
From Service-Oriented Architecture
to Service-Oriented Enterprise

Marten van Sinderen

University of Twente, Department of Computer Science
Enschede, The Netherlands

m.j.vansinderen@ewi.utwente.nl

Abstract. Service-Oriented Architecture (SOA) was originally motivated by
enterprise demands for better business-technology alignment and higher
flexibility and reuse. SOA evolved from an initial set of ideas and principles to
Web services (WS) standards now widely accepted by industry. The next phase
of SOA development is concerned with a scalable, reliable and secure
infrastructure based on these standards, and guidelines, methods and techniques
for developing and maintaining service delivery in dynamic enterprise settings.
In this talk we discuss the principles and main elements of SOA. We then
present an overview of WS standards. And finally we come back to the original
motivation for SOA, and how these can be realized.

Keywords: Service-Oriented Architecture, SOA Principles, SOA Patterns,
Service-Oriented Computing, Web Services, Service-Oriented Enterprise.

1 Introduction

Service Oriented Architecture (SOA) was originally motivated by the need of
enterprises to better match information systems with their business goals, combined
with the market trend of more and more flexible cross-organizational collaboration
between enterprises [6]. Vertical integration (business-IT alignment) and horizontal
integration (IT supported cross-organizational collaboration) are considered crucial
for modern enterprises, but traditional IT architectures have serious integration
deficiencies. Architectures often comprise monolithic (silo) applications that are
effective for the specific purpose they were created, but which do not allow
integration without custom coded connections. Architectures with component-based
applications provide units of business logic, which ease the definition of connections,
but still require that the flow of control and the transformation of data formats are
bound into the business logic.

SOA is an IT architectural style that tries to achieve integration by way of defining
composite applications as an orchestration of services, with services potentially
offered by different organizations. A service externalizes public functions of an
application that implements a repeatable business task. Since a composite application
can also be offered as a service, integration may involve multiple levels of
composition, and a service can be internal to an organization or cross-organizational.

van Sinderen M.
From Service-Oriented Architecture to Service-Oriented Enterprise.
DOI: 10.5220/0004463600030013
In Proceedings of the 3rd International Workshop on Enterprise Systems and Technology (I-WEST 2009), pages 3-13
ISBN: 978-989-674-015-3
Copyright c© 2009 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

This short paper aims at surveying the concepts and architectural elements of
SOA, and investigating to what extent existing standards supporting SOA enable and
have created service-oriented enterprises. In this context, we mean with service-
oriented enterprise a business organization whose business and IT are well-aligned to
flexibly engage, operate and disengage in cross-organizational collaborations and be
(more) effective in the given market by using and providing services according to
SOA.

The remaining of this paper is structured as follows: Section 2 provides an
overview of SOA concepts, architectural elements and principles; Section 3 briefly
discusses the standardization of Web Services, constituting one of the now widely
adopted technologies to implement SOA; Section 4 looks into the impact that the
adoption of Web Services has on organizations and whether this turned them into
genuine service-oriented enterprises; and Section 5 summarizes our main findings.

2 SOA Foundation

The central concept of SOA is, of course, 'service'. There are several possible
interpretations of 'service', partly due to the fact that SOA addresses two distinct
disciplines, which already have existing and different uses of the term for some time.
In a business context, a service involves the exchange of some action, performance or
promise for value between a client and provider [13]. Examples are transportation
services, health services, education services, outsourcing services, and helpdesk
services. In an IT context, a service refers to the external behavior of an IT system, as
can be observed and experienced by the users of that system [12]. Examples are data
communication services [15] and application services [1]. For convenience, we will
use the terms 'business service' and 'IT service' to distinguish between the business
view and the IT view on services.

SOA holds the promise to bring business and IT together, by repeated aggregation
of IT services into composite applications supporting business services that in turn are
aggregated into business processes [14]. Figure 1 shows the basic architectural pattern
that underlies SOA. In this pattern, three roles are distinguished: service provider,
service broker and service requestor [10]. A service provider offers one or more
services, which may be implemented using arbitrary technologies and involving
backend systems protected by a firewall. Each service has well-defined interfaces
referred to in a service description. Service descriptions may be published with a
service broker, thus opening the possibility for service requestors to find services by
providing required service properties to the service broker. The service broker
searches for service descriptions that satisfy the required service properties, and the
service requestor can select from the result of this search. Based on the
location/access details in the service description, the service requestor can then bind
to a service provider that offers the selected service. After a successful binding, the
service requestor can invoke the service, according to the interface details in the
service description.

