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Abstract: The development towards ambient computing will stimulate research in many fields of artificial intelligence,
such as activity recognition. To address this challenging issue, we present a formal activity recognition frame-
work based on possibility theory, which is largely different from the majority of all recognition approaches
proposed that are usually based on probability theory. To validate this novel alternative, we are developing an
ambient agent for the cognitive assistance of an Alzheimer’s patient within a smart home, in order to identify
the various ways of supporting him in carrying out his activities of daily living.

1 INTRODUCTION

Combining ambient assisted living with techniques
from activity recognition greatly increases its accep-
tance and makes it more capable of providing a better
quality of life in a non-intrusive way. Elderly peo-
ple, with or without disabilities, could clearly benefit
from this new technology (Casas et al., 2008). Ac-
tivity recognition aims to recognize the actions and
goals of one or more agents from a series of obser-
vations on the environmental conditions. Due to its
many-faceted nature, research addressing the recog-
nition problem in smart environments refer to activ-
ity recognition as plan recognition, which relates be-
haviours to the performer’s goals. The plan recogni-
tion problem has been an active research topic (Au-
gusto and Nugent, 2006) for a long time and still
remains very challenging. The keyhole, adversarial
or intended plan recognition problem (Geib, 2007)
is usually based on a probabilistic-logical inference
for the construction of hypotheses about the possible
plans, and on a matching process linking the observa-
tions with some activity models (plans) related to the
application domain.

Prior works have been done to use sensors, like
radio frequency identification (RFID) tags attached
to household objects (Philipose et al., 2004), to rec-
ognize the execution status of particular types of
activities, such as hand washing (Mihailidis et al.,
2007), in order to provide assistive tasks like, for in-
stance, reminders about the activities of daily living

(ADL) (Pollack, 2005). However, most of these re-
searches has largely focused on probabilistic models.
One limitation of probability theory is that it is in-
sufficient to handling imperfect information, which is
impressed of uncertainty and imprecision. In the con-
text of cognitive assistance, where the human agent
is characterized by erratic behaviours, complete ig-
norance about the specific dependence between two
actions cannot be represented with the classical prob-
ability theory. The possibility theory (Dubois and
Prade, 1988), an alternative to probability theory, is
an uncertainty theory devoted to the handling of in-
complete information. By using a pair of dual set-
functions (possibility and necessity measures) instead
of one, this theory allows us to capture partial igno-
rance, so that it is possible to represent partial belief
about events. Also, it is more easier to capture partial
belief concerning the activities realization from hu-
man experts, since this theory was initially meant to
provide a graded semantics to natural language state-
ments (Zadeh, 1978).

At the Domus and LIAPA labs, we investigate
possibility theory to address this issue of recogniz-
ing behaviours classified according to cognitive er-
rors. These recognition results are used to iden-
tify the various ways a smart home may help an
Alzheimer’s occupant at early-intermediate stages to
carry out his ADLs. This context increases the recog-
nition complexity in such a way that the presumption
of the observed agent’s coherency, usually supposed
in the literature, cannot be reasonably maintained. We
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propose a formal framework for activities recogni-
tion based on description logic and possibility theory,
which transforms the recognition problem into a pos-
sibilistic classification of activities. The possibility
and necessity measures on behaviour hypotheses al-
low us to capture the fact that, in some case, erroneous
behaviours concerning the realization of activities can
be equally possible than normal behaviours. Hence,
in a complete ignorance setting, both behaviour types
are fully possible, where each type is not necessarily
the one being carried out. So, unlike probability the-
ory, possibility theory is not additive.

The paper is organized as follows. Section 2
presents our new possibilistic recognition model.
Section 3 presents an overview of related work. Fi-
nally, we conclude the paper by outlining future plans
with this work.

