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Abstract: In this work a hybrid technique for classification of fingerprint identification has been developed to decrease 
the matching time. For classification a Support Vector Machine is described and used. Automatic 
Fingerprint Identification Systems are widely used today, and it is therefore necessary to find a 
classification system that is less time-consuming. The given fingerprint database is decomposed into four 
different subclasses and a SVM algorithm is used to train the system to do correct classification. The 
classification rate has been estimated to about 87.0 % of unseen fingerprints. The average matching time is 
decreased with a factor of about 3.5 compared to brute force search applied.  

1 INTRODUCTION 

Fingerprints have been used for identification for 
hundreds of years. The first years, the matching of 
fingerprints was done by human experts. 40 years 
ago, researchers started to load digital fingerprint 
data onto computers. The first Automatic Fingerprint 
Identification System (AFIS) was developed in 
1991, and since then, there has been an enormous 
progress in the field. Due to the ever-growing 
capabilities of computers and great achievements in 
research, the recognition rate has improved 
significantly. There is nevertheless a huge amount of 
work to be done.  

The current work in this field concentrates on 
reducing the computation time for feature extraction 
and matching. Embedded fingerprint systems 
supporting instant identification or verification are 
increasingly used, and the computation time for 
these processes is thus an important research field. 
One way to decrease this time is to divide the 
fingerprint database into different subclasses based 
on specific properties, such that only a part of the 
fingerprints needs to be considered for matching.  

The uniqueness of fingerprints has been widely 
tested, and two identical fingerprints have still not 
been found (Pankanti et al., 2002). However, current 
finger print identification systems do not uses all the 
discriminating information present in a fingerprint, 
and the probability of finding two identical 

fingerprints using the systems therefore increases. A 
lot of work is being done today to decide which 
information in fingerprints should be used to keep 
the uniqueness. In addition to this work, the current 
work in this field concentrates on reducing the 
computation time for feature extraction and 
matching.  

Various methods have been used for 
classification, and some of the most successful ones 
use artificial neural networks as a classifier. In this 
paper, however, a Support Vector Machine has been 
used for classification. The SVM network is given a 
feature vector as input, based on computation of the 
Poincare index. This method was first proposed by 
Jain, Prabhakar and Hong (Jain et al., 1999).  

Among all the biometric techniques fingerprint 
identification is today the most widely used 
biometric identification form. It has been used in 
numerous applications. Everyone is supposed to 
have a unique, immutable fingerprint. It is also the 
one that is scoring highest overall compared to other 
forms as iris, signature, voice, etc. In 2002 
fingerprint based biometric systems had a market of 
52.1 % (Maltoni et al., 2005).  

The problem is to develop algorithms which are 
robust to noise in the fingerprints and are able to 
deliver accuracy in real time.  

Fingerprint matching algorithms vary greatly in 
terms of false positive and false negative errors.  
They may also vary with respect to features such as 
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image rotation invariance and independence from a 
reference point, given as the centre or the core of the 
fingerprint pattern.  

2 BACKGROUND 

In an automatic fingerprint identification system 
(AFIS), the fingerprint database can be huge, often 
tens of thousands of fingerprints. If you were 
supposed to check for similarity between the query 
fingerprint and every other fingerprint in the 
database, it would take an enormous amount of time.  

With this in mind, fingerprint classification is an 
important step that has to be implemented in every 
fingerprint identification system. The classification 
criteria most widely used are the modification or 
extension of the standard Galton-Henrys 
classification system (Henry, 1990). Here, 
fingerprints are divided into 5 subclasses: whorl 
(W), right loop (RL), left loop (LL), arch (A) and 
tented arch (TA).  

 
Figure 1: Five major fingerprint classes. 

2.1 Singularities 

Three singularities can be found in the fingerprint to 
more easily distinguish between the classes. These 
three singularities are the loop, the delta and the 
whorl. A whorl fingerprint contains one or more 
ridges that make a complete 360-degree path around 
the centre of the fingerprint. Two loops (or one 
whorl) and two deltas are present. The deltas are 
placed under the whorl, one at the right and one at 
the left side. A loop fingerprint has one or more 
ridges that enter from one side, curves back and 
exits at the same side as they entered. In a left and 
right loop, the ridges enter from the left side and the 

right side, respectively. A loop and a delta 
singularity are present, with the delta under the loop, 
at the left in a right loop fingerprint and at the right 
in a left loop fingerprint. An arch fingerprint has 
ridges that enter from one side, rises to a small bump 
and exits at the opposite side.  

