
SEMANTIC BASED TEST DATA EXTRACTION FOR
INTEGRATED SYSTEMS (iSTDE)

Ali Raza and Stephen Clyde
Computer Sceince Department, Utah State University, 400 Old Main Hill, Logan, Utah 84322-1400, U.S.A.

Keywords: Test data extraction, Test data generation, Testing database applications, Semantic-based data extraction,
Integrated systems, Integrated healthcare systems.

Abstract: Testing an integrated information system that relies on data from multiple sources can be a serious
challenge, particularly when the data is confidential. Such is the case for the Child-Health Advanced
Record Management (CHARM) system, which is now in production at the Utah Department of Health.
CHARM allows various public health-care programs, like vital records, immunization, and hearing
screening, to seamlessly access data from each others’ databases in real-time. Since CHARM deals with
confidential health-care information, it was impossible to use real data for testing purposes, especially since
the development and testing environments were outside the confidential environment in which CHARM
operates. This paper describes a test-data extraction tool built and successfully used for testing the
CHARM system. This tool, called Semantic based Test Data Extractor for Integrated Systems or iSTDE,
reads a consistent cross-section of data from the production databases, manipulates that data to obscure
individual identities while preserving overall data characteristics that are critical to thorough system testing,
and finally moves that test data from the confidential production environment to the unprotected test
environment.

1 INTRODUCTION

Child Health Advanced Record Management
(CHARM) is an integrated system that provides
health-care professionals with accurate and timely
information about children in Utah whose medical
records are housed in various federated public
healthcare databases, including Vital Records (VR),
the Utah State-wide Immunizations Information
System (USIIS), and Early Hearing Detection and
Invention (HiTrack).
A collaborative team of software engineers from
Utah State University (USU), Utah Department of
Health (UDOH), and Multimedia Data Services
Corporation (MDSC) started developing CHARM in
November 2000. Its architecture, illustrated in
Figure 1, is that of an arms-length information
broker (Clyde and Salkowitz, 2006)

 with
 A CHARM server, which is the information

broker, and
 A CHARM agent for each connected database

also called a participating program or PP.
When a user of a PP requires CHARM-accessible

data, the PP submits a request for that data to

CHARM via its own agent. That agent is
responsible for mapping PP-specific data types and
identifiers to CHARM-specific data types and
identifiers. It next passes the modified query onto
the CHARM server. The CHARM server either

Figure 1: CHARM Architecture.

173
Raza A. and Clyde S. (2010).
SEMANTIC BASED TEST DATA EXTRACTION FOR INTEGRATED SYSTEMS (iSTDE).
In Proceedings of the Third International Conference on Health Informatics, pages 173-180
DOI: 10.5220/0002692401730180
Copyright c© SciTePress

looks up or computes an appropriate strategy for
processing the query and then executes that strategy.
This process may involve retrieving information
from several other PPs via their CHARM agents and
merging the results of those individual data
retrievals into a final query result.
The first functional prototype was successfully
demonstrated in March 2002. It was at this point that
the developers began to see the real challenges of
testing an integrated system that involves
confidential data. With the three original
participating programs, the system made use of
seven different databases: three from the
participating programs, three used by the agents to
map PP-specific IDs to internal CHARM IDs, and
one used by the CHARM server to match and link
persons based on their demographic information
(CHARM). From a testing stand-point, however,
such data separation made generating realistic test
data difficult. At first, the developers tried to create
test data by hand. This quickly proved to be time
consuming and error prone. Next, the developers
built an automated test-data generator that created
test data for each database using that database’s
scheme and codified knowledge about field
domains, constraints, and overall data characteristics
(Maddy, 2006). Such an approach allowed the
developers to create large amounts of test data, but
correlating the information between different
databases and creating patterns similar to those in
the real data proved difficult.

