
MIPITS
An Agent based Intelligent Tutoring System

Egons Lavendelis and Janis Grundspenkis
Department of Systems Theory and Design, Riga Technical University, 1 Kalku street, Riga, Latvia

Keywords: Intelligent tutoring systems, Multi-agent systems, Holonic agents.

Abstract: During the last decades many Intelligent Tutoring Systems (ITS) are developed to add adaptivity and
intelligence to the e-learning systems. Intelligent agents and multi-agent systems are widely used to
implement intelligent mechanisms for ITSs due to their characteristics. The paper presents an agent based
ITS for the course “Fundamentals of Artificial Intelligence” named MIPITS. The MIPITS system is based
on the holonic multi-agent architecture for ITS development. The system offers learning materials, provides
practical problems and gives feedback to the learner about his/her solution evaluating his/her knowledge.
The goal of the system is to realize individualized practical problem solving, which is not possible in the
classroom due to the large number of students in the course. Thus, the main focus of the system is on
problem solving. The system offers three types of problems: tests, state space search problems and two-
player games algorithm problems. The MIPITS system is open: new types of problems can be added just by
including appropriate agents in the system. The problems are adapted to the learner’s knowledge level and
preferences about difficulty, size and practicality of problems.

1 INTRODUCTION

Nowadays, the availability of education must be
increased to successfully develop knowledge
society. Many learners having different knowledge
levels and learning styles must be taught together.
The traditional tutoring process is not effective in
simultaneously teaching many different learners.
There is a need for easier available and more
individualised tutoring process that adapts to every
learner. Additionally, people need to study new
things after graduating, because many technologies
change very rapidly. Thus, the lifelong education
becomes very important.

Different e-learning technologies are used to
teach large numbers of students, facilitate
availability of education and lifelong learning.
Learning management systems like Blackboard
(http://www.blackboard.com/) and Moodle
(http://moodle.org/) are among the most popular
ones. These systems are available from any place
with an Internet connection and at any time, thus
learners can choose when and where to study the
course.

E-learning systems mainly offer learning
materials and different kinds of tests to evaluate
learners’ knowledge. The majority of them use the

same materials and tests for all learners. Thus,
traditional e-learning systems can not adapt to any
specific characteristics of the learner and therefore
can not realize individualized tutoring. Moreover, e-
learning systems usually are not capable to generate
any learning material or test using domain
knowledge. The teacher must create all learning
materials and tests that are used in the course.

To eliminate the abovementioned drawbacks of
e-learning systems, Intelligent Tutoring Systems
(ITS) are developed. ITSs imitate the teacher
realizing individualized tutoring, using domain and
pedagogical knowledge as well as knowledge about
the learner. ITSs to a certain extent can adapt
learning materials, generate tasks and problems from
domain knowledge, evaluate learner’s knowledge
and provide informative feedback. So, ITSs add
adaptivity to above mentioned benefits of e-learning
systems (Brusilovsky and Peylo, 2003). During the
last 40 years since the first ITS named SCHOLAR
and teaching geography (Carbonelli, 1970), large
number of ITS have been developed. Well-known
examples of ITSs are FLUTE (Devedzic et al.,
2000), ABITS (Capuano et al., 2000), Passive Voice
Tutor (Virvou and Tsiriga, 2001), Slide Tutor
(Crowley and Medvedeva, 2005) and Ines (Hospers
et al., 2003).

5
Lavendelis E. and Grundspenkis J. (2010).
MIPITS - An Agent based Intelligent Tutoring System.
In Proceedings of the 2nd International Conference on Agents and Artificial Intelligence - Agents, pages 5-13
DOI: 10.5220/0002707200050013
Copyright c© SciTePress

The abovementioned examples show, that ITSs
mainly are dedicated to specific courses. The paper
proposes the ITS for the course “Fundamentals of
Artificial Intelligence” named MIPITS. The MIPITS
system offers learning materials and problems to the
learner, evaluates learner’s knowledge in each topic
and provides feedback to the learner. The system
adapts problems to the learner’s knowledge level
and preferences, described below.

The remainder of the paper is organized as
follows. The Section 2 contains general description
of the developed system. The architecture of the
system is given in the Section 3. The tutoring
scenario implemented in the system is described in
the Section 4. The Section 5 concludes the paper and
gives brief outline of the future work.