Using this pattern, vertical integration is tackled by presenting a service as a
virtual component that can be implemented by alternative concrete components using
different technologies. The service requestor is therefore decoupled from

4

implementation concerns of the service provider. Using SOA for application design
and proving a service wrapping for legacy applications thus presents a viable
approach to Enterprise Application Integration (EAI).

Service
Broker

Service
Requestor

Service
Provider

Services

Backend Systems

J2EE

CORBA

JMS
Firewall

Publish Find

Bind/Invoke

Repository

Fig.1. Basic SOA pattern.

Vertical integration, or business-to-business (B2B) integration, requires that each
potential business partner defines a public view on its private process, with
corresponding services and associated incoming and outgoing message exchanges that
allow linking to external partners. The previously presented basic SOA pattern only
shows a single service provider and a single service requestor role. In a B2B
collaboration scenario, business partners may play either role for any number of
supported services. An individual partner coordinates the services used and provided
through its private process. Since this in general does not determine the overall
coordination involving all partners, a coordination protocol can be defined that
concerns the public view on how the partners should work together. Figure 2 shows
an example of a SOA-based business collaboration with three partners whose
processes are connected through services coordinated in compliance with some
coordination protocol.

A coordination protocol, such as the one depicted in Figure 2, does not provide a
concrete and executable process for the coordination of service. It only defines the
order in which messages should be exchanged, where messages are used to invoke a
service or return a service result in accordance to a service provided by one of the
partners. A definition at this level of abstraction is also referred to as service
choreography. If, on the other hand, this definition would be refined into a concrete
process, which can be assigned to and executed by some computing node, we use the
term service orchestration instead [11]. When assigned to a node, this node can in
turn offer the external functionality of its process as a service. This service thus
allows service requestors to invoke and use the coordinated behavior of several
services, while hiding how the composition of services is achieved and which service
providers are offering these services.

5

Partner 2

Partner 3 Partner 1

partner
coordination
protocol
(choreography)

Fig.2. SOA-based business collaboration using a coordination protocol.

Since the principle of encapsulating processes that compose services can be
repeatedly applied, we can build a hierarchy of service aggregations, ranging from
simple generic IT services to complex dedicated business-oriented services. Figure 3
shows such a hierarchy, illustrating how SOA supports a way of integrating business
as linked services. Although SOA itself does not imply or propose any methodology
for designing IT support for business activities, it does make clear that business
processes can be seen as a driver of collaboration with services playing a central role
at all levels.

Design methodologies centered on SOA [9] should then include an analysis phase
that reviews identified business processes with respect to the extent to which SOA can
contribute to improvement and adding value. If SOA is deemed to play a role,
business services should be identified that represent this SOA potential. In a
subsequent design phase, service interfaces should be defined as well as processes
that can orchestrate services based on their interfaces, and basic IT services should be
identified. Both functional and non-functional (performance, reliability, availability,
etc.) requirements on services should be considered during this phase, and legacy
applications may be leveraged as service if they match such requirements.

6

Basic IT
services

Composite
application
services

Basic business
services

Composite
business
services

Realization

Business
processes

Fig.3. SOA-based business integration by way of linked services.

The above sketch of a design methodology is also useful to illustrate the
importance of the guiding principles of SOA [3]:

• Loose coupling: a service is defined independent of its implementation
and usage context. This means that a service requestor does not have to be
aware of the technology used to implement the service, and the service
provider has no a priori knowledge of the service requestor. As a
consequence, requestors and providers can evolve independently, without
affecting interoperability, provided that service (interface) definitions are
adhered to.

• Re-use: a service is a unit of functionality which is potentially useful in
many different contexts and applications. Having service descriptions
stored in repositories, which a service broker can search in order to find a
service that matches properties specified by a service requestor, further
helps to promote reuse.

• Composable: the invocation of services can be coordinated and the results
can be composed to form composite applications. The functionality of
composite applications can in turn be exposed as services, which permits
hierarchical composition with different degrees of software reuse and
business specificity at each level.

• Standards-based: the above mentioned architectural principles can only
be realized if technology standards are available that allow services to be
described, published, invoked, composed etc. This is the topic of the next
section.

7

3 Web Services

Web services (WS) are a collection of emerging standards, which are widely accepted
as the technology of choice for implementing SOA [10]. Web services to a large
extent supports the concepts, patterns and principles mentioned in section 2. An
application designed and implemented according to WS standards is self-contained
and modular, has a description which can be published, can be found on basis of its
description, and can be located and invoked over networks.

The core WS standards are the following:
• Simple Object Access Protocol (SOAP): this is the Internet protocol for

Web (service requestor and service provider) applications to
communicate. It suns on top of other standard Internet protocols,
including HTTP. SOAP defines how messages are structured and
processed in a platform-independent way. It comprises two message
exchange patterns, viz. one-way and request-response.

