSeqTableScanoperatorη and then clusters
the itemshaving the sameid and order them accord-
ing todate. The operator has the following definition:

T2 = ρid,sequence(items(1,....,n))(T1)

As shown by the expression this operator takesT1 as
an input argument and the output consists of tuples
with id andsequence.
PowerSetσ Operator. The third operator receives it
input tuples from theConversionoperatorρ. The op-
erator works according to the mathematical principle
of Power Sets. This operator converts every sequence
of a id into its corresponding power sets. The operator
definition is shown below:

T3 = σid,ps sequence←ps(s1,s2,....,sn)(T2)

The outputT3 consists ofid andps sequence. Here
ps sequencewill be achieved by applying thepsoper-
ation to every sequencesi available in the ’sequence’
column of the input tuples fromT2.
LargeItemSet γ Operator. The fourth operator re-
cieves its input tuples from thePowerSetoperator
σ and then searches the large itemsets within them.
The large itemsets are those itemsets which satisfy
the minimum support threshold, another input argu-
ment provided by the user. It compares each of se-
quences related to oneid with other sequences and

1combines several needed relational operators into one.
This is done due the possibility to push-down the task to-
wards the RDBMS via an appropriate SQL statement like
’select ... from ... order by’

this comparison will give the total number of occur-
rences of a sequence of specificid. If that count
complies with the user provided support then that se-
quence will qualify for the large itemset while the
sequences which do not fulfill the minimum support
threshold will be eliminated. The operator is defined
as follows:

T4 = γsequence,support≥supportuser
(T3)

Its output tuples consist ofsequenceandsupport.

SeqTableScan

ConversionPowerSet

LargeItemSet Tranformation

MaximalSeq

Blocking operator

Non-blocking operator

Figure 3: Operator hierarchy.

Transformation β Operator. This operator retrieves
its input tuples from theLargeItemSetandConversion
operator. The definition of this operator is given be-
low:

T5 = βid,trans f ormed(T4,T2)

With the help of these two inputs this operator
transforms theCustomer Sequenceto corresponding
Transformed Sequences. For this process two steps
are required:

1. Take the customer sequences received fromCon-
versionoperator and replace them with the corre-
sponding power sets.

2. Using data retrieved fromLargeItemSetelimi-
nates those sequences which do not satisfy the
minimum support threshold.

The output tuples of this operator consist ofid and
transformedfields.
Maximal Sequenceα Operator. This operator re-
quires tuples from two input operators, namelyTran-
formation and LargeItemSetand finds the maximal
sequences. The operator is defined as follows:

T6 = αmax seq(T4,T5)
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The output of this operator are themaximal sequential
patterns. The description of the operators, their rela-
tion and semantics result in the operator tree shown in
Figure 3.

3.2 Implementation

The OGSA-DQP evaluator - our implementation en-
vironment - follows the iterator model (Graefe, 1993).
To implement operators in this model each operator
has to implement three abstract methods. The code
example given in Listing 1 illustrates how the operator
tree shown in Figure 3 is created inside OGSA-DQP.

Listing 1: Operator usage for sequential pattern mining.

SeqTableScan Op1=SeqTableScan("select ...from...")

Conversion Op2=Conversion(Op1 ,...)

PowerSet Op3=PowerSet(Op2 ,...)

LargeItemset Op4=LargeItemset(Op3,support ,...)

Transform Op5=Transform(Op2,Op4 ,...)

MaximalSeq Op6=MaximalSeq(Op4,Op5,support ,..)

Op6.open();

do{

tuple = Op6.next()

if(valid tuple) {

store or display retrieved tuple

}

}while(!EOF)

Op6.close();

To show the feasibility of our approach initial
performance results of our implementation are pre-
sented based on datasets from the UCI KDD Archive
(Hettich and Bay, 1999). They consist of 41,096,
77,285, 159,128, 316,969 records respectively. These
datasets are about the page visits of users who vis-
ited msnbc.com. The performance of each data min-
ing operator for all different datasets is being shown
in Figure 4.

0

10000

20000

30000

40000

50000

60000

70000

80000

C P L T M

Data mining Operators

T
im

e
 i

n
 M

il
is

e
c
o

n
d

s

DS-1(41,096) DS-2(77,285) DS-3(159,128) DS-4(316,969)

Figure 4: Operator performance with four different datasets.

4 MACRO OPTIMIZATION

An operator based logical description of a KDD pro-
cess will allow optimizations considering the overall
process structure, as pictured in Figure 5 below. We
call this envisioned processmacro optimization, us-
ing knowledge about data statistics, the execution en-
vironment, operator characteristics and their require-
ments.

 D a t a - P r e
P r o c e s s i n g

D e c i s i o n
  T r e e

    Da ta
I n t e g r a t i o n

 D a t a  
A c c e s s

  D a t a
A c c e s s

Q u e r y
 D B  

Q u e r y
  D B

D P P
  X

D P P
  Y  

  DT   
   Z

  D T
   Z  

h o s t  1 h o s t  2

D T
 Z

Figure 5: Logical KDD process description vs. optimized
distributed physical execution plan.