2 THE MIPITS SYSTEM

The MIPITS system is developed for the course
“Fundamentals of Artificial Intelligence”
simultaneously taught to more than 200 students at
Riga Technical University. The course contains
topics about different algorithms used in artificial
intelligence like search algorithms and algorithms
for two-player games. Important part of learning
such algorithms is practice. However, any guidance
and feedback during the practice is limited due to the
large number of students. Additionally, it is almost
impossible to prepare unique problems and tasks for
all students manually. The aim of the MIPITS
system is to solve the issues of problem generation,
limited guidance and feedback during the practice
with different algorithms taught in the course.
Moreover, students attending the course have very
different knowledge level and learning styles. At the
same time, no individualized tutoring can be done in
the classroom due to the large number of students.
Thus the ITS can improve the tutoring process by
adapting to the learner’s knowledge level and
learning style.

The MIPITS system is intended as an addition to
the traditional classroom tutoring. Firstly, the learner
attends lectures in the classroom. Later he/she has an
opportunity to repeat the topics taught in the
classroom and practice in the problem solving using
the system. However, it is possible to use the system
without attending the classes, because it covers all
necessary activities to learn the basics of the
corresponding topics. In each topic the MIPITS
system offers the learning material, and the problem
to be solved by the learner. In the MIPITS system
the problem is any task, test or problem used to
evaluate the learner’s knowledge. After the learner

has finished the problem the system evaluates
his/her solution and gives appropriate feedback.

The main focus of the MIPITS system is on
problem solving. The system provides unique
problems that are appropriate to the knowledge level
and preferences of the individual learner. Initial
version of the system is developed for first three
modules of the course - „Introduction”,
„Uninformed Search” and „Informed Search”
(Luger, 2005). Thus, the system is capable to offer
the corresponding types of problems:

• Different types of tests: single choice tests,
multiple choice tests and tests, where a learner
has to write the answer by him/herself. Figures
and state spaces can be added to the question.

• Search algorithm problems, where a learner has
to do a state space search using the specified
algorithm and lists OPEN and CLOSED (Luger,
2005).

• Two-player game problems, where a learner has
to apply the MINIMAX algorithm or Alpha-
Beta pruning to the given state space (Luger,
2005).

Other types of problems can be added to the
system. When the learner requests a task the system
finds the most appropriate problem to the learner’s
knowledge level and preferences among problems of
all types that fit the topic and gives it to the learner.

3 THE ARCHITECTURE OF THE
MIPITS SYSTEM

ITSs mainly are built as modular systems consisting
of four traditional modules: the tutoring module, the
expert module, the student diagnosis module and the
communication module (Smith, 1998). During the
last decade intelligent agents are widely used to
implement traditional modules (Grundspenkis and
Anohina, 2005). Well-known examples of agent
based ITSs are ITS for enhancing e-learning
(Gascuena and Fernández-Caballero, 2005), ABITS
(Capuano et al., 2000) and Ines (Hospers et al.,
2003).

The MIPITS system is developed using open
holonic multi agent architecture for ITS
development described in (Lavendelis and
Grundspenkis, 2008). The architecture consists of
the higher level agents that implement the
abovementioned modules. All higher level agents
can be implemented as holons (Fischer, 2003). Each
holon consists of one head agent and a number of
body agents. The head of the holon is responsible for
communication outside the holon and coordination

ICAART 2010 - 2nd International Conference on Agents and Artificial Intelligence

6

of all body agents. Open and closed holons are
distinguished. Open holons consist of the head and a
certain type of body agents, however, the number
and exact instances of body agents are not known
during the design of the system and can be changed
during the maintenance and runtime of the system so
modifying the system’s functionality. The body
agents have to register their services at the directory
facilitator agent. Heads of open holons use the
directory facilitator agent to find actual body agents
in each open holon. Closed holons consist of agent
instances that are specified during the design and
can not be changed during the runtime of the system.
The development of agent based ITSs using the open
holonic architecture is supported with the MASITS
methodology (Lavendelis and Grundspenkis, 2009a)
and the MASITS tool (Lavendelis and
Grundspenkis, 2009b) which are used to develop the
MIPITS system. According to the MASITS
methodology, the system is implemented in the
JADE platform (http://jade.tilab.com/). Further
implementation details are omitted due to the scope
of the paper.