• Web Service Description Language (WSDL): this is the language for
specifying he interface of Web services. It is used to provide a description
of the service for the (potential) service requestors. Such a description
includes information on which messages are related to each operation that
is supported by the service, how these messages are related (e.g.,
operation input and output), and how SOAP messages are exchanged.

• Universal Description, Discovery and Integration (UDDI): this standard
is defined to enable the storage of information for organizing and
discovering Web services. UDDI consists of data structures and APIs for
publishing and querying Web services. The UDDI APIs are themselves
Web services, and thus are described and can be invoked as any other
Web services.

In addition, all WS standards rely on the Extensible Markup Language (XML) to

represent structured data. XML documents and schemas are defined to standardize the
format and typing of data communicated by Web services.

The basic SOA pattern explained in the previous section can be supported with
SOAP, WSDL and UDDI. These standards are, however, not sufficient to correlate
messages exchanged between a service requestor and a service provider, to
distinguish between multiple instances of the same service, or to coordinate the use of
different services. Also they do not address policies that govern the use of Web
services, non-functional aspects of Web services such as reliability, security and
atomicity. For this purpose, several other WS standards have been developed.

This paper has not the intention to discuss these standards even at a high level of
abstraction. Instead, we argue that WS standards are becoming widespread and have
reached a certain level of technical maturity. In addition, we can observe that WS
standards pretty much cover all the important technical areas that were identified for
SOA. Figure 4 shows an overview of standards supporting different aspects of SOA.

8

HTTP, TCP/IP, SMTP, FTP, ...

SOAP, WS-Addressing JMS, RMI, IIOP

Data transport

XML messaging non-XML messaging

WSDL

Interface & bindings

WS-Policy

Policy

WS-RM WS-Security WS-Transaction

Reliability Security Atomicity

Composition & coordination
WS-Resource

Framework

Stateful components

BPEL, CDL WS-Coordination

U
D

D
I, W

S-Addressing, ...

D
iscovery, negotiotion

& agreem
ent

HTTP, TCP/IP, SMTP, FTP, ...

SOAP, WS-Addressing JMS, RMI, IIOP

Data transport

XML messaging non-XML messaging

WSDL

Interface & bindings

WS-Policy

Policy

WS-RM WS-Security WS-Transaction

Reliability Security Atomicity

Composition & coordination
WS-Resource

Framework

Stateful components

BPEL, CDL WS-Coordination

U
D

D
I, W

S-Addressing, ...

D
iscovery, negotiotion

& agreem
ent

Fig.4. WS (and some other) standards supporting SOA.

The acceptance and the technical maturity and coverage of Web services provide
no guarantee that the business objective of SOA is also realized [8]. Web services
may be used to extend the existing technology infrastructure with a new layer on top,
facilitating technology-level interoperability, integration and maintenance, but overall
benefits may still be small if business processes remain unaffected due to a lack of
'service thinking' at business and application level. We will address this further in the
next section.

4 Service-oriented Enterprise

Several major technology vendors have invested significant effort in supporting and
promoting SOA and corresponding technology standards1. As a result, SOA is now
generally accepted as a useful architectural style, and adoption of Web services is
widespread. Also business-level awareness for SOA has been created, thanks to
technology trend and market analysis reports that claimed, among others, the
necessary adoption of SOA for most companies in order to stay competitive2.

Nonetheless, SOA adoption in practice often boils down to the use of Web
services as an enabling technology, whereas service-oriented business that applies
SOA principles and exploits the potential benefits of SOA technology is less
commonplace. Some researchers report that impact of SOA on business organizations
and business processes is so far rare and limited [5]. This contrasts with the often
heard claim that SOA will change the way business is done and organized. It is
argued that not the introduction of new technology, but the application and

1 See, for example, www.w3c.org and www.oasis-open.org.
2 See Gartner's press releases over the years: www.gartner.com/it/products/newsroom.

9

management of that technology delivers real business benefits. Therefore, business
itself should be transformed by 'service thinking', leading to added value and
innovation. One reason for the still existing mismatch between enabling technology
and business exploitation with respect to SOA may be the weak link between business
executives and their company's IT organization [2].

The term 'service oriented enterprise' has been coined to refer to business
organizations that pursue an optimal business-IT integration using SOA principles
and technology [8]. Accordingly, we characterize a service-oriented enterprise as an
enterprise that uses service-oriented technology (such as Web services) and that
organizes its business model and processes to profit most from the potential benefits
of this technology.