2 POSSIBILISTIC ACTIVITY
RECOGNITION MODEL

In our model, the observer agent has knowledge
concerning the resident’s environment, which is
represented by using a formalism in description
logic(DL) (Baader et al., 2007). DL is a family
of knowledge representation formalisms that may be
viewed as a subset of first-order logic, and its expres-
sive power goes beyond propositional logic, although
reasoning is still decidable. By using the open world
assumption, it allows us to represent the fact that the
environment is partially observable. The observation
of the environment’s state with sensors allows us to
obtain the low–level contextC of the environment.
Since, the observation can be partial, this context can
represent a subset of the environment’s state spaceS
(C⊆ S), where states of this subset share some com-
mon environmental properties. For instance, the con-
text where the patient is in the kitchen, the pantry door
is open, and the pasta box is in the pantry includes
several possible states. Also, a set of contexts can be
a partition of the environment’s state space.

In order to infer behavioural hypotheses about the
realization of activities by an observed patient, the no-
tion of possibilistic actions must be formalized, since
activities are carried out by performing a sequence of
actions that affect the environment’s state. Apossi-
bilistic actionon the set of environment’s statesS is a
nondeterministic action where the transitions between
states are quantified with a possibility distribution.
Definition 2.1 (Possibilistic Action). A possibilistic
actiona is a tuple(Cprea,Cposa,πinita,πtransa), where
Cprea andCposa are context sets andπinita andπtransa
are possibility distributions.

Cprea is the set of possible contexts before the ac-
tion occurs (pre–action contexts),Cposa is the set of
possible contexts after the action occurs (post–action
contexts),πinita is the possibility distribution onCprea

that an environment’s state in a particular context al-
lows the action to occur, andπtransa is the transition
possibility distribution between contexts inCprea and
Cposa if the action does occur.

The action library is represented with an ontology,
where the set of possible actionsA is partially ordered
with the action subsumption relation⊑A , which can
be seen as an extension of the concept subsumption
relation⊑ of DL (Baader et al., 2007).

Proposition 2.2(Action subsumption). Let a, b ∈ A
be two action tuples(Cprea, Cposa, πinita, πtransa) and
(Cpreb, Cposb, πinitb, πtransb). If an actionb is sub-
sumed by an actiona, denoted byb⊑A a, then for
all contextd in Cpreb, there exists a contextc in Cprea

whered ⊑ c, πinitb(d) 6 πinita(c), and for each con-
texte in Cposb, there exists a contextf in Cposa where
e⊑ f andπtransb(e|d)6 πtransa( f |c).

For instance, theOpenDooraction subsumes the
OpenPantryDooraction, where theOpenDooris at
least as possible thanOpenPantryDoorin contexts
where OpenPantryDoorcan be carried out or ob-
served.

With this action library, the recognition agent
evaluates the most possible action that can explain
the changes observed in the environment. Anobser-
vation at a timet, denoted byobst , consists to a set
of DL assertions describing, according to the sensors,
the environment’s state resulting from an action re-
alization. Since the observationobst can be partial,
multiple contextsci can be entailed by this observa-
tion (obst |= ci), which influences the possibility and
necessity measures of observation for each action.

To determine such possibility and necessity mea-
sures of action observation, a possibility distribution
on the action library concerning the possibility that a
particular action was observed according to the previ-
ous action prediction possibilities (possibility that an
action will be the next one carried out) and the cur-
rent action recognition possibilities (possibility that
an action is the one that was carried out) must be eval-
uated. Theaction prediction possibility distribution
at a timet, πpret , is obtained by selecting, for each
actiona∈ A , the maximum possibility value among
the action initiation possibilitiesπinita(ci) for the pre–
action contextsci ∈Cprea entailed by the observation
obst . Theaction recognition possibility distributionat
a timet, πrect , is obtained by selecting, for each action
a∈ A , the maximum possibility value among the ac-
tion transition possibilitiesπtransa(ci ,c j) for the pre–
contextsci ∈Cprea entailed by the previous observa-
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tion obst−1 and the post–contextsc j ∈Cposa entailed
by the current observationobst . Since the prediction
possibilities must be taken into account when evalu-
ating the action observation possibilities, theobser-
vation addition operator⊕obs is used on the previous
prediction possibility distributionπpret−1 and the cur-
rent recognition possibility distributionπrect to com-
pute the current action observation possibility distri-
bution πobst . The⊕obs operator selects, for each ac-
tion a ∈ A , the maximum possibility value between
the prediction possibilityπpret−1(a) and the recogni-
tion possibilityπrect (a), in order to obtain the obser-
vation possibilityπobst (a).

