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Abstract: A paraconsistent computation tree logic, PCTL, is obtained by adding paraconsistent negation to the standard
computation tree logic CTL. PCTL can be used to appropriately formalize inconsistency-tolerant temporal
reasoning. A theorem for embedding PCTL into CTL is proved. The validity, satisfiability, and model-
checking problems of PCTL are shown to be decidable. The embedding and decidability results indicate that
we can reuse the existing CTL-based algorithms for validity, satisfiability and model-checking. An illustrative
example of medical reasoning involving the use of PCTL is presented.

1 INTRODUCTION

Computation tree logic(CTL) (Clarke and Emerson,
1981) is known to be one of the most useful tempo-
ral logics for verifying concurrent systems bymodel
checking(Clarke et al., 1999), since some CTL-based
model checking algorithms are more efficient than
other types of algorithms. However, the use of CTL
is not suitable for verifying “inconsistent” concurrent
systems since CTL is based on classical logic. Han-
dling inconsistencies in concurrent systems requires
the use of aparaconsistent logic(Beziau, 1999; Priest
and Routley, 1982) as a base logic for CTL.

One of the most useful paraconsistent logics is
Nelson’s four-valued paraconsistent logicN4 (or also
called N−) (Almukdad and Nelson, 1984; Nelson,
1949), which includes a paraconsistent negation con-
nective. The logic N4 and its variants have been stud-
ied by many researchers (see, e.g., (Wagner, 1991;
Wansing, 1993) and the references therein). N4 has
been extensively studied since it has the property of
paraconsistency(Beziau, 1999; da Costa et al., 1995;
Priest and Routley, 1982). Roughly, a satisfaction re-
lation |= is said to be paraconsistent with respect to
a negation connective∼ if the following condition
holds:∃α,β, not-[M,s |= (α∧∼α)→β], wheres is a
state of a Kripke structureM. In contrast to N4, classi-
cal logic has no paraconsistency because the formula

of the form(α∧∼α)→β is valid in classical logic.
It is known that paraconsistent logical systems

are more appropriate for inconsistency-tolerant and
uncertainty reasoning than other types of logical
systems (Beziau, 1999; da Costa et al., 1995;
Priest and Routley, 1982; Wagner, 1991; Wansing,
1993). For example, the following scenario is un-
desirable(s(x) ∧ ∼s(x))→d(x) is satisfied for any
symptom s and diseased where ∼s(x) means “a
person x does not have a symptoms” and d(x)
means “a personx suffers from a diseased.” An
inconsistent scenario expressed, for example, as
melancholia( john) ∧ ∼melancholia( john) will in-
evitably occur, because melancholia is an uncer-
tain concept and the fact “John has melancholia”
may be determined to be true or false by differ-
ent pathologists with different perspectives. In this
case, the undesirable formula(melancholia( john)∧
∼melancholia( john))→cancer( john) is valid in
classical logic (i.e., an inconsistency has undesirable
consequences), while it is not valid in paraconsistent
logics (i.e., these logics are inconsistency-tolerant).

Inconsistencies often appear and are inevitable
when specifying large, complex systems in some
CTL-based frameworks. N4 is then useful and ap-
propriate as a base logic for CTL. Moreover, N4 has
notable two consequence relations|=+ (verification)
and|=− (refutation) in the Kripke semantics. By us-
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ing these consequence relations, the ideas of “veri-
fication (or justification)” and “refutation (or falsifi-
cation)” can be simultaneously incorporated into the
system. Therefore, the combination of CTL and N4 is
regarded as a natural candidate for obtaining a useful
paraconsistent temporal logic.

In this paper, a new paraconsistent computation
tree logic called PCTL is introduced by combining
CTL and N4. While the idea of combining CTL
and N4 is new, the idea of introducing a paracon-
sistent computation tree logic is not. For example,
a multi-valued computation tree logicχCTL was in-
troduced by Easterbrook and Chechik (Easterbrook
and Chechik, 2001), and aquasi-classical temporal
logic QCTL was developed by Chen and Wu (Chen
and Wu, 2006). Thus, PCTL is introduced as an alter-
native to these logics, and N4 replaces the base para-
consistent logic.