The architecture of the system is shown in
Figure 1. Heads of open holons are denoted with
gray colour. The developed system consists of the
following higher level agents. The communication
module is implemented as an interface agent that
carries out all interactions with the learner. It is
responsible for the following tasks:

• Collecting the registration information about the
learner and his/her preferences and carrying out
the registration process.

• Log in process, including the validation of
learner’s log in data.

• Perceiving learner’s requests and starting the
processes in the system by forwarding learner’s
requests, actions and data to the appropriate
agents.

• Giving all information to a learner, including
learning materials, all types of problems and
feedback.

The interface agent is the only agent interacting
with a learner. Thus, it is the head of the higher level
holon.

The tutoring module is implemented as the
teaching strategy agent, the problem generation
agent, the curriculum agent and the feedback
generation agent. The teaching strategy agent is
responsible for provision of the learning material in
each topic. The curriculum agent is responsible for
creation of the curriculum during the registration of
a learner in the system. The problem generation
agent is responsible for generation of all types of
problems used in the system and adaptation of these

problems to the knowledge level and preferences of
the learner.

The expert module is implemented as the expert
agent, which is responsible for solving all types of
problems.

The student diagnosis module is implemented as
the student modelling agent and the knowledge
evaluation agent. The student modelling agent is
responsible for creating, updating and providing the
student model upon request of any other agent. The
initial student model is created during the
registration process. It is modified by reacting on the
different actions reported by other agents. The
student model contains:

• The personal data of a learner that are collected
during the registration process.

• The preferences of a learner that are collected
during the registration process. The following
preferences are collected: the preferred (initial)
difficulty of problems, the preferred practicality
of problems and the preferred size of problems
described below.

• The curriculum. It is created for a learner during
the registration process. Additionally, each topic
has its status denoting what activities a learner
has completed in the topic. The status has the
following possible values: “initial”, “started”,
“finished theoretical part”, and “finished”.

• All problems given to a learner and the results
of all knowledge evaluations based on his/her
solutions of the given problems.

The knowledge evaluation agent has to find the
learner’s mistakes in his/her solution by comparing
it to the expert’s solution. It must be able to evaluate
solutions of all types of problems.

According to the MASITS methodology, to
implement different types of problems and allow
adding new problems all higher level agents dealing
with problems are implemented as open holons.
Thus, the problem generation agent, the expert
agent, the knowledge evaluation agent and the
interface agent are implemented as open holons. The
problem generation holon consists of body agents
that generate one type of problems. So, it consists of
the following body agents: the test generation agent,
the search problem generation agent and the two-
player games problem generation agent. Similarly,
body agents of the expert holon are capable to solve
problems of the certain type. Knowledge evaluation
body agents compare system’s and learner’s
solutions of the given problem. Each interface body
agent is capable to manage user interface of one type
of problems. The heads of open holons are only
capable to find the appropriate body agent and
forward results received from them.

MIPITS - An Agent based Intelligent Tutoring System

7

Figure 1: Architecture of the MIPITS system.

The open architecture of the MIPITS system
makes it extendable to teach new topics of the
course or even some other courses by including new
types of problems and appropriate materials. There
is no need to change code of existing agents to
include new types of problems. It can be done by
adding appropriate body agents to the open holons.

4 THE TUTORING SCENARIO
OF THE MIPITS SYSTEM

To adapt problems to learner’s characteristics a
learner must be identified. Thus, the first activity a
learner has to do is to register in the system. For this
purpose a learner fills a form containing his/her
personal data and his/her preferences. After a learner
has submitted the registration form, the interface
agent collects data from the form, checks the data,
inserts user data into the database and sends the data
to the student modelling agent. The student
modelling agent creates the initial student model
based on learner’s preferences and requests the
curriculum agent to create the curriculum for a
learner. After receiving the curriculum from the
curriculum agent the student modelling agent
completes the initial student model by adding the
curriculum and sends it to the interface agent, who
opens the main window with the curriculum and
information about the first module. Interactions
among agents are implemented using simple
messages. Predicates from the domain ontology are
used to express message contents. Messages sent
during the registration process are shown in Figure
2.