So, for the latest version of CHARM, the
developers have taken a new approach for creating
test data. Specifically, they created a distributed
tool, called Semantic Test Data Extractor for
Integrated Systems (iSTDE), which first extracts a
consistent cross-section of data from the production
databases. It next manipulates that data in a way that
obscures individual identities, while preserving
other important aggregate data characteristics, such
as the frequency of name occurrences, the
percentage of multiple births (i.e., twins), and the
presence of bad data. Preserving these characteristic
is critical to effective system testing of components
like a person matcher. After de-identifying the test
data, iSTDE moves that test data from the
production environment to a test environment.

Section 2 discusses related work for creating
realistic test data, while, Section 3 provides some
additional background on the production and test
environment of testing CHARM. Section 4
describes the process iSTDE uses to extract data, de-
identify that data, and move it to a test environment.
Experience and observations in using iSTDE are
presented in Section 5. Future work is in Section 6.

2 RELATED WORK

In general, approaches for test data creation fall in
two general categories: one based on automatic
generation and the other based on real data
extraction.

A review of eight automated test-data generation
tools revealed six different common techniques for
generating data at a field level, i.e., for a domain.
See Table 1 for list of the tools reviewed and Table
2 for the techniques each supported.

The first two techniques create random data
based on a field’s data type along with some simple
constraints. For example, an algorithm based on
random generation could populate a salary field in a
payroll table with values between $20,000 and
$65,000. Similarly, a random-generation algorithm
could populate a first name field in a person table
with a string between 1-10 characters long,
containing characters A-Z. In general, random
generation is more applicable to numeric fields than
other types of domains. Six of the eight tools
support random generation for numeric data, while
only three support it for strings.

The third technique constrains the random
generation of data by percentages that represent
value distributions in real data. For example,
imagine a person table with 20% of the records
having birth dates in 2008 and the remaining 80% in
2007. A tool that supports this type of data creation
could preserve such distributions. Only one of the
tools supports this type of random data generation.

The fourth technique generates data according to
user-defined grammars. For example, the grammar
Aa-9999 could generate data that has one capital
letter, followed by one small letter, a dash and four
numeric digits. This technique is most applicable
for string domains with an implicit language that can
be easily defined with a pattern or simple grammar.
Interestingly, it is common for database schemes to
have fields with simple hidden languages, but only
two of the eight tools support this technique.

The fifth technique pulls randomly selected data
from a pre-defined domain. For example, this
technique could be used to populate a last-name
field from a pre-defined domain of common Spanish
names. Four of the eight tools support this
technique, and several of them even had some built-
in domains for female names, male names,
countries, etc.

The sixth technique identifies an algorithm that
links child records to parent records in hierarchical
structures. For example, an algorithm that uses this

HEALTHINF 2010 - International Conference on Health Informatics

174

technique could be used to generate data for a
purchasing system consisting of customer, order,
line item tables that relate to each other via
referential integrity constrains.

Although automated test-data generation
techniques can save time compared to collecting and
loading meaningful test data by hand, they fall short
of producing test data that possess many of
characteristics found in real data, such as:
 the presence or frequency of missing values;
 the presence or frequency of incomplete

information;
 the presence of garbage data;
 duplicates, wherein the duplicates were caused

by or allowed to exist because of other field
values; and

 other characteristics caused inter-field
dependencies.

The second approach, test-data extraction,
attempts to create test beds from real data sources. A
review of the eight tools uncovered extraction
techniques at three different levels, namely,
extracting data from a single file, extracting data
from multiple tables in a single database, and
extracting data from multiple unrelated databases.
See the first three rows in Table 3.

Three of the tools support the first technique,
which has some similarities to test-data generation
from predefined domains. However, a key
difference is that test-data extraction can produce
test data with realistic characteristics without
explicitly having to state those characteristics.

The second technique deals with extracting test
data from multiple tables in a real database. This
type of test-data extraction does everything
supported by the first technique, but it also
maintains inter-record dependencies across the
tables. However, these dependencies can go beyond
the referential integrity constraints mentioned above.
Specifically, they can include frequency constraints
involving fields from multiple tables. Three tools
support this type of data extraction, at least to some
degree.

