
DISTRIBUTED PLANNING THROUGH GRAPH MERGING

Damien Pellier
Université Paris Descartes University, Laboratoire d’Informatique Paris Descartes, 45, rue des Saint Père, Paris, France

Keywords: Distributed problem solving, Cooperation, Coordination, Multi-agent planning, Planning graphs technics.

Abstract: In this paper, we introduce a generic and fresh model for distributed planning called “Distributed Planning
Through Graph Merging” (DPGM). This model unifies the different steps of the distributed planning process
into a single step. Our approach is based on a planning graph structure for the agent reasoning and a CSP
mechanism for the individual plan extraction and the coordination. We assume that no agent can reach the
global goal alone. Therefore the agents must cooperate, i.e., take in into account potential positive interactions
between their activities to reach their common shared goal. The originality of our model consists in considering
as soon as possible, i.e., in the individual planning process, the positive and the negative interactions between
agents activities in order to reduce the search cost of a global coordinated solution plan.

1 INTRODUCTION

The problem of plan synthesis achieved by a group
of autonomous agents in order to reach a common
goal is one of the central problem of distributed arti-
ficial intelligence. Increasingly new application areas
can benefit from this research domain: e.g., robotics
(Sariel et al., 2008), web services (Pistore et al., 2005)
when considering actions as services and plans as
composition schemes, decision making (Wilkins and
desJardins, 2001), where planning process is viewed
as an expert able to guide the search of a plan or a pro-
cedure. In all these applications, the implementation
of a centralized approach of planning is often impos-
sible due to technical constraints, e.g., in robotics, no
robot has enough computational resources to plan for
the whole robots team, or organizational constraints,
e.g., two concurrent web services cannot share impor-
tant business data.

Classically, multiagent planning (Durfee, 2000) is
defined as a planning process involving a group of
agents, i.e., a process that takes as input the actions
models of the agents, a description of the state of
the world known by the agents, and some objectives
and returns an organized collection of actions whose
global effect, if they are carried out and if they are
performed as modeled, achieves the objectives. Such
a definition is correct, but hides the complexity of the
different steps of a distributed planning process. Ac-
tually, a multiagent planning process can be divided
into five separate steps: (i) a task decomposition step

where the agents attempt to refine the initial task such
that there is a matching with the set of the agents capa-
bilities, (ii) a subtask delegation step where the agents
attempt to assign sub-tasks to each other such that the
capabilities offered are sufficient for the capabilities
required, (iii) an individual planning step where each
agent tries to find a plan to solve the task allocated
in step 2, (iv) an individual plans coordination step
where the agents coordinate their activities in order to
conserve the functional integrity of the system, i.e.,
ensure that the goal of each agent stay reachable in
the global context, and finally (v) a joint plan execu-
tion step where the joint plan build by the agents is
executed in a coordinated way. Although this decom-
position is convenient to explain the problem of mul-
tiagent planning, experiences show that the five steps
introduced are interlaced: (i) step 1 and 2 are often
merged due to the existing link between the agents
capabilities and the task decomposition, (ii) the joint
plan execution involves replanning due to a failure
and force into backtrack to step 1, 2 and 3, and (iii)
the coordination can be executed either before, after
or during the planning. This remark brings to light
the lack of work to merge and articulate the different
steps of multiagent planning.

In order to answer in part to this challenge, we
introduce a multiagent planning model, called “Dis-
tributed Planning through Graphs Merging” (DPGM),
that covers the four first steps of the multiagent plan-
ning process previously described. Our model fo-
cuses on generic and completely distributed mecha-

128
Pellier D. (2010).
DISTRIBUTED PLANNING THROUGH GRAPH MERGING.
In Proceedings of the 2nd International Conference on Agents and Artificial Intelligence - Agents, pages 128-134
DOI: 10.5220/0002702601280134
Copyright c© SciTePress



nisms in order to allow a group of agents to jointly
elaborate a global shared plan and perform a collec-
tive goal. We assume that no agent can reach the goal
alone. By elaboration, we mean plan production and
not instantiation of predefined global plan skeletons
(D’Inverno et al., 2004) or distributed coordination of
individual plans based on planning techniques (Iwen
and Mali, 2002; Tonino et al., 2002; Cox and Dur-
fee, 2005). This is achieved by composing agents ca-
pabilities, i.e., the actions they can execute, for the
benefit of the group. At the team’s level, agents ex-
change constraints about their own activities based
on the structure of planning graph (Blum and Furst,
1997). At the agent’s level, each agent merges the
constraints received from the others into its own plan-
ning graph and takes advantage of these constraints in
order to extract an individual plan conflict free based
on a CSP technique (Kambhampati, 2000).