Figure 2: Interactions done during the registration.

Each time a registered learner logs in to the
system the learning process is restarted at the topic
that was open when a learner quit the system last
time. To do it, first, learner’s user data are validated
by the interface agent and sent to the student
modelling agent. Second, the student modelling
agent reads the student model from the database and
sends it to the user interface agent. Third, the user
interface agent requests the teaching strategy agent
to provide the material in the current topic. Finally,
when the interface agent receives the material, the
main window of the system containing the
curriculum and the learning material in current topic
is opened. Interactions done during the login process
are shown in Figure 3.

Figure 3: Interactions done during the login.

ICAART 2010 - 2nd International Conference on Agents and Artificial Intelligence

8

The curriculum of the course consists of modules
that, in their turn, consist of topics. To support
teaching of a topic the MIPITS system performs the
following scenario consisting of three steps. When a
learner chooses to start learning a topic, the system
starts the theoretical step. During this step a learner
studies a theoretical material. After finishing it a
learner requests a test. The system switches to the
problem solving step. During this step a learner has
to solve some problems in the current topic. After
finishing, a learner submits his/her solutions. The
system moves to the knowledge evaluation step. As
a result of this step a learner receives an evaluation
of his/her knowledge in the current topic and
constructive feedback about errors made in each
problem. When the knowledge evaluation step is
over, a learner can choose to start learning a new
topic.

After finishing all topics of the module a learner
has to pass the final test of the module that may
contain problems from all topics included in this
module. During the final testing of the module all
actions of the problem solving and knowledge
evaluation steps are done.

4.1 The Theoretical Step

The goal of the theoretical step is to give a learning
material to a learner allowing him/her to repeat
theory of the topic that has been given in the
classroom. The step is carried out using the
following scenario. When a learner chooses the topic
to start learning, the interface agent requests the
teaching strategy agent to generate a learning
material in the chosen topic. The teaching strategy
agent finds appropriate learning material and sends it
to the interface agent. The interface agent shows a
learning material in the user interface of the system.
Additionally, the teaching strategy agent notifies the
student modelling agent that a learning material in
the current topic has been given to a learner. The
student modelling agent changes the student module
by modifying the status of the topic from “initial” to
“started”. Messages sent among agents during the
theoretical step are shown in Figure 4.

Figure 4: Interactions done during the theoretical step.

4.2 The Problem Solving Step

The goal of the problem solving step is to give a
learner an opportunity to practice in different types
of problems. The knowledge evaluation step is based
on learner’s solutions in the problem solving step.
The problem solving step starts when a learner
submits that he has studied a material. The interface
agent requests the problem generation agent to
generate the problem in the current topic. The
request is processed by the head of the problem
generation holon, using the following algorithm (see
Figure 5). Firstly, the head queries the student
modelling agent to get full student model and the
directory facilitator to find the body agents of the
problem generation holon. If there are no problem
generation body agents registered to the directory
facilitator, the system error is generated. Otherwise,
after receiving replies from the student modelling
agent and the directory facilitator all body agents are
queried to generate a problem in the current topic
that is appropriate to learner’s characteristics. Each
problem generation body agent either generates the
most appropriate problem to learner’s characteristics
and sends it to the head of the holon or sends failure
to the head of the holon if it can not generate a
problem in the current topic.

Figure 5: Algorithm for the head of the problem
generation holon.

After receiving all problems the head of the
holon has to choose the most appropriate one to the
learner’s characteristics. The following criteria are
used to choose the most appropriate problem:

• Difficulty of the problem. The difficulty of the
problem must match the preferable level of

MIPITS - An Agent based Intelligent Tutoring System

9

difficulty as close as possible, because the
problem should not be too complex for a learner
(unsolvable) nor too easy (not interesting).

• The size of the problem. A learner is allowed to
choose whether his/her knowledge evaluation
will be done with small and concrete problems
or large and time consuming problems.

• The practicality of the problem. A learner is
allowed to choose between more practical and
more theoretical problems to match preferences
of more practically and more theoretically
oriented learners.