The third technique, which only one of the eight
reviewed tools supports, goes a step further by
allowing users to extract data from multiple
databases. However, without any cross-correlation
of data between the databases, this technique can be
viewed as simply a convenience for performing
multiple, separate extractions.

Clearly, being able to create test data for multiple
databases is necessary for testing integrated systems,
but it is not enough. To test an integrated system, its

constituent components (i.e., participating
information systems) need realistic and correlated
slices of data that contain the same inter-
relationships and hidden dependencies from the
production databases. For example, it would be
meaningless to extract one set of person records
from one database and a non-overlapping set of
records from another database. Testing would not
be able to verify the results of any actual data
integration.

Also, to test integrated systems that contain
confidential data, it is important to remove or hide
all identified personal information so that testing can
be conducted in unsecured environments.

To address the need for correlating data across
databases and for de-identified test data, we have
added two additional test-data extraction techniques
to Table 3, namely, correlated real data from
multiple related databases and de-identified data
from confidential databases. The iSDTE tools
presented in the next section support these
additional techniques.

3 ISTDE ENVIRONMENT

In general, multiple CHARM execution
environments exist, including one for production,
one for staging and user-acceptance testing, several
for system testing, and at least six for development.
From a data-security perspective, these
environments can be grouped in two categories:
confidential and unprotected. The confidential
environments, which include the production
environment and staging environment, are protected
by firewalls in UDOH. Only authorized users can
access these environments containing sensitive
demographic and health-care data. The unprotected
environments, which include all the system testing
and development environments, run on a variety of
machines and networks outside of UDOH firewalls,
and may be used by individuals not authorized to
see real data.

Besides the access restrictions, the confidential
and unprotected environments differ in terms of the
database managers they use for the various data
sources. The data sources in the confidential
environments are either the actual production
databases or staging databases for the production
system. In either case, these databases are tied to
legacy software and, therefore, rely on a number of
different database managers, including Oracle,
Microsoft SQLServer, Postgres, and Pervasive.

SEMANTIC BASED TEST DATA EXTRACTION FOR INTEGRATED SYSTEMS (iSTDE)

175

Table 1: Eight software packages reviewed.

Abr. Software Package Author / Vendor
DG GenerateData.com (GenerateData.com,2008) GenerateData.com
SE DTM Data Generator (SqlEdit, 2008) DTM Soft
FS ForSQL Data Generator (www.forsql.com, 2008) ForSQL

TS Automated Test Data Generator
(http://www.tethyssolutions.com/T10.htm, 2008) Tethys Solutions

DN DB Data Generator V2 (www.datanamic.com, 2008) Datanamic

TB TurboData (www.turbodata.ca, 2008) Turbo Computer
Systems, Inc.

TN Tnsgen – Test Data Generator(www.tns-soft.com , 2008) TNS Software Inc.

EM EMS Data Generator for MySQL
(http://www.sqlmanager.net/en/products/postgresql/datagenerator) EMS Inc.

Table 2: Six common test-data generation features

Table 3: Test-data extraction techniques.

 Test Data Extraction DG SE FS TS DN TB TN EM
1 From real data from files

2 From real data from one database

3 From uncorrelated real data from multiple
databases

4 Correlated real data from multiple related databases
5 De-identified data from confidential databases

All the unprotected environments, on the other

hand, use Postgres as the database manager to
eliminate extra licensing fees that might otherwise
be necessary. However, using a different database
manager for testing introduces two new challenges.
First, the types of database that the integration
system accesses will depend on the environment it is
running in. So, testing iSTDE in one of the
unprotected environments may not verify the
correctness of the database drivers, connection
strings, or SQL-statement syntax. For CHARM, we
solved this problem by doing a final system test in
the staging environment, which does use all of the
same types of databases as the production
environment.

Second, converting all the data to Postgres for the
unprotected environment introduces certain data-

type mapping problems. Some data types in the
original database do not have compatible data types

in Postgres. For example, SqlServer supports a
global unique identifier (GUID) data type that
Postgres does not support. So, iSDTE maps
SqlServer GUIDs to an alternative data type, like
VARCHAR. Section 4.2 describes iSDTE’s solution
to this problem in detail.