So, for each observationobst , we evaluate theac-
tion observation possibility distributionπobst , which
allows us to select the most possible observed action
at the timet, according to the possibility and neces-
sity measures of action observation,Πobst andNobst .
Those measures, which allow us to indicate the possi-
bility Πobst (Act) and necessityNobst (Act) that an ac-
tion a in a subsetAct⊆ A ({a} is also a subset) was
observed by the observer agent, according to the en-
vironment’s state describedobst , are given by:

Πobst (Act) = max
a∈Act

(πobst (a)) , (1)

Nobst (Act) = max
{b∈A }

(πobst (b))−Πobst(Act), (2)

= min
a/∈Act

(

max
{b∈A }

(πobst (b))−πobst(a)

)

. (3)

Πobst (Act) is obtained by taking the maximum value
among the observation possibilitiesπobst (a) of the ac-
tions a in Act. Nobst (Act) is obtained by taking the
minimum possibility value among the values result-
ing from the subtraction of the maximum value in
the distribution (since it can be not normalized, i.e. at
least one value at 1) with the observation possibilities
πobst (a) of the actionsa not in Act (a∈ Act).

By obtaining the possibility and necessity mea-
sures for each action, we can then select the most pos-
sible observed actionat that can explain the changes
in the environment’s state, described by the obser-
vation obst , resulting from the realization of an ac-
tion at time t. An observed actionat time t, de-
noted byat , is obtained by selecting the most pos-
sible and necessary actiona ∈ A according to the
Πobst (a) and Nobst (a) values. If there is more than
one most possible action, the least common subsumer
action, according to the action subsumption relation,
of this action subset is selected as the observed ac-
tion at . For instance, if the most possible actions are
OpenTap, OpenColdTapandOpenHotTap, then the
OpenTapaction is selected since it subsumes both
OpenColdTapandOpenHotTap. The new observed
actionat is sent to the behaviour recognition agent,

which uses the sequence of observed actions to in-
fer behaviour hypotheses concerning the realization
of the patient’s activities.

Such activities are defined as plan structures,
which consist of a planned sequence of actions that
allows to accomplish the activity’s goals.

Definition 2.3 (Activity) . An activity α is a tuple
(Actα,◦α,Crelα ,πrelα), whereActα ⊆ A is the activ-
ity’s set of actions, which is partially ordered by a se-
quence relation◦α ∈ Actα×Actα× T × T , whereT
represents a set of time values,Crelα is the set of pos-
sible contexts related to the activity realization, and
πrelα is the possibility distribution that a context is re-
lated to the execution of the activity.

The use of time values allow us to describe the
minimum and maximum delays between the real-
ization of two actions. So, the◦ relation, which
is transitive, can be seen as an ordering relation-
ship with temporal constraints between two actions
in the activity plan. For instance, the activity
WatchTvcan have an activity plan composed of the
actionsSitOnCouch, OpenTvandCloseTvand the
sequence relations(SitOnCouch, OpenTv, 0, 5) and
(OpenTv, CloseTv, 5, 480) (do not watch tv for more
than 8 hours) , where the time values are in minutes.

By using the observationobst , we evaluate, for
each activity planα in the plan libraryP , the pos-
sibility value that the current observed environment’s
state is related to the realization of an activityα. The
activity realization possibility distribution is obtained
by taking, for each activity planα ∈ P , the maxi-
mum possibility value among the context possibilities
πrelα(ci) for the contextsci ∈Crelα entailed by the ob-
servationobst .