The rest of this paper is organized as following:
section 2 proposes an overview of the model and its
primary definitions, and finally section 3 introduces
the dynamic of the distributed planning through graph
merging approach.

2 PRIMARY DEFINITIONS

Let us first define the primary definitions of DPGM
based on (Blum and Furst, 1997). Operators are de-
fined in STRIPS (Finke and Nilsson, 1971). We are
dealing here only with classical planning assumption,
i.e., deterministic, static, implicit time and fully ob-
servable operators. We note precond(o), the precon-
ditions of an operator o, and respectively effects+(o)
the positive effects of o and effects−(o) the negative
effects of o. An action is a ground instance of an op-
erator. We say that two actions a and b are dependent
if: a deletes a precondition of b: the orderings a ≺ b
will not be permitted; or a deletes a positive effect of
b: the resulting state will dependent on their order; or
symmetrically for negative effects of b with respect to
a: b deletes a preconditions on a positive effect of a.

A planning graph G is a directed, leveled graph
organized in an alternated sequence of propositions
and actions 〈P0,A0,P1, . . . ,Ai−1,Pi〉. The first level of
the planning graph is a proposition level P0 that de-
fines the initial belief state of an agent. The levels Ai
with i > 0 are action levels that define the set of ac-
tions applicable from the proposition levels Pi and the
levels Pi+1 define the proposition produced by the ac-
tions of Ai. Edges of planning graph explicitly repre-
sent relations between actions and propositions. Ac-
tions in an action level Ai are connected by precondi-
tion edges to their preconditions in level Pi, by add-

edges to their positive effect in level Pi and by delete
edges to their negative effects in level Pi. At each level
Pi, every proposition p ∈ Pi are propagated to the next
level Pi+1 by a dummy action no-op that has a single
precondition and a single positive effect p.

Two actions a and b in level Ai are mutex if either
a and b are dependent or if a precondition of a is mu-
tex with a precondition of b. Two propositions p and
q in Pi are mutex if every action in Ai−1 that has p
as a positive effect (including no-op actions) is mutex
with every action that produces q. The set of mutual
exclusion relations at a proposition level Pi and action
level Ai respectively µPi and µAi.

A fixed-point level in a planning graph G is a level
i such that for ∀ j > i, level j of G is identical to level
i, i.e., Pi = Pj, µPi = µPj, Ai−1 = A j−1 and µAi−1 =
µA j−1.

An agent α is a couple α = (O,s0) where O is the
set of operators that describes the capabilities of α,
and s0 is its initial agent state.

Furthermore, we introduce precond(α) that de-
fines the set of atoms used in the precondition of the
agent operators of α, effects+(α) and effects−(α) that
represent respectively the set of atoms used in the pos-
itive and negative operators effects of α. We assume
that these sets of atoms constitute the public part of
an agent, i.e., agents can access anytime to this infor-
mation from the others during the planning process.

An action ai contained in the planning graph of
an agent α at level i threats the activity of an agent
β iff a proposition p ∈ effects−(ai) is unifiable with a
precondition or a positive effect of an operator o∈Oβ.

An action ai contained in the planning graph of
an agent α at level i promotes the activity of β iff
p ∈ effects+(ai) is unifiable with a precondition or a
positive effect of o ∈ Oβ.

The threat definition expresses the classical nega-
tive interactions between agents. If an agent executes
an action that deletes a property needed by another
agent, their activities are confrontational. The pro-
motion definition formulates the positive interactions
between agents. If an agent produces a property use-
ful to another agent, i.e., that is needed to execute one
of its own actions, their activities reinforce each other.