When no singularities are present, this will make 
the classification of the class rather difficult. A 
tented arch fingerprint contains one or more ridges 
that enter from one side, loops in a high curvature 
and exit at the opposite site. When one loop and one 
delta singularity are present, the delta is typically 
placed right under the loop as shown in figure 2. 

 
Figure 2: A loop and a delta singularity in a right loop 
fingerprint. 

It is possible to further subdivide each class into 
more subclasses, but this is hardly of any practical 
importance. In poor quality fingerprints it is really 
difficult to even classify it to the five main classes, 
and further classification would probably increase 
the rejection rate. In addition, the complexity in the 
end renders the classification incapable of improving 
the identification time anymore. 

2.2 Different Methods 

Many fingerprint classification methods have been 
proposed in literature. In general, these methods can 
be categorised into five approaches (Maltoni, et al., 
2005): 

• rule-based 
• syntactic-based 
•  structure-based  
• statistical-based  
•  neural-network based  

In this work we have concentrated on the statistical-
based approach and want to see how the 
performance of an AFIS comes out, based on SVM  
as a classifier.  
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The current work in this field concentrates on 
reducing the computation time for feature extraction 
and matching. Embedded fingerprint systems 
supporting instant identification or verification are 
increasingly used, and the computation time for 
these processes is thus an important research field. 
One way to decrease this time is to divide the 
fingerprint database into different subclasses based 
on specific properties, such that only a part of the 
fingerprints needs to be considered for matching.  

3 EXTRACTING FEATURES 

3.1 Extracting Classification Features 

The SVM network needs an input vector to be able 
to classify the fingerprints. This vector can be made 
by extracting features of the fingerprint, and then 
represent these features in a suitable way. We have 
chosen to create this vector based on a technique 
proposed by (Maltoni et al., 2005). Here, the authors 
present a feature vector called FingerCode, which is 
a vector consisting of 640 feature values.  

First, a reference point in the fingerprint is to be 
found. We set the core of the fingerprint as the 
reference point. Then, the image is filtered in eight 
different directions using different Gabor filters, 
each enhancing ridges oriented in different angles. 
Each of these eight images are divided into 80 
sectors according to specific rules. The standard 
deviation of each sector is finally calculated, and 
these values represent the feature values. The total 
number of feature values is 640 (8 x 80), and a 
vector containing these values is used as input vector 
to the SVM network.  

3.2 Reference Point Detection 

We have chosen to use the core point as the 
reference point. This core point is defined as the 
most northern loop singularity in a fingerprint. A 
loop singularity can be detected by a method based 
on the Poincare index proposed in (Jain et al., 1999). 
Let G be a vector field and C be a curve immersed 
in G. Then, the Poincare index is defined as the total 
rotation of the vectors of G along C. Here, G is the 
vector field associated with an orientation image of 
the fingerprint. The curve C is a closed path defined 
as an ordered sequence of the neighbour elements dk 
of position (i,j) in the orientation image. Then, the 
Poincare index at position (i,j) is defined as the sum 
of the orientation differences between adjacent 
elements of C:  

PG,C = 
7

( 1) mod 8)
1

( , ( )k k
K

angle d d +

=
∑  (1)

where dk is the neighbouring elements as shown in 
Figure 3. This figure shows a typical loop 
singularity, and the sum of angles will here be 180 
degrees. Because the left neighbour of d7 is d0, 
d((k+1) mod 8) is used instead of dk+1. 

 
Figure 3: Computation of the Poincare index in the eight-
neighbourhood of pixel (i, j). 

It is shown that the sum of Poincare indexes must be 
either -360, -180, 0, 180 or 360. These indexes 
thereby give a clear indication of which singular 
region (SR) a pixel (i,j) belongs to, see (Kawagoe, 
Tojo, 1984):  

0 deg. if (i,j) does not belong to any SR 
360 deg. if (i,j) belongs to a whorl type SR
180 deg. if (i,j) belongs to a loop type SR 
-180 deg. if (i,j) belongs to a delta type SR 

(2)

As mentioned, the core point is the northern most 
loop. We assume that the fingerprints are captured 
with the finger in an approximately normal position, 
but tolerate a rotation of up to 45 degrees either 
clockwise or counter clockwise. The core point is 
used as reference point in the extraction of 
classification features.  

3.3 Gabor Filtering 

After the reference point is detected, the image is 
filtered using eight different Gabor filters. The 
image needs to be divided into 80 sectors, as 
illustrated in Figure 4. Here, the reference point is 
marked with a cross. Note that the innermost band is 
not divided into sectors, as it contains very few 

PG,C =  
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pixels, and the standard deviation will then become 
very unreliable. Before filtering, each of the 80 
sectors has to be normalized, setting the mean and 
variance to desired values.  