There have been recent reports on failed SOA projects and statements that for this
reason and because of the current recession SOA popularity is on its return. However,
SOA projects often focus too much on the technology to be used, and disregard
project management. Gartner forecasts that lack of working SOA governance
arrangements will be the most common reason for SOA failures3.

Also, companies may loose initial enthusiasm if they learn that the introduction of
SOA may be expensive, and that building their first SOA application may take longer
than building the same application using traditional approaches and existing
technology. However, subsequent SOA applications and changes to existing SOA
applications can be expected to be less costly. This is inherent to any evolutionary
approach. SOA offers no one-time gain, no immediate return on investment, but
promises benefit over time [4].

Independent on their success or failure, a handful of SOA applications within a
company cannot prove much about SOA. Companies should be aware of SOA
principles, have strategies and practices in place, and persistently apply them
throughout their business. In other words, they should become service-oriented
enterprises. This led to the development of SOA maturity models [2, 8, 4], to position
enterprises with respect to their service orientation and to provide a roadmap towards
higher maturity levels. For example, in [8] the following levels of maturity are
identified:

• Usable: an organization has standards and protocols that are usable
across the organization's platforms and technologies.

• Repeatable: an organization has the capabilities to develop, deploy and
maintain services, and scale the use of services.

• Supportable: an organization has the capabilities to provide and maintain
services for its mission-critical applications.

• Extensible: an organization has the capabilities to apply service
aggregation and realize business agility, and can provide this directly to
customers and/or partners through services that generate new revenue
channels.

Although it is difficult if not impossible to precisely assess and score the maturity
of an organization, there is general agreement that maturity models are useful as a
roadmap to improve upon a current situation. Achieving a higher maturity requires
organizational actions, such as establishing proper IT directives, governance policies

3 Gartner press release April 2, 2009.

10

etc. In general, also several technical obstacles and issues need to be addressed in
order to transform into a service oriented enterprise, including performance and
Quality of Service (QoS) [4, 7]. Mission-critical applications have to meet certain
minimal QoS requirements. Determining what exactly are the QoS requirements for
SOA applications, and how to specify, negotiate and monitor Service Level
Agreements (SLAs), is a major and complex task [7]. Especially QoS management in
composite applications is a critical issue for SOA systems, since service aggregation
is the cornerstone for reuse and agility. So far there are only some academic studies in
this area [14], and little empirical data.

Despite experienced setbacks and still existing obstacles, Gartner recently claimed
that SOA is emerging from the Trough of Disillusionment within Gartner's hype
cycle, and is climbing the Slope of Enlightenment4. This phase of the hype cycle is
entered if mainstream organizations start to establish best practices to effectively use
a technology and begin to experience benefits.

5 Summary

SOA is an IT architectural style that tries to achieve integration by way of defining
composite applications as an aggregation of services, with services potentially offered
by different organizations. Integration has a vertical (business-IT alignment),
horizontal (cross-organizational interoperability) as well as a time (agility with
respect to changes) dimension. The guiding principles of SOA are loose coupling, re-
use, composability and reliance on standards. Web services constitute an emerging set
of standards which are widely adopted as technologies to implement SOA. The
acceptance and the technical maturity and coverage of Web services provide no
guarantee that the business objective of SOA is also realized. In order to realize this
business objective, i.e. to achieve integration paired with productivity benefits,
companies should become service oriented enterprises. Companies should be aware
of SOA principles, have strategies and practices in place, and persistently apply them
throughout their business. SOA should be understood as an architecture, not as a
technology. Technology, such as provided by Web services, is enabling, but not
realizing the potential benefits of SOA. Consequently, only introducing a Web service
technology infrastructure and blindly converting existing applications to become
service-enabled is not enough. Business should determine which applications should
be service-oriented, and have good governance in place to help decision-making.
SOA maturity models can help to provide a roadmap to transform into a service
oriented enterprise.

References

1. Almeida, J.P.A., van Sinderen, M.J., Ferreira Pires, L., Quartel, D.A.C. The role of the
service concept in model-driven applications development. In: Workshop Proceedings of

4 Gartner press release April 2, 2009. For an explanation of hype cycles, see also

www.gartner.com/technology/research/methodologies.

11

International Middleware Conference - First Workshop on Model-driven Approaches to
Middleware Application Development (MAMAD 2003), PUC-Rio, 2003, pp. 288-296.

2. Arsanjani, A. and Holley, K. The service integration maturity model: achieving flexibility
in the transformation to SOA. In: Proceedings of IEEE International Conference on
Services Computing (SCC 2006), IEEE Computer Society, 2006, pp. 515-515.