A multiagent planning problem P is a tuple P =
(A ,g) where A is the set of agents that must solve the
problem and g defines the goal, i.e., a set of proposi-
tions that has to be satisfied by the agents (see Fig. 1).

The individual goal gα of an agent α for
a multiagent planning problem P = (A ,g)
with α ∈ A is defined by: gα = {p ∈
g | p is unifiable with an effect q ∈ effects+(α)}.
The goal decomposition relies on the fact that an
agent can only reach predicates defined in the positive

DISTRIBUTED PLANNING THROUGH GRAPH MERGING

129



t2t1
l2l1

c2c1

Figure 1: A simple logistic example with three agents: the
agents ag1 and ag2 can load and unload containers and
the agent ag3 can move containers. The global goal to
reach is g = {at(c1, l2),at(c2, l1),at(t1, l2),at(t2, l1)}. Ini-
tial states of the agents: s1

0 = {at(c1, l1),at(t1, l1)}, s2
0 =

{at(c2, l2),at(t2, l2)}, s3
0 = {at(t1, l1),at(t1, l2)}.

effects of its operators.
A plan πα = 〈Aα

0 , . . . ,Aα
n 〉 is an individual solu-

tion plan to a planning problem P = (A ,g) for an
agent α ∈ A iff each Aα

i ∈ πα is independent, and
each Aα

i is applicable to a state sα
i defining a sequence

〈sα
0 , . . . ,sα

n 〉 such that gα ⊆ sα
n .

A plan Π = 〈A0, . . . ,Ak, . . . ,An〉 is a global solu-
tion for a multiagent planning P = (A ,g) iff: (i) the
union of the individual goal gα with α ∈ A is equal
to g, (ii) each agent α ∈ A has an individual plan
πα = 〈Aα

0 , . . . ,Aα
n 〉 to reach its individual goal gα, and

(iii) each actions set Ai =
⋃

Aα
i with α ∈ A is inde-

pendent.

3 DPGM ALGORITHM

The DPGM procedure performs a distributed search
close to iterative deepening, discovering a new part of
the search at each iteration (see Fig. 2). First, each
agent computes its individual goals and then enters in
a loop where it iteratively: (i) expands its planning
graph, (ii) merges threats and promotions from the
others, and finally (iii) searches backward from the
last level of its graph for an individual plan. If every
agent succeeds in extracting an individual plan for its
individual goal, then every agent tries to coordinate
its individual plans to each others. Otherwise, each
agent expands its graph one more time. The iterative
loop of graph expansion, graph merging, individual
plan search and coordination is pursued until either a
global solution plan is found or a failure termination
condition is met. Let us detail the algorithm and its
properties.

3.1 Global Goal Decomposition

First of all, each agent computes its individual goal,
i.e., the subset of the global goal that is unifiable with
an effect of its operators. If a part of the global goal

of the planning problem does not belong to any indi-
vidual goal of the agents, then the goal decomposi-
tion fails and the DPGM procedure ends. This failure
means that the global goal cannot be reached, since
a subset of the global goal cannot be produced by
at least one agent. Otherwise, agents go to the ex-
pansion step. Consider our example, the individual
goals of the agents ag1, ag2 and ag3 are as follow:
gag1 = {at(c2, l1)}, gag2 = {at(c1, l2)} and gag3 =
{at(t1, l2),at(t2, l1)}. Each proposition of the global
goal is assigned to at least one agent. Therefore, the
agents can pursue the expansion step of the DPGM
procedure.