 
Figure 4: Computation of the Poincare index in the eight-
neighbourhood of pixel (i, j). 

Each sector is normalized locally, so the mean and 
variance have to be calculated for each sector. The 
desired mean and variance value for each sector are 
both set to 100, as recommended by the authors in 
(Delima, Yen, 2003). 

Let I(i, j) denote the gray level at pixel (i, j) in a 
fingerprint image of size m x n and let (ic, jc) denote 
the reference point or core point. The region of 
interest is defined by a collection of sectors Sp, 
where the sector Sp is computed in terms of 
parameters (r,θ) defined by (Burges, 1998): 

Sp = {i,j)|b(Tp + 1) ≤ r ≤ b(Tp +2)} 
1 ≤i ≤ n, 1≤j≤m,  

  θp ≤ θ < θp+1, 
(3)

where 

Tp = p div k, (4)

θp = (p mod k)(2Π/k)  (5)

r = 2 2( ) ( )c ci i j j− + −  (6)

θ = tan-1 ((j-jc)/(i - ic)) (7)

b is the width of each band and k is the number of 
sectors considered in each band. The Gabor filters 
use eight fixed angle values; θ ε {0 degrees, 22.5 
degrees, 45 degrees, . . . , 157.5 degrees}. The 
frequency is fixed, to limit computation, and set as 
the average ridge frequency in the region of interest. 
The region of interest is here the union of all the 

sectors defined above. The Gabor filtering results in 
eight images that each enhance the ridges in a 
specific direction and also remove noise, thereby 
emphasising the relevant information.  

3.4 The Feature Vector 

The feature vector is, as earlier mentioned, a vector 
consisting of 80 values for each of the eight Gabor 
filtered images. In each of these images, a section of 
the fingerprint containing ridges that are parallel to 
the corresponding filter direction, exhibits a higher 
variation. A section containing ridges that are not 
parallel to the corresponding filter tends to be 
smoothed by the filter, which results in a lower 
variation. The spatial distribution of the variations in 
the different sectors of the component images can 
thereby be a good characterisation of the global 
ridge structure. With this in mind, the feature vector 
is defined as a vector containing the standard 
deviation of all 80 sectors in the filtered image for 
all angles θ [8].  

Let Fpθ(i,j) be the θ-direction filtered image for 
section Sp. For p ε { 0,1,. . . ,79}  and  θ ε {0 
degrees, 22.5 degrees,  . . , 157.5 degrees}, the 
feature value is the standard deviation Vpθ, defined 
as: 

Vpθ = 
1

( ( , ) )p p

p Kp

F i j P
K

θ θ−∑  (8)

where  Kp is the number of pixels in Sp and Ppθ is the 
mean value of pixels in Sp in image Fpθ (i, j). Now, 
we have a 640- dimensional feature vector that can 
be used as input vector to the SVM network.  

3.5 Scaling 

To improve the classification rate, all feature vectors 
are scaled before training. The main advantage of 
scaling is to avoid attributes with big values which 
dominate those with small values.  

Another advantage is to avoid numerical 
difficulties during the calculation. Because the 
kernel values in a Support Vector Machines depend 
on the inner products of the feature vectors, large 
attribute values may cause numerical problems. 
Scaling also makes the training run faster, and 
decreases the chance of getting stuck in local 
optima. The feature vectors are linearly scaled to the 
range [-1, +1]. Each value j in a feature vector i is 
scaled individually: 
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Si,j   = -1 + 2* 
( , ) min

max min
FV i j i

j j
−

−
 (9)

where FV(i,j) and Si,j are the feature value and scaled 
feature value at position j for feature vector i, 
respectively. min j and max j are the minimum and 
maximum feature value at position j for all feature 
vectors, respectively. The table must appear inside 
the designated margins or it may span the two 
columns. 

4 SUPPORT VECTOR 
MACHINES 

Support Vector Machines is a computationally 
efficient learning technique that is now being widely 
used in pattern recognition and classification 
problems (Burges, 1998). This approach has been 
derived from some of the ideas of the statistical 
learning theory regarding controlling the 
generalization abilities of a learning machine 
(Vapnik, 1998, Vapnik, 1999).  