• Frequency of the type of problem. Different
combinations of a learner’s characteristics may
lead to the situation, that only one type of
problems is used. However, knowledge
evaluation using only one type of problems
becomes too monotony. Thus, the frequency of
the type of problems should be minimized.

The first action to choose the most appropriate
task for learner’s characteristics is calculation of the
preferable values of all criteria:

• The difficulty of the problem. During the
registration process a learner evaluates his/her
knowledge level by specifying initial difficulty
in the scale from 1 (the easiest problems) to
5(most difficult problems). This is only a
subjective learner’s estimate that can be
inaccurate. Thus, the system calculates the
preferred difficulty using the initial difficulty
and learner’s results in previous knowledge
evaluations. Moreover, the more a learner has
been working with the system, the more
valuable is knowledge evaluation by the system
and the less valuable is the initial difficulty. The
preferred difficulty is calculated as follows:

init
pref

 init*dif +max*ldif =
init+max

, where (1)

init – coefficient denoting how much points for
problem solving are equivalent to the
initial difficulty. The value of the
coefficient is determined empirically and
is 50. For comparison, one question in the
test is 2 to 4 points worth.

difinit – initial difficulty.
max – maximal number of points that can be

scored in the problems solved by a learner.
l – the level of difficulty corresponding to

learner’s results in the problems he/she has
solved. To calculate the level, firstly, a
learner’s result in percents is calculated.

The level is determined using empirical
function shown in Table 1.

Table 1: Calculation of the level of difficulty
corresponding to learner’s results.

Results (%) Level of difficulty
0-34 1
35-49 2
50-64 3
65-80 4

81-100 5

• The preferred size and practicality of the
problem are chosen by the learner during the
registration. These criteria are measured in the
scale from 1 (small/more theoretical problems)
to 3 (large/more practical problems).

• Frequency of the type of the problem is 0 if a
learner has not solved any problem yet,
otherwise it is calculated as follows:

i
i

nf
n

= , where (2)

fi – frequency of the i-th type of the problem;
ni – number of problems of the i-th type given

to a learner;
n – total number of problems given to a

learner.

Each problem received from the problem
generation agent contains the values of all criteria.
So, after calculating the preferable values of all
criteria the difference between preferable and real
values is minimised. The appropriateness is
calculated as follows:

pref r d pref r s

pref r p t f

A (dif -dif *c + s s *c +

+ pr -pr *c + f *c), where

= − −
 (3)

 difpref – the preferred difficulty of the task;
 difr – the real difficulty of the task;
 cd – the weight of the difficulty;
 spref – the preferred size of the problem;
 sr – the real size of the problem;
 cs – the weight of the size;
 prpref – the preferred practicality;
 prr – the real practicality of the problem;
 cp – the weight of the practicality;
 ft – the frequency of the type of the problem;
 cf – the weight of the frequency.

Values of weights in the formula are determined
empirically and are the following: cd=2, cs=3, cp=3,
cf=6. With these weights all criteria have significant
impact on the appropriateness.

ICAART 2010 - 2nd International Conference on Agents and Artificial Intelligence

10

After finding the problem with the highest
appropriateness it is sent to three agents:

• To the interface agent, that is responsible for
giving it to a learner.

• To the expert agent, that is responsible for
finding the correct solution of the problem. The
expert agent solves the problem at the same
time that a learner is solving it to save time
when learner submits his/her solution.

• To the student modelling agent that changes the
status of the topic from “started” to “finished
theoretical part” in the student model.

Heads of the interface holon and the expert
holon are not capable to accomplish the tasks that
they are responsible for. Thus, they have to use body
agents of their holons. After receiving the problem
the heads of the holons are using the same
algorithms, generalisation of which is shown in
Figure 6. Firstly, the head of the holon uses the
directory facilitator to find the appropriate body
agent. If such agent is found, the problem is
forwarded to the body agent, otherwise system error
is generated. The body agent does its job
(respectively, gives the problem to a learner or
solves it). The body agent of the expert holon sends
the solution to the head of the holon and forwards it
to the head of the knowledge evaluation holon,
which saves the solution to use it in the knowledge
evaluation process. All messages sent among agents
to give a problem to the learner are shown in Figure
7.

Figure 6: Typical algorithm for the heads of open holons.