As previously mentioned, the most possible action
at that could explain the changes in the environment’s
state according to the observationobst resulting from
an action realization is sent to the behaviour recog-
nition agent, which uses the sequences of observed
actions to generate hypotheses concerning the be-
haviour of the patient when he performs some activi-
ties. This sequence of observed actions forms anob-
served plan Pobst , which consists to a totally ordered
set(a1, . . . ,ai , . . . ,at), where eachai is the most possi-
ble and necessary observed action for the observation
obsi . For instance, the observed plan((OpenDoor, t =
0,3), (EnterKitchen, t = 1,4)) indicates that forobs0,
theOpenDooraction was observed at a timestamp of
3 minutes after the start of the recognition process,
and forobs1, theEnterKitchenaction was observed
one minute later (timestamp of 4 minutes).

Since the current observed behaviour can contain
partial or complete coherent realizations of some ac-
tivity plans, we must define the notion ofpartial ex-
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ecution path. A partial execution pathPathExej for
an activity planα is a subset of the observed plan
Pobst , where each observed action in the partial path
is associated to an action in the activity planα. Also,
the observed actions in the partial pathPathExej must
represent a coherent realization of a part of the activ-
ity plan, where the sequence and temporal constraints
defined in the activity plan must be respected accord-
ing to the observed actions in the partial path. For
instance, for the observation plan((SitOnCouch, t =
0,4), (OpenElectricalAppliance, t = 1,5)), possi-
ble partial paths for theWatchTvactivity plan could
be theSitOnCouchaction only or theSitOnCouch
action followed by theOpenElectricalAppliance
action (sinceOpenElectricalAppliancesubsumes
OpenTv).

At each new observed actionat added to the ob-
served planPobst , the set of partial execution paths
PathExe is updated by extending, removing, or adding
partial paths. A partial path can be extended if the new
observed actionat subsumes one of the next possible
actions in the activity plan and if the extended partial
path respects the constraints in the activity plan. If
we can extend a partial path, we must keep a copy of
the original partial path, since the new observed ac-
tion could be not associated to the realization of the
partial path’s activity plan. A partial path is removed
if the maximum delays for the next possible action in
the activity plan are exceeded. A partial path is added
is the observed actionat subsumes one of the first ac-
tions in the activity plan.

The set of partial execution pathsPathExe is then
used to generate behavioural hypothesesB , according
to the observed planPobst , concerning the observed
behaviour of the patient when he realize some activi-
ties. A behaviour hypothesis b∈ B for an observed
plan Pobst is a subset of the partial execution path
setPathExe that respects the following conditions: (i)
each partial path is associated with a different activ-
ity, (ii ) some observed actions can be shared between
partial paths, (iii ) each partial path must at least have
one action that is not shared. It should be noted that it
is possible that some observed actions in the observed
plan are not in the partial paths.

A behaviour hypothesis isnormal, denoted bybN,
when each observed action in the observed plan is as-
sociated to at least one partial path. A normal be-
haviour represents a coherent realization, which can
be partial or complete, of some activities by the pa-
tient. A behaviour hypothesis iserroneous, denoted
by bE, when some observed actions in the observed
plan are not associated to a partial path. An erroneous
behaviour represents an erroneous realization of some
activities, while some others activities can still be car-

ried out in a coherent way.
From this point, the behaviour recognition agent

has determined the sets of plausible normal and er-
roneous hypotheses,BN andBE, concerning the be-
haviour of the observed patient. In order to circum-
scribe the behaviour hypothesis set before sending
theses hypotheses to an assistance agent, the possi-
bility and necessity measures concerning the obser-
vation of each behaviour must be evaluated. Such
measures are obtained from the behaviour possibil-
ity distribution, which also need the partial execution
path possibility. Thepartial execution path possibility
distributionat timet, πExet , is obtained by selecting,
for each partial pathp ∈ PathExe, the maximum val-
ues between the minimum action prediction possibil-
ity among the next possible actions and the minimum
value among the action observation and activity pos-
sibilities for each observed action in the partial path.
This partial path possibility distributionπExet is then
used to evaluate the behaviour possibility distribution
πbevt . The behaviour possibility distributionπbevt is
obtained by selecting, for each behaviour hypothe-
sis b ∈ B , the maximum possibility value between
the minimum partial path possibility for the partial
paths of the behaviour, the minimum action observa-
tion possibility for the observed actions in the partial
paths of the hypothesis, and the minimum action ob-
servation possibility for the observed actions not in
the partial paths of the hypothesis.