4 APPROACH

The iSTDE software itself is installed in a
environment, thereby ensuring that no unauthorized
person can execute it. When iSTDE executes, it
goes through seven steps to create a consistent set of
de-identified test data from the confidential data and
then moves it to an unprotected environment. See
Figure 2. Each of these steps is described in more
detail below.

Test Data Generation Features DG SE FS TS DN TB TN EM
1 Random numeric data generation

2 Random string data generation

3 Percentage-based data generation

4 Generate data from user-defined grammars

5 Generate data from predefined domains

6 Generate data for database, with master child relations

HEALTHINF 2010 - International Conference on Health Informatics

176

4.1 Specifying Extraction Parameters

In the first step, a user specifies what data to extract
(e.g., all children born from 7/1/2008 to 9/30/2008)
and the target environment wherein test data should
ultimately be sent, along with a username and
password for accessing that environment. In
addition, the user can specify the location of a
temporary database within the confidential
environment that iSTDE will use to collect and
manipulate the test data before sending it over to the
target environment.

iSTDE also supports a number of other
configuration parameters that the user typically does
not change, such as connection strings for the
various data sources in the confidential
environment. These parameters are kept in a
properties file and only need to be changed if the
data sources in the confidential environment change.

4.2 Creation of Temporary Databases

The second step in the iSTDE execution involves
creating the temporary database in a confidential
environment to hold the extracted data from multiple
source databases, while they are being collected and
manipulated. In this step, iSTDE first makes sure
that there are no existing temporary databases in
confidential environment. It then retrieves schema
metadata for all the source databases and transforms
them into Postgres creation scripts. Next, it
executes those scripts to create the temporary
database, with all of the necessary tables, indices,
views, stored procedures, and triggers. Further into
the process in Step 6, iSTDE drops the temporary
databases, so unnecessary copies of the extracted
data are not left lying around.

iSTDE uses Postgres for the temporary database
because it is Open Source and it supports a broad
range of features and data types. Nevertheless, it
does not support everything; nor did we find an
Open Source database manager that did.

One challenge for Step 2 was accessing metadata.
Some source databases do not allow external
processes to read the database’s metadata, or they do
not support reflection. So, iSTDE could not
automatically retrieve and analyze their structures
directly. For such databases, iSTDE reads the
metadata from an externally managed meta-data
repository. This repository has to be updated
manually when the real database’s structure
changes.

Figure 2: iSTDE Overview.

Another challenge was unsupported or
incompatible data types, as mentioned in Section 3.
For each unsupported data type, iSDTE designers
selected an alternative Postgres data type and wrote
a mapping function that converts data from the
original type to the alternate type. So, when iSDTE
comes upon a field with an unsupported data-type, it
simply looks up its alternative data type and uses
that type in the table creation scripts for the
temporary database. Then, later in Step 3, iSDTE
uses the corresponding mapping function to convert
the values from that field before placing them into
the temporary database.

The third challenge was handling views in
iSTDE. The test databases need to support or
simulate any views in the real database such that the
legacy programs and integrated system will function
correctly. There are two approaches for supporting
a view. The first is to include all the tables and their
data that makes up the view in the test set.
However, this can be problematic because some
views are very complex and may end up requiring
far more data to be extracted into the test database
than necessary. A second approach is to implement
the views as tables populated with a snapshot (or a
portion of a snapshot) of the view. This approach
can reduce both the amount space required for the
test data and the extraction time. However, this
approach is only appropriate if the integrated system
does not need to update any of the data involved in
the view.

Like views, database procedures also need to be
either implemented directly in the test database or

simulated through tables, since different database
managers use different procedural languages and it
is very difficult to automate their extraction and

SEMANTIC BASED TEST DATA EXTRACTION FOR INTEGRATED SYSTEMS (iSTDE)

177

direct implementation. However, as with views,
when the integrated system does need to modify the
underlying data, simulating a stored procedure using
a table of stored results is relatively straightforward.
When this was not possible for CHARM, a
programmer manually created versions of the store
procedure in plsql (Postgres’s procedural language.)
Manual conversions of stored procedures need only
be done once. After that, iSTDE can re-use them
whenever needed.