As a result of the agents’ actions in the problem
solving step, the problem is given to the learner
using the main window of the system (see Figure 8).
The interface of the system is in Latvian, which is
the language of the course. The window consists of

two main parts: the curriculum denoted with 1 and
the main panel denoted with 2. The curriculum
consists of all modules and topics taught in the
course. The main panel changes its contents
depending on the step. It contains materials in the
theoretical step and problems in problem solving and
knowledge evaluation steps. During the problem
solving step the appropriate interface body agent is
responsible for creating the panel and managing all
activities in it. The screenshot of the system shown
in Figure 8 contains the state space search problem.
The panel of the problem consists of the following
parts: the statement of the problem, the state space
denoted with 3 and tools for modifications of data to
do the search denoted with 4.

4.3 The Knowledge Evaluation Step

The goal of the knowledge evaluation step is to
evaluate learner’s solution created in the previous
step and give him/her the feedback about the
solution. A learner starts the step by submitting
his/her solution of the problem. Firstly, the interface
agent sends learner’s solution to the knowledge
evaluation agent. The head of the knowledge
evaluation agent uses the algorithm shown in Figure
6. The body agent compares system’s and learner’s
solutions finding learner’s mistakes and evaluating
the solution. The head of the knowledge evaluation
holon forwards the evaluation to the student
modelling agent and the feedback agent. The student
modelling agent records the knowledge evaluation in
the student model and changes the status of the topic
to “finished”. The feedback agent creates the textual
feedback about the result, like “You scored 19 points
from 20! Great result!”. Additionally, it creates
textual information about the learner’s mistakes, like
“You made a mistake determining the search goal
during the last step of the algorithm”. After the
feedback is prepared it is sent to the interface agent,
which gives it to a learner. Interactions among
agents done in this step are shown in Figure 9.

All steps of the tutoring scenario are
implemented in the way that any new type of
problems can be added to the system without
modifying the already existing agents. It can be done
by adding new agents to the open holons. A single
body agent has to be added to each of four open
holons: the problem generation holon, the expert
holon, the knowledge evaluation holon and the
interface agent holon. Newly added body agents
have to register themselves to the directory
facilitator agent in order the heads of the holons can
find them. Additionally, the domain ontology must
be refined to include the new classes of problems
and their solutions.

MIPITS - An Agent based Intelligent Tutoring System

11

Figure 7: Interactions done during the problem solving.

Figure 8: The interface of the MIPITS system during the problem solving step.

Figure 9: Interactions done during the knowledge
evaluation.

5 CONCLUSIONS AND FUTURE
WORK

An agent based ITS that adapts the problems to the
learner’s knowledge level and preferences is
proposed. The adaptation of the problems is done by
minimizing the difference between the preferred and
real values of problem’s difficulty, practicality and
size. Experiments with the system showed that
learners received problems that matched their
preferences closer comparing with any problem that
could be given to all learners.

The usage of agents and, in particular, holonic
agents allow to increase the modularity of the ITS.

ICAART 2010 - 2nd International Conference on Agents and Artificial Intelligence

12

Each agent in the MIPITS system is responsible for
concrete and separate tasks.

Additionally, agents allow creating open ITSs.
The proposed system is an example how an open
ITS can be implemented using the open holonic
multi-agent architecture for ITS development. The
system can be modified by adding or removing types
of problems used in the system. The system can be
used as an example to create other open ITSs that
allow modifying other functionalities of the system.

There are two main directions of the future work
in the MIPITS system. The first one is to add more
types of problems. The concept mapping described
in (Anohina et al., 2009) is the next type of the
problem to be integrated into the system using the
described procedure to add new types of problems.
The second direction is to use open holons to
implement other types of openness into the system,
for example, usage of different types of learning
materials is possible by implementing the teaching
strategy agent as an open holon. Moreover, new
types of adaptation (for different kinds of adaptation
in ITS see (Brusilovsky and Peylo, 2003)) can be
implemented in the system, for example, adaptation
of the learning materials to a learner’s knowledge
level and cognitive characteristics.

ACKNOWLEDGEMENTS

This work has been supported by the European
Social Fund within the project „Support for the
implementation of doctoral studies at Riga Technical
University”.