As mentioned above, the application for which
paraconsistent logics show the greatest promise may
be medical informatics. Indeed, it has been pointed
out that paraconsistent logics are useful for medical
reasoning (see, e.g., (da Costa et al., 1995; Murata
et al., 1991) and the references therein). Some para-
consistent computation tree logics, including PCTL,
may be more useful in medical informatics because
the notion of time is necessary in order to appropri-
ately formalize realistic medical reasoning. Against
this background, we present an illustrative example of
medical reasoning. The proposed illustrative example
can also be adapted to other paraconsistent computa-
tion tree logics such asχCTL and QCTL.

2 PARACONSISTENT
COMPUTATION TREE LOGIC

Formulas of PCTL are constructed from countable
atomic formulas,→ (implication)∧ (conjunction),∨
(disjunction),¬ (classical negation),∼ (paraconsis-
tent negation), X (next), G (globally), F (eventually),
U (until), R (release), A (all computation paths) and
E (some computation path). The symbols X, G, F,
U and R are calledtemporal operators, and the sym-
bols A and E are calledpath quantifiers. The symbol
ATOM is used to denote the set of atomic formulas.
An expressionA≡ B is used to denote the syntactical
identity betweenA andB.

Definition 2.1.Formulasα are defined by the follow-
ing grammar, assumingp∈ ATOM:

α ::= p | α→α | α∧α | α∨α | ¬α | ∼α |
AXα | EXα | AGα | EGα | AFα | EFα |
A(αUα) | E(αUα) | A(αRα) | E(αRα).

Note that pairs of symbols like AG and EU are in-
divisible, and that the symbols X,G,F,U and R can-
not occur without being preceded by an A or an E.
Similarly, every A or E must have one of X, G, F, U
and R to accompany it. Remark that all the connec-
tives displayed above are needed to obtain an embed-
ding theorem of PCTL into CTL.

Definition 2.2.A paraconsistent Kripke structureis a
structure〈S,S0,R,L+,L−〉 such that

1. S is the set of states,
2. S0 is a set of initial states andS0 ⊆ S,
3. R is a binary relation onSwhich satisfies the con-

dition: ∀s∈ S∃s′ ∈ S [(s,s′) ∈ R],
4. L+ andL− are functions fromS to the power set

of a nonempty subset AT of ATOM.

A path in a paraconsistent Kripke structure is an
infinite sequence of states,π = s0,s1,s2, ... such that
∀i ≥ 0 [(si ,si+1) ∈ R].

The logic PCTL is then defined as a paraconsis-
tent Kripke structure with two satisfaction relations
|=+ and|=−. The intuitive meanings of|=+ and|=−

are “verification (or justification)” and “refutation (or
falsification)”, respectively (Wansing, 1993).

Definition 2.3. Let AT be a nonempty subset of
ATOM. Satisfaction relations|=+ and|=− on a para-
consistent Kripke structureM = 〈S,S0,R,L+,L−〉 are
defined inductively as follows (s represents a state in
S):

1. for anyp∈ AT, M,s |=+ p iff p∈ L+(s),
2. M,s |=+ α1→α2 iff M,s |=+ α1 impliesM,s |=+

α2,
3. M,s |=+ α1∧α2 iff M,s |=+ α1 andM,s |=+ α2,
4. M,s |=+ α1∨α2 iff M,s |=+ α1 or M,s |=+ α2,
5. M,s |=+ ¬α1 iff not-[M,s |=+ α1],
6. M,s |=+ ∼α iff M,s |=− α,
7. M,s |=+ AXα iff ∀s1 ∈ S [(s,s1) ∈ R implies

M,s1 |=
+ α],

8. M,s |=+ EXα iff ∃s1 ∈ S [(s,s1) ∈ R and
M,s1 |=

+ α],
9. M,s |=+ AGα iff for all paths π ≡ s0,s1,s2, ...,

wheres≡ s0, and all statessi alongπ, we have
M,si |=

+ α,
10. M,s |=+ EGα iff there is a pathπ ≡ s0,s1,s2, ...,

wheres≡ s0, and for all statessi alongπ, we have
M,si |=

+ α,
11. M,s |=+ AFα iff for all paths π ≡ s0,s1,s2, ...,

wheres≡ s0, there is a statesi alongπ such that
M,si |=

+ α,
12. M,s |=+ EFα iff there is a pathπ ≡ s0,s1,s2, ...,

wheres≡ s0, and for some statesi alongπ, we
haveM,si |=

+ α,
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13. M,s |=+ A(α1Uα2) iff for all paths π ≡
s0,s1,s2, ..., wheres≡ s0, there is a statesk along
π such that[(M,sk |=