The behaviour possibility distributionπbevt allows
us to evaluate the possibility and necessity measures
of behaviour observation,Πbevt and Nbevt . Those
measures, which allow us to indicate the possibility
Πbevt (Bev) and necessityNbevt (Bev) that a behaviour
b in a subsetBev⊆ B is the behaviour of the observed
patient according to the observed planPobst , are given
by:

Πbevt (Bev) = max
{b∈Bev}

(πbevt (b)) , (4)

Nbevt (Bev) = max
{c∈B }

(πbevt (c))−Πbevt (Bev) (5)

= min
{b/∈Bev}

(

max
{c∈B }

(πbevt (c))−πbevt (b)

)

. (6)

Πbevt (Bev) is obtained by selecting the maximum be-
haviour possibility among the behavioursb in the be-
haviour subsetBev⊆ B . Nbevt (Bev) is obtained by
selecting the minimum possibility among the values
resulting from the subtraction of the maximum pos-
sibility in the distribution with the behaviour possi-
bilities πbevt (b) of the behaviour hypothesesb not in
Bev (b ∈ Bev). This allows to represent an interval
of confidence[Nbevt (Bev), Πbevt (Bev)] concerning the
possibility that a hypothesis behaviourb∈ Bevis the
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observed behaviour of the patient according to the ob-
served planPobst . So, after each observationobst , the
behaviour recognition agent selects the most possible
and necessary behaviour hypotheses and sends them
to an assistance agent, which will use it to plan an
assistive task if needed.

By using the formal tools previously presented,
we can formulate the Algorithms 1 and 2, which de-
scribe the principal steps in the recognition process.

Algorithm 1 Action recognition.

Input:
obst , obst−1 previous and current observations
πpret−1 previous action prediction distribution
C context set
Ct−1 previous entailed contexts
A , P action and plan libraries

Output:
at current recognized observed action
πpret , πrect , πobst , πrelt current action prediction, action
recognition, action observation, and activity possibility
distributions

1: Ct ← evaluateEntailedContexts(C ,obst )
2: πpret ← evaluateActionPrediction(A , Ct )
3: πrect ← evaluateActionRecognition(A , Ct , Ct−1)
4: πobst ← observationAddOperator(πpret−1 , πrect )
5: at ← selectObservedAction(A , πobst )
6: πrelt ← evaluateActivityRelated(P , Centail)

To recognize the behaviour of the observed patient
after the realization of an action at a timet, the recog-
nition agent uses the environmental observationsobst ,
to generate behavioural hypotheses that could explain
the sequence oft observed actions. According to the
Algorithm 1, the contextsCt−1 andCt that are entailed
by the previous and current observationsobst−1 and
obst are used to evaluate the action observation possi-
bility distribution πobst on the action libraryA by us-
ing the observation addition operator⊕obson the pre-
vious action prediction possibility distributionπpret−1

and the action current recognition possibility distri-
bution πrect . This action observation possibility dis-
tribution πobst is then used to evaluate the action ob-
servation possibility and necessity measuresΠobst and
Nobst , which are used, in conjunction with the action
subsumption relation, to select the most possible and
necessary observed actionat . Also, the activity pos-
sibility distribution πrelt on the activity plan library
P , which indicates the possibility that the observed
environment’s state described inobst is related to a
specific activity realization, is evaluated.

According to the Algorithm 2, the observed plan
Pobst , which include the new observed actionat , is
used to generate a set of hypothesesB concerning
the observed behaviour of the patient. The observed
plan Pobst is used to update the set of partial execu-

Algorithm 2 Behaviour recognition.