A final challenge stems from version conflicts.
The systems that comprise an integrated system, as
well as the integration framework itself, evolve
independent of each other. Changes do not occur in
a lock-step chronology. One system will upgrade its
database, while other systems are still using older
structures. For example, over the past few years,
there have been two major versions of the CHARM
integration framework, and at least one significant
database change to each of the participating
programs. The database schemas for these versions
have slightly different metadata. Such was the case
when the CHARM developers were testing Version
2, yet the production environment was still using
Version 1 data structures. Mapping data across
versions of an integrated system is a significant
problem. iSTDE handles this by adding some
additional metadata to the external metadata
repository, so it can track the version and then re-
map data if necessary.

Some challenges are still unresolved. For
example, in cases wherein iSTDE has to store the
meta-data for a system in an external repository,
changes to the original database’s structure can
create an inconsistency. Organization procedures
have to be put in place and followed to ensure that
changes to a participating information system are
reflected in iSTDE metadata for that system. It
would be better if more of this process could be
automated or at least monitored by iSTDE.

4.3 Extraction and Loading of Real
Data to Temporary Databases

The previous steps created empty temporary
databases for holding the extracted data, with all the
necessary tables, constraints, views (or their
simulations), and stored procedures (or their
simulations). Now in this the third step, iSTDE
extracts a consistent slice of real data from the
participating data sources in the confidential
environment and loads that data into these
temporary databases.

The process of extracting a data slice starts when
iSTDE generates SQL queries through parsing and

analyzing user-specified test-data selection criteria,
e.g., child birth date range. One SQL query is
generated for each of the relevant production
databases. A challenge in data extraction was to
ensure that the slice contains records for the same
sample population across all of the participating
programs. To ensure the slice’s internal consistency,
iSTDE uses cross-database links created and
maintained by the integrated system. In CHARM,
each agent maintains a mapping of its participating
program’s IDs to a common, internal CHARM ID.
Together, these maps link the records for a person
across all of the participating information systems.
iSTDE uses and preserves these inter-database links
to guarantee that the overall test data are internally
consistent.

When these SQL queries return result sets,
iSTDE uses the data in these result sets to construct
SQL insert statements. While constructing these
SQL insert statements, individual data fields in a
result set are parsed according to the temporary
databases’ metadata. Later these insert statements
are written to data files located in a confidential
environment. The purpose of generating data files is
to effectively utilize the connection time on
production databases.

Once the process of extracting data into data files
is complete, iSTDE loads these files to the
temporary databases. A challenge was to load data
in such a way as to not violate referential integrity
constraints. iSTDE deals with this challenge by
loading data files for parent tables before child
tables. However, the cyclic nature of relational
interdependencies among tables makes this solution
unfeasible. A better approach would be to first load
the data into tables and later implement referential
integrity constraints.

4.4 Data Mangling

Once real data has been extracted and loaded into
the temporary databases, iSTDE obfuscates that data
by applying data mangling to each domain that
contains personal indentifying information (PII). In
this step, data mangling randomly swaps data values
in the domain so the PII’s of any given record are
unrecognizable and untraceable, but without
changing the overall characteristics of the data set.
As mentioned early, preserving the overall
characteristics of the data set is critical for thorough
testing in integrated systems.

The first step of data mangling is the
identification of PII domains, e.g., first names, last
names, birth dates, addresses, etc. PII domains can
be simple or composite. Simple domain consists of

HEALTHINF 2010 - International Conference on Health Informatics

178

only one identifying element, and composite
domains may involve multiple elements. For
example, male first name and phone number are
simple domains, whereas a full address domain
(street, city, state, zip code) may be a composite
domain. To preserve consistency, composite
domains have to be mangled as a whole unit. For
example one instance of an address may be swapped
with another random but complete address. iSTDE
also sometimes subdivides a domain wherein
swapping needs to be constrained by the value of
some other element. For example, it partitions
gender-dependent domains into female and male
subset, i.e., first name domain is partitioned into
male first names and female first names.