+ α2) and∀ j (0≤ j < k im-
pliesM,sj |=

+ α1)],

14. M,s |=+ E(α1Uα2) iff there is a pathπ ≡
s0,s1,s2, ..., wheres≡ s0, and for some statesk
alongπ, we have[(M,sk |=

+ α2) and∀ j (0≤ j <
k impliesM,sj |=

+ α1)],

15. M,s |=+ A(α1Rα2) iff for all paths π ≡
s0,s1,s2, ..., wheres≡ s0, and all statessj along
π, we have [∀i < j not-[M,si |=

+ α1] implies
M,sj |=

+ α2],

16. M,s |=+ E(α1Rα2) iff there is a pathπ ≡
s0,s1,s2, ..., wheres ≡ s0, and for all statessj
alongπ, we have[∀i < j not-[M,si |=

+ α1] im-
pliesM,sj |=

+ α2],

17. for anyp∈ AT, M,s |=− p iff p∈ L−(s),

18. M,s |=− α1→α2 iff M,s |=+ α1 andM,s |=− α2,

19. M,s |=− α1∧α2 iff M,s |=− α1 or M,s |=− α2,

20. M,s |=− α1∨α2 iff M,s |=− α1 andM,s |=− α2,

21. M,s |=− ¬α1 iff M,s |=+ α1,

22. M,s |=− ∼α1 iff M,s |=+ α1,

23. M,s |=− AXα iff ∃s1 ∈ S [(s,s1) ∈ R and
M,s1 |=

− α],

24. M,s |=− EXα iff ∀s1 ∈ S [(s,s1) ∈ R implies
M,s1 |=

− α],

25. M,s |=− AGα iff there is a pathπ ≡ s0,s1,s2, ...,
wheres≡ s0, and for some statesi alongπ, we
haveM,si |=

− α,

26. M,s |=− EGα iff for all paths π ≡ s0,s1,s2, ...,
wheres≡ s0, there is a statesi alongπ such that
M,si |=

− α,

27. M,s |=− AFα iff there is a pathπ ≡ s0,s1,s2, ...,
wheres≡ s0, and for all statessi alongπ, we have
M,si |=

− α,

28. M,s |=− EFα iff for all paths π ≡ s0,s1,s2, ...,
wheres≡ s0, and all statessi alongπ, we have
M,si |=

− α,

29. M,s |=− A(α1Uα2) iff there is a pathπ ≡
s0,s1,s2, ..., wheres ≡ s0, and for all statessj
alongπ, we have[∀i < j not-[M,si |=

− α1] im-
pliesM,sj |=

− α2],

30. M,s |=− E(α1Uα2) iff for all paths π ≡
s0,s1,s2, ..., wheres ≡ s0, and for all statessj
alongπ, we have[∀i < j not-[M,si |=

− α1] im-
pliesM,sj |=

− α2],

31. M,s |=− A(α1Rα2) iff there is a pathπ ≡
s0,s1,s2, ..., wheres≡ s0, and for some statesk
alongπ, we have[(M,sk |=

− α2) and∀ j (0≤ j <
k impliesM,sj |=

− α1)],

32. M,s |=− E(α1Rα2) iff for all paths π ≡
s0,s1,s2, ..., wheres≡ s0, there is a statesk along
π such that[(M,sk |=

− α2) and∀ j (0≤ j < k im-
pliesM,sj |=

− α1)].

Definition 2.4. A formula α is valid (satisfiable)
in PCTL if and only if M,s |=+ α holds for
any (some) paraconsistent Kripke structureM =
〈S,S0,R,L+,L−〉, any (some)s∈ S, and any (some)
satisfaction relations|=+ and|=− onM.

Definition 2.5. Let M be a paraconsistent Kripke
structure〈S,S0,R,L+,L−〉 for PCTL, and|=+ and|=−

be satisfaction relations onM. Then, thepositive and
negative model checking problemsfor PCTL are re-
spectively defined by: for any formulaα, find the sets
{s∈ S | M,s |=+ α} and{s∈ S | M,s |=− α}.

An expression α ↔ β is used to represent
(α→β)∧ (β→α).