3.2 Planning Graph Expansion

Let an agent α = (O,s0) such that O is a set of opera-
tors with no negated atom in their preconditions, and
s0 a set of propositions. Let gα be the individual goal
of α and A be the union of all ground instances of the
operators in O and of all no-op actions ap for every
proposition p of A. A planning graph for α expanded
up to level i is a sequence of levels and mutex pairs:
G = 〈P0,µP0,A0,µA0, . . . ,Ai−1,µAi−1,Pi,µPi〉. Start-
ing initially from P0 = s0 and µP0 = /0, each agent ex-
pands its planning graph G from level i to level i+1 as
the expansion procedure of Graphplan. Then, it sends
to the concerned agents the threats and the promotions
contained in its planning graph. The figure 3 at level 1
shows the planning graphs of the agents ag1, ag2 and
ag3 after the first expansion. For instance, the action
move(t1,l1,l2) of ag3 at level A0 threats the activity of
ag1 since it deletes the precondition at(t1,l1) needed to
apply load and unload of ag1, and promotes the activity
of ag2 since it adds the effect at(t1,l2) needed to apply
load and unload of ag2.

3.3 Planning Graph Merging

Each agent adds to its planning graph the threats and
the promotions received from the others at the current
expansion level. For instance, the action move(t1,l1,l2)
that appears in the action level A0 of the planning
graph of ag3 is added as a threat at level A0 of the
planning graph of ag1. Take good note that only pre-
conditions and effects of move(t1,l1,l2) that are unifi-
able with the atoms of the operators of ag1 are added
in its planning graph. In fact, the other propositions
have no meaning for ag1, unnecessarily grow the size
of its planning graph and hinder the extraction of an
individual plan. If an added action has an empty set of
preconditions, we add a dummy precondition to keep
link from action level to proposition level (see action
load(c2,t2,l2) at level A0 Fig. 3(a) and its precondition

ICAART 2010 - 2nd International Conference on Agents and Artificial Intelligence

130



FailureExpansion

A subset of the goal 
proposition cannot be assigned 

to the agents

An agent fails to 
extract an 

individual solution 
plan

An agent needs a 
new expansion

An agent cannot find any 
individual solution plan 

Coordination

The coordination of 
the indididual 

solution plans fails

Individual Plan 
Extraction

An agent reaches its planning 
graph fixed point without 

containing its individual goal

P = (A, G)

All agents have a planning graph that 
may contains an individual solution plan

All agents exchanges their threats and 
promotions

All agents have an individual 
solution for their individual goal

Coordinated 
Individual 

Solution plan

Each agent expands its planning graph 

Planning Graph 
Merging

All agents have a 
coordinated 

individual solution 
plan

Individual Goal 
Computation

Figure 2: Organization of the DPGM procedure.

ld-pre). Then, each agent completes it graph expansion
based on the new actions introduced at the current ex-
pansion level. From now on, the planning graphs of
the agents may contain actions possibly executed by
the other agents. The agents must now check if they
are able to reached collectively the global goal and
try to search for an individual plan or if they need to
expand their planning graph one more time.

First, each agent α broadcasts the result of its
graph merging. If its individual goal gα is included in
the proposition level Pi of its planning graph and gα

is mutex free at level i, i.e., gα ∈ Pi and gα∩µPi = /0,
then α has a planning graph that may contain an in-
dividual plan of length i to reach its goal gα. If this
condition is met, the merging is a success, otherwise a
failure. Note that failure happens in two cases: (i) the
ending condition of Graphplan is met (a new expan-
sion to level i+1 will not allow α to find an individual
plan) or (ii) its goals are not in Pi or not mutex free (a
new expansion to level i + 1 may allow α to find a
solution).

Second, each agent gathers merging results from
the other agents. If no agent fails, each agent has a
planning graph which may contain an individual plan
and tries to extract an individual plan. Now suppose
that an agent fails because its planning graph reaches
its fixed-point without containing its individual goal.
The DPGM procedure fails because a subset of the
global goal is definitively unreachable. Finally, if
no previous condition holds, the agents try to expand
their planning graphs to level i + 1. In order to il-
lustrate the interlacing of expansion and merging, the
figure 3 depicts the planning graphs of the agents ag1,
ag2 and ag3 obtained at level 3: gray boxes are threats