In this approach the machine learns an optimum 
hyper plane that classifies the given pattern. By use 
of kernel functions, the input feature space by 
applications of a non-linear function can be 
transformed into a higher dimensional space where 
the optimum hyper plane can be learnt. This gives a 
flexibility of using one of many learning models by 
changing the kernel functions.  

4.1 The SVM Classifier 

The basic idea of an SVM classifier is illustrated in 
Figure 5. This figure shows the simplest case in 
which the data vectors (marked by 'X' s and 'O' s) 
can be separated by a hyper plane. In such a case 
there may exist many separating hyper planes. 
Among them, the SVM classifier seeks the 
separating hyper plane that produces the largest 
separation margin. 

In the more general case in which the data points 
are not linearly separable in the input space, a non-
linear transformation is used to map the data vectors 
into a high-dimensional space (called feature space) 
prior to applying the linear maximum margin 
classifier. To avoid the potential pitfall of over-
fitting in this higher dimensional space, an SVM 
uses a kernel function in which the non-linear 
mapping is implicitly embedded. A function 
qualifies as a kernel function if it satisfies the 
Mercer's condition (Vapnik, 1998). 

With the use of a kernel function, the 
discriminant function in an SVM classifier has the 
following form 

f(x) = 
1

N

i=
∑ αiyi K(xi, x) + α0 (10)

where K(-,-) is the kernel function, xi are the support 
vectors determined from the training data, yi is the 
class indicator e.g. +1 and -1 for a two class problem 
associated with each xi, N is the number of 
supporting vectors  determined during training.  

 
Figure 5: A support vector machine classification defined 
by a linear hyper plane that maximizes the separating 
margins between the classes. 

Support vectors are elements of the training set 
that lie either exactly on or inside the decision 
boundaries of the classifier. In essence, they consist 
of those training examples that are most difficult to 
classify. The SVM classifier uses these borderline 
examples to define its decision boundary between 
the two classes. 

4.2 SVM Kernel Functions 

The kernel function plays a central role of implicitly 
mapping the input vectors into a high dimensional 
feature space, in which linear separability is 
achieved. The most commonly used kernel functions 
are the polynomial kernel given by : 

K(x,y) = (xTy + 1)p (11)

where p > 0 is a constant, and the Gaussian radial 
basis function (RBF) kernel given by 

K(x,y) = exp ( -||x-y||/2σ2 ) (12)

where σ > 0 is a constant that defines the kernel 
width. Both of these kernels satisfy the Mercer 
condition mentioned earlier. 
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4.3 SVM Training 

The fingerprints are classified by a Support Vector 
Machine (SVM). The feature vector created is used 
as an input pattern to the classifier. The SVM 
network needs to be trained well to be able to 
classify unknown patterns correctly.  

We have manually labelled the fingerprint 
images according to the Henry classification to 
create a training set. Each classifier is trained using 
the feature vector extracted from these labelled 
images. The SVM classifier has been tested by 
presenting it to an unknown set of fingerprints to see 
how SVM is able to classify unknown patterns 
correctly. Fingerprint images with no core point or a 
core point too lose to an edge or segmented area is 
not used for training, due to false feature values. If 
such an image occurs in the classification stage, the 
images cannot be classified and must be matched 
against every other fingerprint in the final matching 
stage. 

5 EXPERIMENTS AND RESULTS  

A Support Vector Machine is trained according to 
the numbers specified in Table 1. Arch images have 
no singularities present, and a reference point of 
these fingerprints are thereby not possible by our 
methods. However, loops constitute about 65 
percent of the total fingerprint patterns, whorls about 
30 percent, and arches and tented arches together 
account for the other 5 percent (Karu, Jain, 1996). 
This makes  the problem of not being able to classify 
arches less important. 

Table 1: The number of training and testing instances for 
each fingerprint. 

 Training Testing 
LL 127 63 
RL 123 59 
TA 10 6 
W 83 41 

Total 343 169 

We have used the LIBSVM library for SVM-
classification (Chang, Lin, 2001). The SVM is 
trained using a Radial Basis Function kernel, as 
given in equation 13.  

K(xi, xj) = e-γ||xi - xj|| ,  γ > 0 (13)

Before training, the parameters C and γ above have 
to be set to correct values. C is the penalty 
parameter of the error term and γ is a kernel 

parameter. By cross-validation, the best C- and γ-
values are found to be 8.0 and 0.001953125, 
respectively. We have used a one-vs-one approach to 
a multi-class problem. This splits our classification 
problem into six separate problems, that in the end 
are combined into one final set of support vectors. In 
total, this set, which is used for classification of the 
unknown fingerprints, contains 232 support vectors. 
The classification results using SVM as a classifier 
are shown in Table 2.  