REFERENCES

Anohina, A. et al., 2009. Concept Map Based Knowledge
Assessment System with Reduction of Task Difficulty.
Proceedings of the 16th International Conference on
Information Systems Development (ISD`2007), August
29-31, 2007, Galway, Ireland, Vol.2, Springer, pp.
853-866.

Brusilovsky, P. and Peylo, C., 2003. Adaptive and
intelligent Web-based educational systems.
International Journal of Artificial Intelligence in
Education 13 (2-4), pp. 159-172.

Carbonell, J.R., 1970. AI in CAI: An Artificial
Intelligence Approach to Computer-Assisted
Instruction. IEEE Transactions on Man-Machine
Systems, Vol. 11, No. 4, pp. 190-202.

Capuano, N. et al., 2000. A Multi-Agent Architecture for
Intelligent Tutoring. Proceedings of the International
Conference on Advances in Infrastructure for
Electronic Business, Science, and Education on the
Internet (SSGRR 2000), Rome, Italy.

Crowley, R.S. and Medvedeva, O., 2005. An Intelligent
Tutoring System for Visual Classification Problem
Solving. Artificial Intelligence in Medicine, August,
2005- 2006:36(1), pp. 85-117.

Devedzic, V. et al., 2000. Teaching Formal Languages by
an Intelligent Tutoring System. Educational
Technology & Society, Vol. 3, No. 2, pp. 36-49.

Fischer, K. et al, 2003. Holonic Multiagent Systems: A
Foundation for the Organisation of Multiagent
Systems. Lecture Notes in Computer Science 2744,
Springer, pp. 71-80.

Gascuena, J.M. and Fernández-Caballero, A., 2005. An
Agent-based Intelligent Tutoring System for
Enhancing E-learning/E-teaching. International
Journal of Instructional Technology and Distance
Learning, Vol. 2, No.11, pp. 11-24.

Grundspenkis, J. and Anohina, A., 2005. Agents in
Intelligent Tutoring Systems: State of the Art.
Scientific Proceedings of Riga Technical University
„Computer Science. Applied Computer Systems”, 5th
series, Vol.22, Riga, pp.110-121.

Hospers, M. et al., 2003. An Agent-based Intelligent
Tutoring System for Nurse Education. Applications of
Intelligent Agents in Health Care (eds. J. Nealon, A.
Moreno). Birkhauser Publishing Ltd, Basel,
Switzerland, pp. 141-157.

Lavendelis, E. and Grundspenkis, J., 2008. Open Holonic
Multi-Agent Architecture for Intelligent Tutoring
System Development. Proceedings of IADIS
International Conference „Intelligent Systems and
Agents 2008”, Amsterdam, The Netherlands, 22 - 24
July 2008, pp. 100-108.

Lavendelis, E. and Grundspenkis, J., 2009a. MASITS – A
Multi-Agent Based Intelligent Tutoring System
Development Methodology. Proceedings of IADIS
International Conference „Intelligent Systems and
Agents 2009”, 21-23 June 2009, Algarve, Portugal,
pp. 116-124.

Lavendelis, E. and Grundspenkis, J., 2009b. MASITS - A
Tool for Multi-Agent Based Intelligent Tutoring
System Development. Proceedings of 7th
International Conference on Practical Applications of
Agents and Multi-Agent Systems (PAAMS 2009),
Salamanca, Spain, 25-27 March 2009. Springer, pp.
490-500.

Luger, G.F., 2005. Artificial Intelligence: Structures and
Strategies for Complex Problem Solving, Addison-
Wesley, Harlow, England, 903 p.

Smith, A.S.G., 1998. Intelligent Tutoring Systems:
personal notes. - School of Computing Science at
Middlesex University.
http://www.cs.mdx.ac.uk/staffpages/serengul/table.of.c
ontents.htm (last visited 18.04.05).

Virvou, M. and Tsiriga, V., 2001. Web Passive Voice
Tutor: an Intelligent Computer Assisted Language
Learning System over the WWW. Proceedings of the
IEEE International Conference on Advanced Learning
Technology: Issues, Achievements and Challenges,
Madison, WI, USA, 6-8 August, 2001, pp. 131-134.

MIPITS - An Agent based Intelligent Tutoring System

13