at t1 l1 

at c1 l1 

in t1 c1 

at t2 l1 

in t2 c1 

at t1 l1 

at c1 l1 

in t1 c1 

at t2 l1 

in t2 c1 

in t2 c2 in t2 c2 

at c2 l1 at c2 l1 

P0 A0 P1 A1 A2 P3P2

mv-premv-pre

ld-pre ld-pre
move t2 l2 l1

load c2 t2 l2 load c2 t2 l2

move t2 l2 l1

load c2 t2 l2

move t2 l2 l1

move t1 l1 l2 move t1 l1 l2 move t1 l1 l2

at c1 l1 

at t1 l1 at t1 l1 

at c1 l1 
load c1 t1 l1

in t1 c1 

load c1 t1 l1

unload c1 t1 l1

at t2 l1 

load c1 t2 l1

load c1 t1 l1

unload c1 t1 l1

load c1 t2 l1

in t2 c2 

unload c2 t2 l1 unload c2 t2 l1

move t2 l1 l2 move t2 l1 l2

unload c2 t2 l2 unload c2 l2 l2

mv-premv-pre

move t1 l2 l1move t1 l2 l1

ld-pre ld-pre

(a) Graph of ag1: goal reached and mutex free at level 3.

at t2 l2

at c2 l2 

in t2 c2 

at t1 l2 

in t1 c2 

at t2 l2 

at c2 l2 

in t2 c2 

at t1 l2 

in t1 c2

in t1 c1 in t1 c1 

at c1 l2 at c1 l2 

P0 A0 P1 A1 A2 P3P2

mv-premv-pre

ld-pre ld-pre
move t1 l1 l2

load c1 t1 l1 load c1 t1 l1

move t1 l1 l2

load c1 t1 l1

move t1 l1 l2

move t2 l2 l1 move t2 l2 l1 move t2 l2 l1

at c2 l2

at t2 l2 at t2 l2 

at c2 l2 
load c2 t2 l2

in t2 c2

load c2 t2 l2

unload c2 t2 l2

at t1 l2 

load c2 t1 l2

load c2 t2 l2

unload c2 t2 l2

load c2 t1 l2

in t1 c1 

unload c1 t1 l2 unload c1 t1 l2

move t1 l2 l1 move t1 l2 l1

unload c1 t1 l1 unload c1 l1 l1

mv-premv-pre

move t2 l1 l2move t2 l1 l2

ld-pre ld-pre

(b) Graph of ag2: goal reached and mutex free at level 3.

at t2 l2 

at t1 l1 at t1 l1 

at t2 l2 
move t1 l1 l2

at t1 l2 
move t2 l2 l1

at t2 l1 

P0 A0 P1
at t1 l1 

at t2 l2 
move t1 l1 l2

at t1 l2 
move t2 l2 l1

at t2 l1 

A1

move t1 l2 l1

move t2 l1 l2

at t1 l1 

at t2 l2 
move t1 l1 l2

at t1 l2 
move t2 l2 l1

at t2 l1 

A2 P3

move t1 l2 l1

move t2 l1 l2

P2

(c) Graph of ag3: goal reached and mutex free at level 1.

Figure 3: Planning graphs of the agents at level 3: boxes at
Pi are propositions and boxes at Ai are actions; to simplify,
mutexes are not shown; solid lines are precondition-edges
and add-edges; dashed lines are del-edges; bold boxes show
goal propositions reached and mutex free.

and promotions; to simplify only relevant actions at
action level A2 are shown.

3.4 Individual Solution Plan Extraction

The search for a solution plan in a planning graph
used in DPGM is based on a constraints satisfaction
technique introduced by (Kambhampati, 2000). This
technique has two main advantages for our approach:
empirical results demonstrate that this technique im-
proves classical Graphplan’s performance on several
benchmark problems and it can be easily modified to
extract solution plans that respect coordination con-
straints as presented in the next section. The search
consists in two steps out of scope of this paper: a plan-

DISTRIBUTED PLANNING THROUGH GRAPH MERGING

131



ning graph encoding phase, where each agent encodes
its planning graph into a CSP problem (propositions
correspond to variables and actions to values), and a
solving phase based on specific techniques adapted to
Graphplan search such as explanation based learning,
dynamic variable ordering and forward checking.