Proposition 2.6.The following formulas concerning
paraconsistent negation are valid in PCTL: for any
formulasα andβ,

1. ∼∼α ↔ α,
2. ∼(α∧β) ↔∼α∨∼β,
3. ∼(α∨β) ↔∼α∧∼β,
4. ∼(α→β) ↔ α∧∼β,
5. ∼¬α ↔ α,
6. ∼AXα ↔ EX∼α,
7. ∼EXα ↔ AX∼α,
8. ∼AGα ↔ EF∼α,
9. ∼EGα ↔ AF∼α,

10. ∼AFα ↔ EG∼α,
11. ∼EFα ↔ AG∼α,
12. ∼A(αUβ) ↔ E((∼α)R(∼β)),
13. ∼E(αUβ) ↔ A((∼α)R(∼β)),
14. ∼A(αRβ) ↔ E((∼α)U(∼β)),
15. ∼E(αRβ) ↔ A((∼α)U(∼β)).

For eachs∈ S and each formulaα, we can take
one of the following four cases: (1)α is verified at
s, i.e.,M,s |=+ α, (2) α is falsified ats, i.e.,M,s |=−

α, (3) α is both verified and falsified ats, and (4)α
is neither verified nor falsified ats. Thus, PCTL is
regarded as a four-valued logic.

Assume a paraconsistent Kripke structureM =
〈S,S0,R,L+,L−〉 such thatp∈ L+(s), p∈ L−(s) and
q /∈ L+(s) for any distinct atomic formulasp andq.
Then,M,s |=+ (p∧∼p)→q does not hold, and hence
|=+ in PCTL is paraconsistent with respect to∼.

In order to define a translation of PCTL into CTL,
CTL is defined below.

Definition 2.7 (CTL). A Kripke structurefor CTL is
a structure〈S,S0,R,L〉 such that
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1. S is the set of states,
2. S0 is a set of initial states andS0 ⊆ S,
3. R is a binary relation onSwhich satisfies the con-

dition: ∀s∈ S∃s′ ∈ S [(s,s′) ∈ R],
4. L is a function fromS to the power set of a

nonempty subset AT of ATOM.

A satisfaction relation|= on a Kripke structureM =
〈S,S0,R,L〉 for CTL is defined by the same conditions
1–5 and 7–16 as in Definition 2.3 (by deleting the su-
perscript+). The validity, satisfiability and model-
checking problems for CTL are defined similarly as
those for PCTL.

Remark that|=+ of PCTL includes|= of CTL, and
hence PCTL is an extension of CTL.

3 EMBEDDING AND
DECIDABILITY

In the following, we introduce a translation of PCTL
into CTL, and by using this translation, we show
an embedding theorem of PCTL into CTL. A simi-
lar translation has been used by Gurevich (Gurevich,
1977), Rautenberg (Rautenberg, 1979) and Vorob’ev
(Vorob’ev, 1952) to embed Nelson’s three-valued
constructive logic (Almukdad and Nelson, 1984; Nel-
son, 1949) into intuitionistic logic.

Definition 3.1. Let AT be a non-empty subset of
ATOM, and AT′ be the set{p′ | p ∈ AT} of atomic
formulas. The languageL ∼ (the set of formulas) of
PCTL is defined using AT,∼, ¬,→,∧,∨, X, F, G, U,
R, A and E. The languageL of CTL is obtained from
L

∼ by adding AT′ and deleting∼.
A mapping f from L ∼ to L is defined inductively

by:

1. for anyp∈AT, f (p) := p and f (∼p) := p′ ∈AT′,
2. f (α ♯ β) := f (α) ♯ f (β) where♯ ∈ {∧,∨,→},
3. f (♯α) := ♯ f (α) where♯ ∈ {¬,AX ,EX,AG,EG,

AF,EF},
4. f (A(αUβ))) := A( f (α)U f (β)),
5. f (E(αUβ))) := E( f (α)U f (β)),
6. f (A(αRβ))) := A( f (α)R f (β)),
7. f (E(αRβ))) := E( f (α)R f (β)),
8. f (∼∼α) := f (α),
9. f (∼(α→β)) := f (α)∧ f (∼β),

10. f (∼(α∧β)) := f (∼α)∨ f (∼β),
11. f (∼(α∨β)) := f (∼α)∧ f (∼β),
12. f (∼¬α) := f (α),
13. f (∼AXα) := EX f (∼α),
14. f (∼EXα) := AX f (∼α),

15. f (∼AGα) := EFf (∼α),

16. f (∼EGα) := AF f (∼α),

17. f (∼AFα) := EGf (∼α),

18. f (∼EFα) := AG f (∼α),

19. f (∼(A(αUβ))) := E( f (∼α)R f (∼β)),

20. f (∼(E(αUβ))) := A( f (∼α)R f (∼β)),

21. f (∼(A(αRβ))) := E( f (∼α)U f (∼β)),

22. f (∼(E(αRβ))) := A( f (∼α)U f (∼β)).