Table 2: Classification results of each class using a SVM 
network. 

True 
Classes 

 Produced 
Classes 

  

 LL RL TA W 
LL 59 1 0 3 
RL 1 55 0 3 
TA 2 2 2 0 
W 6 4 0 31 

Best 96.8 97.6 98.1  

From table 3 we see that the SVM classifier is able 
to classify the loops very well (93.7% and 93.2%), 
but is not able to classify the whorls and tented 
arches at the same rate. 

A benchmark test was carried out on the whole 
set of fingerprints available to measure the average 
matching time of a fingerprint query by using a brute 
force search through the whole finger database  
compared to a regime with a classification stage. 
The benchmark test showed that the matching time 
was reduced with a factor of about 3.5 by 
introducing a classification in the AFIS regime.    

Table 3: Classification rate for each class using a SVM 
network. 

 Correct Wrong Percent Correct 
LL 59 4 93.7 
RL 55 4 93.2 
TA 2 4 33.3 
W 31 10 75.6 

Total 147 22 87.0 

6 DISCUSSION  

The performance rate of the SVM network has been 
estimated to about 87.0%.  The SVM classifier 
failed in classifying most of the tented arch 
fingerprints, but this is because we believe there are 
too few training instances belonging to the tented 
arch class. SVM also performed better in 
classification of left loops and right loops than 
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classification of whorls. We believe that this is 
caused by the limited region-of-interest used to 
calculate the feature vector, causing many whorls to 
be wrongly classified as loops.  

There are two main classes of whorls, classic 
whorl and double loop, and the double loop causes 
the classification problem. This is because the 
region-of interest centred in the core looks quite 
similar in double loops and normal loops. Thereby, 
they can easily be misclassified as loops. A solution 
could be to increase the region-of-interest, but this 
would also increase the rejection rate, as more 
sectors would be outside the fingerprint area or even 
outside the entire image.  

The experiments have shown that a SVM 
network is able to do a correct classification with a 
rate of about 87.0% on a four-class classification 
problem. To see how well such a classification rate 
is, it is compared with results obtained from 
literature. In [10], a classification algorithm based on 
the number of cores and deltas, and their relative 
positions, is presented. The authors achieved a 
correct classification rate of 85.4% on a five-class 
classification task.  

In (Cappelli et al., 1999) one partitioned the 
directional image into connected regions according 
to the fingerprint topology, thus giving a synthetic 
representation which can be exploited as a basis for 
the classification. This method achieved a correct 
classification rate of 92.1% on a five-class 
classification task.  

The authors in (Jain et al., 1999) used an 
approach similar to the one used in this paper, with 
the FingerCode as feature vector.  The classification 
was done by a Multi Layered Perceptron (MLP) 
neural network. The network was able to achieve a 
correct classification rate of 86.4% on a five-class 
classification task and 92.1% on a four class 
classification problem.  

In this paper a SVM network has been used in 
the classification stage. We observe that using a 
SVM network as a classifier gives nearly similar 
results as those found in the literature. From our 
experience with SVM network we believe that a 
larger database than was available would probably 
increase the performance rate, since a SVM network 
is capable to handle higher dimensional input spaces 
often in a better way than a MLP network and also 
generalize better. Such a classifier will then be more 
able to distinguish between more subtle differences 
of the fingerprint classes. 

A benchmark test of a trained SVM network has 
been carried out on the total set of fingerprints to 
measure the average matching time of a query 

fingerprint compared to the query fingerprint using a 
subclass regime. The matching time of the last 
regime was also reduced by the factor of 3.5 
compared to the brute force search regime.   

7 CONCLUSIONS 

One way to decrease the identification time of an 
AFIS is to divide a finger database into different 
subclasses so that that a query fingerprint does not 
have to be tested against every fingerprint in the 
database. To solve such a problem we have 
implemented a classification stage in the AFIS by 
using a SVM classifier.  

The SVM classifier is able to classify different 
unseen fingerprints with a performance rate of 
approximately 87.0%.  However, by using a 
classification stage one is also able to reduce the 
average matching time compared to a total search 
which may be important when the fingerprint 
database is becoming huge.  

However, the main objection by the method used 
in this paper is that the number of training examples 
are too small compared to the number of features in 
the FingerCode vector. By training the SVM with an 
extended training database we believe that the 
performance rate will greatly improve. Other types 
of neural networks may also be used to do the 
classification instead of the SVM network. This 
belongs to our future research.  
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