Now, consider what happens when an agent suc-
ceeds or fails to extract an individual solution. As in
the merging step, the agents must check if they are al-
ways able to reach collectively the global goal. Thus,
each agent broadcasts the result of the extraction of
its individual plan. Then, based on this information,
the agents decide if the global goal is unreachable, if a
further expansion of their planning graph is needed, or
finally if they must continue and coordinate their indi-
vidual plans. Let consider the first case: an agent fails
to extract its individual plan and no further expansion
is possible. It means that a subset of the global goal
becomes unreachable. DPGM ends and returns fail-
ure. Consider now the second case: an agent can still
expand its planning graph. Each agent returns to the
expansion step and tries to find a solution at the next
level. Finally, if no previous case happens, DPGM as-
sures that all agents have an individual plan to reach
all the propositions of the global goal. Therefore, the
agents must try to coordinate their individual plans.

3.5 Distributed Plans Coordination

Coordination Constraints. Remember that DPGM
merging step adds new actions in the planning graphs
of the agents. These actions define threats and pro-
motions between their activities. Thus, individual
plans may contain actions that must be executed by
the other agents involved in the planning problem. In
other words, an individual plan can be viewed as a
conditional plan, i.e., a plan which could be executed
if certain conditions are met. In our case, these con-
ditions are defined as constraints of the form (a, i)
where a is an action and i the level where a must
be executed. Consider our example and the planning
graphs of ag1, ag2 and ag3 (see Fig. 3). The agents
ag1, ag2 can respectively extract one individual plan
at level 3:
πag1 = 〈load(c2, t2, l2),move(t2, l2, l1),unload(c2, t2, l1)〉
πag2 = 〈load(c1, t1, l1),move(t1, l1, l2),unload(c1, t1, l2)〉
More precisely, πag1 is executable if πag2 matches the
constraint (load(c2, t2, l2),0) and πag3 the constraint
(move(t2, l2, l1),1). Symmetrically, πag2 is executable
if πag1 matched the constraint (load(c1, t1, t1),0) and
πag3 the constraint (move(t1, l1, l2),1). As regards ag3,
it may extract several individual plans, but no one
needs the help of ag1 or ag2. Thus, ag3 individual
plans imply no constraint for the other agents:

πag3 = 〈{move(t2, l2, l1),move(t1, l1, l2)},no-op,no-op〉
π
′
ag3 = 〈move(t2, l2, l1),move(t1, l1, l2),no-op〉

π
′′
ag3 = . . .

We call this first kind of constraints requirement con-
straints because they express that an agent needs the
execution of some other actions at a specified time
step to execute its own plan.

Is this first kind of constraints enough to guaran-
tee the correctness of the individual plans in a dis-
tributed context ? Not quite. Because, individual
plans may contain commitment actions, e.g., ag1 is
committing itself to execute action unload(c2,t2,l1) at
time step 3. No constraint says that the mutex actions
of unload(c2,t2,l1) must not be executed at the same
level by the other agents. Hence, we have to consider
a second kind of constraints called commitment con-
straints of the form (a, i) that express that the mutex
actions of a specified action a must not be executed at
a given level i.

Coordination Mechanisms. In order to coordinate
their individual plans, each agent broadcasts the re-
quirement and the commitment constraints of its in-
dividual plan. Then it tries to integrate the received
constraints into its own individual plan. This integra-
tion follows a least commitment principle based on
two coordination mechanisms.

First, each agent checks if the received constraints
can be directly integrated in its individual plans pre-
viously computed. This checkout is quite simple and
does not need any replanning mechanism. Indeed,
the threats, the promotions and the mutexes are al-
ready in the agents planning graphs. Thus, agents
have all the needed information to decide if the con-
straints can be satisfied. Consider the constraints
related to πag1: the requirement constraints are
{(load(c2, t2, l2),0),(move(t2, l2, l1),1)} and the com-
mitment constraints are {(unload(c2, t2, l1),2)}. Let
the individual plan of ag2:

πag2 = 〈load(c1, t1, l1),move(t1, l1, l2),unload(c1, t1, l2)〉

and let us study how πag2 is refined to integrate the
constraints set from πag1. The requirement constraint
(load(c2, t2, l2),0) of ag1 can be satisfied because no
action of πag2 at level 0 is mutex with load(c2,t2,l2).
Hence, load(c2,t2,l2) is added to πag2 at level 0 to check
the requirement constraint of ag1. Consider now the
commitment constraint of ag1. Is unload(c2,t2,l1) mu-
tex with an action of πag2 at level 2 ? In our example
the answer is no. It means that πag2 holds the commit-
ment constraint of ag1: (unload(c2,t2,l1),2). But what
about the commitment constraint (move(t1,l1,l2), 1) of
ag1 and (move(t2,l2,l1), 1) of ag2 not yet considered ?