After PII domains selection, we build dictionaries
for these domains. These domain dictionaries are
data structures that consist of real domains and test
domains. Real domains are data slices that are built
from similar PII domains from across all databases
included in CHARM, not just one database. For
example, in the case of first male names, the
dictionary real domain contains all first male name
entries that exist in all tables of temporary databases.
Test domains are populated by semi-random
shuffling of real domain entries. The term semi-
random hints that there are chances that an entry in a
real domain maps to the same entry in a test domain.
Entries in test domains would be the newly assigned
values for the real data. In the next step of the
mangling process, we swap all the values of PII
domains in real data with the newly assigned test
values, using domain dictionaries that provides
mapping from real values to test values. Once we
have mangled all the data, we then delete these
dictionaries so that no one can perform reverse
mapping to real data. Essentially, iSTDE deals with
three different types of data mangling.

The first type is 1-1 logical domain dependency.
Two domains are said to be logically dependent
when they are semantically related to each other, a
change in one domain requires a similar change in
the other. Consider two domains, D1 and D2, which
have a 1-to-1 logical dependency between them but
have different data representations. When we swap a
value in one of the domains, a corresponding swap
must also be made in the second. More specifically,
if x, x'∈ D1 and y, y'∈ D2 such that x ↔ y, and x'
↔ y', then if x is swapped with x', y must also be
swapped with y' and vice versa. For example,
consider two tables containing identical
demographic information about patients. One table
uses just one column to store birth dates, i.e., say
05/11/2009 for patient A, while another table uses
three columns to store the same birth date of patient

A, i.e., say 05 as MM, 11 as DD, and 2009 as
YYYY. iSTDE ensures that two tables maintain the
same logical dependency after mangling, that is, if
the birth date 05/11/2009 is swapped with some
other date 07/10/2007 in one table, iSTDE also
makes the same logical swap in the other table that
uses three columns to represent the birth dates.

The second type of dependency in the iSTDE
mangling process is called data value dependency.
Two domains D1 and D2 are said to have a data
value dependency when for any single record that
uses values from both domains, there is a constraint
involving those values in these domains. Then, if
values in D1 are swapped, a random swap must also
be made in D2, but the original constraint must still
hold (if the original record satisfies that constraint.)
More specifically, if x, x'∈ D1and y, y'∈ D2 such
that x⊗y where ⊗ represent some constraint, then if
x is swapped with x', y can also be swapped with y'
as long as x'⊗y'. Stated another way, we can say that
a child birth date in any of the databases cannot be
greater than a parent birth date.

The third type of data mangling relates to the
mangling of computed fields and partial computed
fields. These two types of fields are considered
dependent and are derived from some other fields.
For example, a full name field can be a computed
field as it is derived from a first name and last name.
When iSTDE mangles the first name and last name,
it also re-computes the full name to maintain names
consistency. Partial computed fields are those fields
that have partial independent values and partial
computed values. For example, a contact name field
can contain a brother name. It might be possible that
two brothers have the same last name, so if we
mangle the last name, we also need to re-compute
the partial value in the contact name field.

4.5 Transferring Mangled Data

Once mangling of data is complete, the fifth step in
the entire process is the automatic transfer of the de-
identified test data to the user-specified unprotected
environment. To do this, iSTDE creates a dump of
all the temporary databases, transfers them via a
secure copy to the unprotected environment, and
executes remote commands to restore those dumps
in databases in the unprotected environment. A
significant challenge while transferring the test data
was to manage the access controls and firewalls.
iSTDE uses a number of built-in scripts in
confidential environment to manage these network
transfer obstacles.