Input:
at current recognized action observed
Pobst−1 previous observed plan
A , P action and plan libraries
πpre, πobs, πrel sets of possibility distributions
PathExe partial execution path set

Output:
Pobst current observed plan
PathExe updated partial path set
B current behaviour hypotheses
πbevt current behaviour possibility distribution
Bt set of most possible behaviour hypotheses

1: Pobst ← appendObservedAction(at , Pobst−1)
2: PathExe← updatePartialPathSet(PathExe,P , Pobst )
3: B ← generateBehaviourHypotheses(PathExe, Pobst )
4: πExet ← evalPartialPath(PathExe,Pobst , πpre, πobs, πrel)
5: πbevt ← evaluateBehaviourPossibility(B , πExet , πobs)
6: Bt ← selectBehaviourHypotheses(B ,πbevt )

tion pathsPathExe, where each partial path is a par-
tial (or complete) coherent realization of an activity
plan. The set of behaviour hypothesesB is obtained
by selecting subsets ofPathExe that respect the con-
ditions in order to be a behaviour hypothesis. Each
behaviour hypothesisb ∈ B can be a coherent real-
ization of some activities (b ∈ BN) or an erroneous
realization of some activities (b ∈ BE), according to
its partial path subset and the observed plan. The be-
haviour possibility distributionπbevt is then evaluated
by using the previous defined possibility distributions
(πpre, πobs, πrel) and the partial execution path pos-
sibility distribution πExet . This behaviour possibility
distributionπbevt allows us to rank the set of behaviour
hypothesesB according to the behaviour possibility
and necessity measuresΠbevt andNbevt . The recogni-
tion agent sends the most possible behaviour hypothe-
sesBt to an assistance agent, which plans an assis-
tance task if needed.

3 RELATED WORK

A number of researchers have investigated activity
recognition as plan recognition. Logical based ap-
proaches (Kautz, 1991) define a theory using first–
order logic, in order to formalize the recognition
activity into an inference process. But to allevi-
ate to the equiprobability problem of logical models,
where an hypothesis cannot be privileged within the
set of possible activities, probabilistic models (Liao
et al., 2004; Philipose et al., 2004), mainly Bayesian
or Markovian based, or hybrid models (Avrahami-
Zilberbrand and Kaminka, 2007; Geib, 2007; Roy
et al., 2009), that use logical and probabilistic reason-
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ing, were proposed. The limit of the vast majority of
these previous approaches is that they were focused
exclusively on the concept of probability where the
inference itself requires large numbers of prior and
conditional probabilities. For example, in the context
of assistive cognition within smart homes, requiring
humans to specify the habitat’s object involvement
probabilities is time consuming and difficult when
we consider all the potential objects involved in each
stage of an activity, given the large numbers of activ-
ities performed. Moreover, the probabilities do not
allow us to represent complete ignorance; besides,
there are numerous situations where it is not possi-
ble to give the agent probabilities based on statistical
measures, but only qualitative information provided
by experts or deduced from previous experiences. Our
proposed model, by using possibility theory, allows to
mitigate those limitations by taking into account par-
tial belief and by handling the behaviour hypotheses
as a partially ordered set.

4 CONCLUSIONS

This paper has presented a formal framework of ac-
tivities recognition based on possibilistic DL as the
semantic model of the observed agent’s behaviour.
This framework constitutes a first step toward a more
expressive ambient agent recognizer, which will fa-
cilitate to support the fuzzy and uncertainty con-
straints inherently to the smart environment. Cur-
rently, the proposed is under implementation in the
software framework of our smart home infrastructure,
which consists of a standard apartment with a kitchen,
living room, dining room, bedroom, and bathroom,
equipped with multiple sensor devices. Moreover, the
next logical step consists in conducting an extension
of this framework in order to simultaneously deal with
the vagueness of an activity’s duration and the noises
of the sensors. Finally, we clearly believe that consid-
erable future work and large scale experimentations
will be necessary, in a more advanced stage of our
work, to help evaluate the effectiveness of the model
in the field.
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