ICAART 2010 - 2nd International Conference on Agents and Artificial Intelligence

132



No previous individual plan of ag3 holds these con-
straints.

The second coordination mechanism consists in
adding coordination constraints as CSP constraints in
the CSP problem resulting from the planning graph
encoding. The key idea of this mechanism is to ex-
tract an individual plan that takes into account the in-
teractions between the activities of the agents. Re-
member that each agent encodes its planning graph in
a CSP where propositions correspond to variables and
actions to values. Thus, the question is how to encode
requirement and commitment constraints into CSP
constraints ? Let a coordination requirement con-
straint (a, i), this constraint cannot be directly added
to the CSP. Suppose that an agent must find an indi-
vidual plan satisfying the constraint (a, i) at level i.
It means that at least one proposition or variable at
level i must be supported by the action a. This con-
straint can be encoded as (p1 = a ∨, . . . ,∨ pn = a)
where p1, . . . , pn corresponds to propositions at level
i + 1. Let now consider a commitment constraint
(a, i), it says that no action mutex with a can be
executed at level i. Thus, the proposition variable
at level i + 1 cannot be supported by an action mu-
tex with a. This constraints is encoded as (p1 6=
µAi(a) ∧, . . . ,∧ pn 6= µAi(a) where p1, . . . , pn corre-
sponds to propositions at level i+1 and µAi(a) the set
of mutex actions of a at level i. Of course this coor-
dination mechanism is more time consuming than the
first one because it needs to extract a new individual
plan. In our example, this mechanism will be used
by ag3 to extract a coordinated individual plan satis-
fying the constraints (move(t1, l1, l2),1) from ag1 and
(move(t2, l2, l1),1) from ag2.

To conclude with our example, the final coordi-
nated individual plans obtained after the success of
the coordination step of DPGM are as follow (actions
executed by the other agents are not shown):

πag1 = 〈load(c1, t1, l1), /0,unload(c2, t2, l1)〉
πag2 = 〈load(c2, t2, l2), /0,unload(c1, t1, l2)〉

πag3 = 〈 /0,{move(t1, l1, l2),move(t2, l2, l1)}, /0〉

Coordination-Extraction Loop. Consider the case
where both previous coordination mechanisms fail to
coordinate individual plans. It does not mean that
there is no solution at the specified level. Indeed,
planning graphs may contain several individual plans
at a same level. Thus, the agents must return in the ex-
traction step to attempt to extract the other individual
plans and try again to coordinate the new ones until no
more individual plan can be proposed at the specified
level (otherwise until all individual plans on a given
planning graph length are exhausted).

First, let’s deal with the termination case of this
loop. If no other individual plan can be proposed at
the considered level, the agents can either return to
the expansion and try again to find a solution at the
next level, or fail if no further expansion is possible
(failure condition of the extraction step see previous
section for more details).

Second, assume that one or several agents can
compute new individual plans at the same level, the
agents return to the coordination step and coordinate
their new individual plans. In order to illustrate this
specific loop of extraction and coordination, consider
a generic example with three agents ag1, ag2 and ag3
and pick up at the point where the agents are about to
coordinate their new individual plans at the same level
for the second time, having respectively proposed
the plans πag1, πag2 and πag3 at iteration 1 and π′ag1,
π′ag2 and π′ag3 at iteration 2. Each agent broadcasts
the coordination constraints of their individual plans
and stores the received constraints (requirements and
commitments) into a table at each iteration. A possi-
ble constraints table is depicted Tab. 1. For instance,
the coordination process could succeed if the individ-
ual plan π′ag1 asserted by ag1 at iteration 2 matches the
constraints C12 from ag2 and C13 from ag3 or if π′ag1
matches the constraints C12 from ag2 and C23 from
ag3. In other words, π′ag1 is a coordinated individual
plan if it matches a combination of the coordination
constraints broadcasts by the other agents. In the first
case, π′ag1, πag2 and πag3 are the solution to the plan-
ning problem and in the second case, π′ag1, πag2 and
π′ag3.