SEMANTIC BASED TEST DATA EXTRACTION FOR INTEGRATED SYSTEMS (iSTDE)

179

4.6 Destroying Mappings

In this semantic-based extraction process, iSTDE
produces and uses data files and domain
dictionaries. The data files are created in the third
step of iSTDE execution and contain extracted
records from different database managers, whereas
domain dictionaries are developed in the fourth step.
These domain dictionaries are a sort of mapping
table that helps in shuffling the records. Ideally, this
step destroys all traces i.e., data files and domain
dictionaries that could indentify or even hint at any
sensitive information about the patients. Thus,
iSTDE ensures the sensitivity of patients records by
deleting the temporary databases as well as the data
files mentioned above.

5 EXPERIENCES WITH ISTDE

We have used iSTDE to test several key CHARM
components. For example, it was particularly
useful in testing the SyncEngine because its primary
function is to correlate data among multiple PP.
Previously, testing the SyncEngine required
developers to create test data manually. Not only
was this very time consuming, but it resulted in test-
data sets with limited coverage. The CHARM
developers found data set produced by iSDTE to be
good approximation of the real data and that they
properly hid personal identities. Most importantly,
the CHARM developers found several critical
software faults using the iSDTE test data that would
have been difficult to find with handcrafted test
data. The CHARM developer had similar
experiences testing the CHARM matcher and web
interface.

6 FUTURE WORK AND
SUMMARY

iSDTE is a work in progress and would benefit from
a few enhancements. First, iSTDE currently is a
desktop-based application that runs in a confidential
environment by external actor. With some minor
modifications it could be converted into a web-
service-based application that can make it accessible
without physical interaction. Second, it could be
enhanced to allow incremental construction of test
sets. This would allow the developers to extract an
initial slice of test data and then add to it later, if a
large test-data set is needed. Third, iSTDE could be
further optimized to reduce execution time by better

restructuring some of SQL queries that extract data
from PPs and by improving the efficiency of the
data mangling. Finally, the current iSTDE is tightly
coupled to source databases, so addition of a new
database requires developers to add modules that are
specific to the new database. With some refactoring
and application of the Adapter Pattern [11], this
undesirable coupling could be reduced or
eliminated.

In summary, preliminary indications are that
iSTDE is very beneficial for testing integrated
systems and merits further enhancement and study.

REFERENCES

GenerateData.com, a tool for generating test data, last
accessed on December 22, 2008.

SqlEdit, www.sqledit.com, last accessed on November 28,
2008.

www.forsql.com, a tool for automatics generating test
data for developers, last accessed on December 30,
2008.

http://www.tethyssolutions.com/T10.htm, a tool for
generating meaningful randomized data for QA
testing, load testing, last accessed on December 30,
2008.

www.tns-soft.com, a tool for generating meaningful
randomized data for QA testing, load testing, last
accessed on December 30, 2008.

CHARM Exective summary reference.
www.datanamic.com, generate the test data from a

variety of sources, including the database tables, last
accessed on December 30, 2008.

www.turbodata.ca, generate the test data from a real
database, last accessed on February 11, 2008.

R.Maddy, DBTESTGEN – MS Thesis 2006, Computer
Science Department, Utah State University.

Clyde, S., and Salkowitz, S., The Unique Records
Portfolio, Public Health Informatics Institute, Decatur,
GA, April, 2006.

Refactoring: Improving the Design of Existing Code
(Addison-Wesley Series) by M. Fowler

http://www.sqlmanager.net/en/products/postgresql/datage
nerator, generate the test data by a variety of sources,
last accessed on February 11, 2008.

Bersano, T., Clement, B., and Shilkrot, L. Synthetic Data
for Testing in Databases, University of Michigan,
1997.

Harper, K.E. Syntactic and semantic problems in
automatic sentence generation. In Proceedings of
International Conference on Computational
Linguistics, 1967, 1-9.

Chays, D., Dan, S., Vokolos, F.I., and Weyuker, E.J. A
framework for testing database applications. In
ISSTA
2000, ACM 1-58113-266-2.

Phyllis F., D. Chays, Test data generation for relational
database applications, 2004, ACM AA13115007.

HEALTHINF 2010 - International Conference on Health Informatics

180