In our example a decision tree on a distributed
data set requiring some preprocessing has to be con-
structed. The logical description follows the typical
subsequent phases of a KDD process. First data se-
lection (and integration in our case), then data prepa-
ration and later on the ultimate data mining. Now we
envision a similar optimization process on this inte-
grated KDD process than for relational query opti-
mization, pictured in Figure 2 and briefly discussed
in Section 2. The logical optimizer applies similar
heuristics than in relational optimization, e.g. apply
data preprocessing as early as possible but at least be-
fore data mining operators instead of pushing-down
conditions as far as possible the relational query tree.
The physical optimizer uses data statistics, e.g. esti-
mated cardinalities of operators, tuples size, column
content, in order to choose the most appropriate im-
plementations of the required data preprocessing and
decision tree tasks. The multi-node optimizer knows
the available execution environment and recognizes
the initial data distribution. It replaces the intended
data integration operator, e.g. UNION or JOIN, with
a decision tree implementation supporting the given
horizontal or vertical tuple distribution and includes
required exchange (Graefe and Davison, 1993) op-
erators. Additionally, an operator based model en-
courages adaptivity during execution (Gounaris et al.,
2002).
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5 RELATED WORK

According to (Johnson et al., 2000), research in data
mining can be classified broadly into two”direc-
tions”. The first has focused primarily on which kinds
of patterns to mine, and how fast they can be com-
puted. The second recognizes that mining would be
far more effective if not considered in isolation and
has focused on how mining can interact with other
”components” in a more general framework of knowl-
edge discovery. Our research is following the second
direction.

Different frameworks were proposed to support
the knowledge discovery in databases (KDD) pro-
cess in a uniform manner. (Geist and Sattler, 2004)
proposes one based on constraint database concepts
as well as interestingness values of patterns. The
overall KDD process is divided into three main
steps - namely pre-processing, data mining and post-
processing - and for each of these different operators
are being defined and their implementation issues for
decision trees are being discussed. The3W model and
algebra (Johnson et al., 2000) uses regions, dimen-
sions and hierarchies to define a uniform framework
and operators. The model consists of three worlds
(intensional, extensional and data world) and oper-
ators for moving in and out of the worlds and for
the intensional world are defined. (Fernandez-Baizan
et al., 1998) outlines the design of a RDBMS that will
provide the user with traditional query capabilities as
well as KDD queries based on operators. Further re-
search on exploiting relational and inductive database
technology for data mining exists, e.g. (Botta et al.,
2004). In (Meo et al., 1996) a model is defined
to extract association rules via an SQL-like operator
named’MINE RULE’. (YUAN, 2003) uses data min-
ing operators approach to find association rules using
nested relations from the database. For this purpose a
new query language with the nameM2MQL is being
defined and semantics of its relevant operator’s alge-
bra is being discussed.

The following two efforts support users in defin-
ing data mining processes. TheIntelligent Discov-
ery Assistant (IDA)(Bernstein et al., 2005) provides
users with systematic enumerations of valid data min-
ing processes and effective rankings of these valid
processes by different criteria, to facilitate the choice
of processes to execute. This is done via ontological
operator descriptions and heuristic ranking methods.
(Abe and Yamaguchi, 2004) describes constructive
meta-learning by recomposing methods into learn-
ing schemes with mining (inductive learning) method
repositories that come from decomposition of popular
mining algorithms. It constructs the learning scheme

proper to a given data set
The work described in this paper differs from the

research introduced above by the following features:
open:The concepts nor the implementation is bound
to a specific RDBMS.
holistic: The possible combination of different kind
of operators (relational, data mining, etc.) represents
a novel way of tight integration of so far sub-sequent
treated phases in the knowledge discovery process for
optimization as well as execution.
distributed/parallel:Distribution of input data as well
as of operators and parallel execution on different ma-
chines is anticipated and supported by our implemen-
tation environment and its underlyingiterator model
already.
granularity: Our operators are typically much more
fine grained in order to be re-used for data mining al-
gorithms sharing similar behavior.
logical vs. physical:A unified view on the KDD pro-
cess with different abstraction levels, e.g. logical op-
erator tree and its actual physical implementation, al-
lows for various optimization mechanisms.

6 CONCLUSIONS

The opportunities of the rapidly growing wealth,
complexity and diversity of data will not be explored
unless we advance the state of the art in data inte-
gration and analysis. Research in the area of rela-
tional query processing pioneered the definition of re-
usable standard sub-components dividing the overall
task into smaller pieces, so called relational opera-
tors. Many data mining algorithms have similar be-
havior during, at least, an important part of their ex-
ecution too. This led us to consider to apply a simi-
lar operator-based approach to decompose KDD pro-
cesses in order to achieve re-usability, flexibility, ex-
tensibility and optimisation.

We introduced an operator based approach to ex-
tract sequential patterns by using relational and data
mining operators in combination. This represent a
transition from traditional black box data mining al-
gorithm implementation towards re-usable operator
based implementations. The defined operators have
been implemented inside OGSA-DQP, showing the
feasibility of our approach.

Data mining tasks in the knowledge discovery
process typically need one relational table as input
and data preprocessing and integration beforehand.
The possible combination of different kind of oper-
ators (relational, data mining and data preprocess-
ing operators) represents a novel holistic view on the
knowledge discovery process. Initially for the low-
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level execution phase but yielding the potential for
rich macro optimization of the overall process simi-
lar to relational query optimization (logical, physical,
distributed/parallel).

Our future work plan includes the following: mi-
grating to the latest version of OGSA-DAI allow-
ing complex workflow graphs, applying the operator
based approach to our earlier work for distributed de-
cision trees (Hofer and Brezany, 2004), extending the
set of data mining operators to cover association rule
mining, and higher level optimization components for
KDD processes.
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