Table 1: Example of constraints table at a specified level.

Iterations ag1 ag2 ag3
1 C11 C12 C13
2 C21 C22 C23
...

...
...

...
n Cn1 Cn2 Cn3

As a general rule, the coordination phase consists
in testing all combinations of constraint sets. In the
worst case, the number of combinations is exponen-
tial to the number of individual solution plans pro-
duced at a specified level. In practice, this complex-
ity is tractable because many set of constraints can be
pruned. Indeed, a constraint set can be pruned if it
contains two constraints (a1, i) and (a2, i) such that a1
and a2 are mutex. Moreover, the coordination pro-
cedure can record failed constraint sets into a table
as a distributed constraints nogood table, and checks
each constraints sets with respect to the recorded con-
straints. The efficiency of this mechanism can be very

DISTRIBUTED PLANNING THROUGH GRAPH MERGING

133



likely needed for some classes of problems and would
require a complexity analysis of the cost of nogood
caching. Finally, note that a constraints set is added to
the table only if the second coordination mechanism
fails to integrate a constraints set.

4 SUMMARY

In this paper, we introduce a fresh model for
distributed planning called “Distributed Planning
Through Graph Merging” (DPGM). This sound and
complete model unifies the different steps of the dis-
tributed planning process into a single one based on
planning graph structure used in centralized planning
for agent reasoning and CSP mechanisms for individ-
ual plan extraction and coordination. The key idea
is to incorporate as soon as possible, i.e., in the lo-
cal process of planning, the coordination step. The
underlying reason for that consists in considering as
soon as possible, i.e., in the individual planning pro-
cess, the interactions between agents activities in or-
der to reduce the search cost of a global coordinated
solution plan.

REFERENCES

Blum, A. and Furst, M. (1997). Fast planning through plan-
ning graph analysis. Artif. Intell., 90(1-2):281–300.

Cox, J. and Durfee, E. H. (2005). An efficient algorithm
for multiagent plan coordination. In AAMAS, pages
828–835.

D’Inverno, M., Luck, M., Georgeff, M., Kinny, D., and
Wooldridge, M. (2004). The DMARS architecture: A
specification of the distributed multi-agent reasoning
system. JAAMAS, 9(1-2):5–53.

Durfee, E. H. (2000). Multiagent Systems. A Modern
Approach to Distributed Artificial Intelligence, chap-
ter Distributed Problem Solving and Planning. MIT
Press.

Finke, R. and Nilsson, N. (1971). STRIPS: A new approach
to the application of theorem proving to problem solv-
ing. Artif. Intell., 3-4(2):189–208.

Iwen, M. and Mali, A. D. (2002). Distributed graphplan. In
ICTAI, pages 138–145.

Kambhampati, S. (2000). Planning graph as a (dynamic)
CSP: Exploiting EBL, DDB and other CSP search
techniques in graphplan. JAIR, 12(1):1–34.

Pistore, M., Traverso, P., and Bertoli, P. (2005). Auto-
mated composition of web services by planning in
asynchronous domains. In ICAPS, pages 2–11.

Sariel, S., Balch, T., and Erdogan, N. (2008). Naval mine
countermeasure missions. Robotics & Automation
Magazine, IEEE, 15(1):45–52.

Tonino, H., Bos, A., de Weerdt, M., and Witteveen, C.
(2002). Plan coordination by revision in collective
agent-based systems. Artif. Intell.I, 142(2):121–145.

Wilkins, D. and desJardins, M. (2001). A call for
knowledge-based planning. AI Magazine, 22:99–115.

ICAART 2010 - 2nd International Conference on Agents and Artificial Intelligence

134