Lemma 3.2. Let f be the mapping defined in Defi-
nition 3.1. For any paraconsistent Kripke structure
M := 〈S,S0,R,L+,L−〉 for PCTL, and any satisfac-
tion relations|=+ and|=− on M, there exist a Kripke
structureN := 〈S,S0,R,L〉 for CTL and a satisfaction
relation |= on N such that for any formulaα in L ∼

and any states in S,

1. M,s |=+ α iff N,s |= f (α),

2. M,s |=− α iff N,s |= f (∼α).

Proof. Suppose thatM is a paraconsistent Kripke
structure〈S,S0,R,L+,L−〉 such thatL+ and L− are
functions fromSto the power set of AT. Suppose that
N is a Kripke structureM := 〈S,S0,R,L〉 such thatL
is a function fromSto the power set of AT∪AT′. Sup-
pose moreover that for anys∈ Sand anyp∈ AT, (1):
p∈ L+(s) iff p∈ L(s) and (2):p∈ L−(s) iff p′ ∈ L(s).

The lemma is then proved by (simultaneous) in-
duction on the complexity ofα. The base step is ob-
vious. We show some cases for the induction step.

Caseα ≡∼β: For (1), we obtain:M,s |=+ ∼β iff
M,s |=− β iff N,s |= f (∼β) (by induction hypothesis
for 2). For (2), we obtain:M,s |=− ∼β iff M,s |=+

β iff N,s |= f (β) (by induction hypothesis for 1) iff
N,s |= f (∼∼β) (by the definition off ).

Caseα ≡ A(βUγ): For (1), we obtain:

M,s |=+ A(βUγ)
iff for all pathsπ≡ s0,s1,s2, ..., wheres≡ s0, there is

a statesk alongπ such that[M,sk |=
+ γ and∀ j[i ≤

j < k impliesM,sj |=
+ β]

iff for all pathsπ ≡ s0,s1,s2, ..., wheres≡ s0, there
is a statesk alongπ such that[N,sk |= f (γ) and
∀ j[i ≤ j < k impliesN,sj |= f (β)] (by induction
hypothesis for 1)

iff N,s |= A( f (β)U f (γ))
iff N,s |= f (A(βUγ)) (by the definition off ).

For (2), we obtain:

M,s |=− A(βUγ)
iff there is a pathπ ≡ s0,s1,s2, ..., wheres≡ s0, and

for all statessj along π, we have[∀i < j not-
[M,si |=

− β] impliesM,sj |=
− γ]
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iff there is a pathπ ≡ s0,s1,s2, ..., wheres≡ s0, and
for all statessj along π, we have[∀i < j not-
[N,si |= f (∼β)] impliesN,sj |= f (∼γ)] (by induc-
tion hypothesis for 2)

iff N,s |= E( f (∼β)R f (∼γ))
iff N,s |= f (∼(A(βUγ))) (by the definition off ).

Lemma 3.3.Let f be the mapping defined in Defini-
tion 3.1. For any Kripke structureN := 〈S,S0,R,L〉
for CTL, and any satisfaction relation|= on N,
there exist a paraconsistent Kripke structureM :=
〈S,S0,R,L+,L−〉 for PCTL and satisfaction relations
|=+ and|=− on M such that for any formulaα in L ∼

and any states in S,

1. N,s |= f (α) iff M,s |=+ α,
2. N,s |= f (∼α) iff M,s |=− α.

Proof. Similar to the proof of Lemma 3.2.

Theorem 3.4 (Embedding).Let f be the mapping
defined in Definition 3.1. For any formulaα, α is
valid in PCTL iff f (α) is valid in CTL.

Proof. By Lemmas 3.2 and 3.3.

Theorem 3.5 (Decidability). The model-checking,
validity and satisfiability problems for PCTL are de-
cidable.

Proof. By f in Definition 3.1, a formulaα of PCTL
can finitely be transformed into the corresponding for-
mula f (α) of CTL. By Lemmas 3.2 and 3.3 and The-
orem 3.4, the model checking, validity and satisfiabil-
ity problems for PCTL can be transformed into those
of CTL. Since the model checking, validity and sat-
isfiability problems for CTL are decidable, the prob-
lems for PCTL are also decidable.