3. Erl, T. SOA principles of service design. Prentice Hall, 2007.
4. Inaganti, S. and Aravamudan, S. SOA maturity model. BPTrends, April 2009, 1-23.
5. Luthria, H. and Rabhi, F. Service oriented computing in practice - An agenda for research

into the factors influencing the organizational adoption of service oriented architectures.
Journal of Theoretical and Applied Electronic Commerce Research, 2009, 4(1): 39-56.

6. OASIS. Reference model for service oriented architecture 1.0. OASIS standard, 12 October
2006. URL: http://docs.oasis-open.org/soa-rm/v1.0/

7. O'Brien, L., Brebner, P., Gray, J. Transformation to SOA: aspects of the migration and
performance and QoS issues. In: Proceedings of Second International Workshop on
Systems Developments in SOA Environments (SDSOA 2008), ACM, 2008, pp. 35-40.

8. Oelermann, W. Enabling the service-oriented enterprise. Microsoft Architect Journal, No.
7, April 2006, 27-32.

9. Papazoglou, M.P. What's in a service? In: Proceedings of First European Conference on
Software Architecture (ECSA 2007), LNCS 4758, Springer, 2007, pp. 11-28.

10. Papazoglou, M.P. Web services: principles and technology. Pearson Prentice Hal, 2008.
11. Peltz, C. Web services orchestration and choreography. IEEE Computer, 2003, 36(10): 46-

52.
12. van Sinderen, M.J. and Ferreira Pires, L. Protocols versus objects: Can models for

telecommunications and distributed processing coexist? In: Proceedings of Sixth IEEE
Workshop on Future Trends of Distributed Computing Systems (FTDCS 1998), IEEE
Computer Society, pp. 8-13.

13. Spohrer, J., Maglio, P. P., Bailey, J., and Gruhl, D. Steps toward a science of service
systems. IEEE Computer, 2007, 40(1): 71-77.

14. Unger, T., Mietzner, R., Leymann, F. Customer-defined service level agreements for
composite applications. Enterprise Information Systems, 2009, 3(3): 369-391.

15. Vissers, C.A. and Logrippo, L. The importance of the service concept in the design of data
communications protocols. In: Proceedings of Fifth IFIP WG6.1 International Conference
on Protocol Specification, Testing and Verification (PSTV 1985), Elsevier North-Holland,
1985, pp. 3-17.

Brief Biography

Marten J. van Sinderen is associate professor at the Faculty of Electrical Engineering,
Mathematics and Computer Science (EEMCS) of the University of Twente, Enschede, The
Netherlands. He is a member of the Information Systems (IS) group since 2008, and before that
led the Architecture and Services of Network Applications (ASNA) group between 2004 and
2008. He is currently also coordinator of research in the area of Service Architectures and
Health Applications, on behalf of the Centre for Telematics and Information Technology
(CTIT), the ICT research institute of the University of Twente.

During his professional career, he has been active in the areas of network interconnection,
communication protocols, middleware, application protocols, and enterprise interoperability.
His current main research interests are design methods and architectures for networked
systems, particularly mobile middleware, service platforms, and context-aware mobile
applications. Among the design paradigms being considered are Service Oriented Architecture,
Model Driven Architecture and the Semantic Services. He was co-chairman of the Program

12

Committee of EDOC 2004, and general (co-) chair of IDMS 2000, PROMS 2001, EDOC 2005
and EUNICE 2007. He has been a member of the steering committees of IDMS, PROMS,
MIPS and EDOC, and involved in numerous program committees of major international
conferences, including INFOCOM 2006 and ECMDA 2005, 2006 and 2007. He participated in
European initiatives/projects including MODA-TEL (Model Driven Architecture for
Telecommunications Systems Development and Operations, IST 37785), E-NEXT (Emerging
Networking Experiments and Technologies, IST 506869), AMIGO (Ambient Intelligence for
the Networked Home Environment, IST 004182), and SPICE (Service Platform for Innovative
Communication Environment, IST 027617). He currently leads the Dutch Freeband A-MUSE
project (BSIK 03025) on model-driven service design for context-aware mobile applications,
and the Dutch GenCom U-Care project (IGC0816) on user-tailorable healthcare services for the
home environment.

He was invited reviewer for the European Union of C-ARCTIC (Concurrent Environment
and Architecture for Telecollaboration Integrated in the Company, IST 1999-20087). He is a
member of the Editorial Board of the Enterprise Information Systems journal, published by
Taylor & Francis. He is also member of the Managerial Board of IFIP WG5.8 on Enterprise
Interoperability.

13