4 ILLUSTRATIVE EXAMPLE

We now consider examples of state structures for
representing the health of non-smokers and smok-
ers, as shown in Figure 1. In the state structure,
the medical state of a person is described in a de-
cision diagram where branching-tree structures and
negative connectives from PCTL are employed. In
this example, a paraconsistent negation∼α in PCTL
is used to express the negation of ambiguous con-
cepts. For instance, if we cannot determine whether
someone is healthy, the ambiguous concepthealthy
can be represented by asserting the inconsistent for-
mulahealthy∧∼healthy. This is well formalized be-
cause(healthy∧∼healthy)→⊥ is not valid in para-
consistent logic. On the other hand, we can decide

whether someone is smoking; the decision is repre-
sented bysmokingor ¬smoking, where(smoking∧
¬smoking)→⊥ is valid in classical logic.

In Figure 1, the initial state implies that a person
is not smoking (¬smokingis true). The system can
move to the other state to indicate that the person is
smoking (smokingis true). When a person under-
goes a medical checkup, his or her state changes to
one of the two states. Even if no cancer is detected
in a smoker during the medical checkup, he or she is
both healthy and not healthy, i.e., bothhealthyand
∼healthyare true because smoking is detrimental to
health. If cancer is detected (hasCanceris true) in a
non-smoker (or smoker), then∼healthyis true. This
means that the person is not healthy, but he or she may
return to good health if the cancer does not increase.
In these states,∼healthyrepresents ambiguous nega-
tive information that can be true at the same time as
healthy, which represents positive information

Moreover, when the cancer increases, the diagno-
sis reveals worse cancer. If the cancer is cured, the
patient will be healthy. Otherwise, if the cancer is not
controlled, the patient will die.

We define a Kripke structure M =
〈S,S0,R,L+,L−〉 that corresponds to the medi-
cal state structure as follows:

1. S= {s0,s1,s2,s3,s4,s5,s6},

2. S0 = {s0},

3. R = {(s0,s1),(s0,s2),(s0,s3),(s1,s0),(s1,s3),
(s1,s4),(s2,s3),(s3,s2),(s3,s4),(s3,s5),(s4,s3),
(s5,s2),(s5,s6)},

4. L+(s0) = /0,

5. L+(s1) = {smoking},

6. L+(s2) = {healthy},

7. L+(s3) = {hasCancer},

8. L+(s4) = {healthy},

9. L+(s5) = {cancerIncrease,hasCancer},

10. L+(s6) = {died,hasCancer},

11. L−(s0) = L−(s1) = L−(s2) = L−(s5) = L−(s6) =
/0,

12. L−(s3) = L−(s4) = {healthy}.

We can verify the existence of a path that rep-
resents the required information in the structureM.
For example, we can verify the following statement:
“Is there a state in which a person is both healthy
and not healthy?” This statement is expressed as:
EF(healthy∧∼healthy). The above statement is true
because we have a paths0→s1→s4 wherehealthy∈
L+(s4) andhealthy∈ L−(s4).
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healthy

¬smoking

smoking

∼healthy

∼healthy

healthy

cured

diedcancerIncrease

hasCancer

medicalCheckup

medicalCheckup

continuing continuing

¬hasCancer

¬hasCancer

hasCancer hasCancer

Figure 1: State structure for representing the health of smokers and non-smokers.

5 CONCLUSIONS

A new paraconsistent computation tree logic, PCTL,
was introduced by combining CTL and Nelson’s para-
consistent logic N4. This logic could be used appro-
priately in medical reasoning to deal with inconsistent
data and uncertain concepts. The theorem for embed-
ding PCTL into CTL was proved. The validity, satis-
fiability, and model-checking problems of PCTL were
shown to be decidable. The embedding and decidabil-
ity results indicate that we can reuse the existing CTL-
based algorithms to test the validity, satisfiability, and
model-checking. Thus, it was shown that PCTL can
be used as an executable logic to represent temporal
reasoning on paraconsistency. We believe that PCTL
can be extensively used for inconsistency-tolerant and
uncertainty reasoning, since N4 and its variants are
known to be very useful for a wide range of applica-
tions such as logic programming and knowledge rep-
resentations (see, e.g., (Odintsov and Wansing, 2003;
Wagner, 1991) and the references therein).
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