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Abstract: Fusion of knowledge from multiple sources for pattern recognition has been an active area of research in
many scientific disciplines. This paper presents a fuzzy version of a probabilistic fusion scheme, known
as permanence-of-ratio-based combination, with application to analysis of cellular imaging for high-content
screening. Classification of cellular phenotypes has been carried out to illustrate the usefulness of the
permanence-of-ratio-based fuzzy fusion.

1 INTRODUCTION

Information or data fusion can be defined as the use of
mathematical methods that combine data from multi-
ple sources to obtain the resultant knowledge in or-
der to achieve inferences, which will be more effi-
cient and potentially more accurate than if they were
achieved by means of considering separate single
sources. Information fusion can be performed on a
low-level or high-level process depending on the pro-
cessing stage at which fusion takes place. Low-level
fusion combines several sources of raw data to pro-
duce new raw data (Pellizzeriet al., 2002). The ex-
pectation is that fused data is more informative and
synthetic than the original raw data. High-level fusion
typically combines features from multiple classifiers,
or signals from multiple sensors for logical decision
making (Mulleret al., 2001; Das, 2008).

There are many mathematical operators developed
for data fusion such as the averaging rule, multiplica-
tion rule, probabilistic models, mathematical theory
of evidence, machine learning methods, and fuzzy in-
tegral (Chiet al., 1996). For high-level fusion, the ra-
tionale of combining knowledge from various sources
is that it is always difficult or impossible to design
a single classifier or to use a single feature for pat-
tern classification to achieve the best results, because

a particular classifier or feature can only be robust for
handling a particular identity of an object, which may
vary under different settings. Furthermore, different
problems may require different data fusion methods
to obtain effective solutions depending on the types
of features.

This paper discusses the use of fuzzy measures for
combining evidences from multiple sources, where
the strong assumption of data independence is relaxed
(Journel, 2002). The utilization of such novel idea ap-
pears to be promising for pattern classification but it is
still rarely explored in the new field of bioinformatics.
We are interested in applying an information fusion
scheme for combining output from multiple classi-
fiers in order to improve the results for classifying var-
ious cellular phenotypes for robust automated analy-
sis of genome-wide high-content screening of fluores-
cent microscopy images of cells.

The rest of this paper is organized as follows. Sec-
tion 2 introduces the concept of the permanence of
ratio hypothesis for knowledge combination. Sec-
tion 3 proposes a ratio-hypothesis-based fuzzy fusion
scheme. Section 4 illustrates the application of the
proposed fusion model for classifying cellular pheno-
types for genome-wide screening, such screening is
essential to the rapid discovery of basic biological cell
principles such as control of cell cycle and cell mor-
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phology. Section 5 presents the use of a Gaussian dis-
tribution for estimating fuzzy densities. Finally, the
conclusion of the finding is given in Section 6.

2 INFORMATION FUSION USING
PERMANENCE OF RATIO
HYPOTHESIS

Based on the engineering paradigm of the perma-
nence of updating ratios, which asserts that the rates
or ratios of increments are more stable than the incre-
ments themselves, as an alternative to the assumption
of the full or conditional independence of probabilis-
tic models; Journel introduced a scheme for informa-
tion fusion of diverse sources (Journel, 2002). This
scheme allows the combination of data events without
having to assume their independence. This informa-
tion fusion is described as follows.

Let P(A) be the prior probability of the occurrence
of data eventA; P(A|B) andP(A|C) be the probabil-
ities of occurrence of eventA given the knowledge
of eventsB andC, respectively;P(B|A) andP(C|A)
the probabilities of observing eventsB andC givenA,
respectively. Using Bayes’ law, the posterior proba-
bility of A givenB andC is

P(A|B,C) =
P(A,B,C)

P(B,C)

=
P(A)P(B|A)P(C|A,B)

P(B,C)
(1)

The simplest way for computing the two proba-
bilistic models is to assume the model independence,
giving P(C|A,B) = P(C|A), andP(B,C) = P(B)P(C).
Thus, (1) can be rewritten as

P(A|B,C)

P(A)
=

P(A|B)

P(A)

P(A|C)

P(A)
(2)

However, the assumption of conditional indepen-
dence between the data events usually does not statis-
tically perform well and leads to inconsistencies in
many real applications (Journel, 2002). Therefore,
an alternative to the hypothesis of conventional data
event independence should be considered. The per-
manence of ratios based approach allows data events
B andC to be incrementally conditionally dependent
and its fusion scheme gives

P(A|B,C) =
1

1+x
=

a
a+bc

∈ [0,1] (3)

where

a =
1−P(A)

P(A)
, b =

1−P(A|B)

P(A|B)
,

c =
1−P(A|C)

P(A|C)
, x =

1−P(A|B,C)

P(A|B,C)
.

An interpretation of the fusion expressed in (3) is
as follows. LetA is the target event which is to be up-
dated by eventsB andC. The terma is considered as
a measure of prior uncertainty about the target event
A or a distance to the occurrence ofA without any up-
dated evidence. We havea = 0 for P(A) = 1 if target
eventA is certain to occur; anda = 0 for P(A) = 0 if A
is an impossible event. Likewise,b andc measure the
distances toA knowing about its occurrence after ob-
serving evidences given byB andC, respectively. The
term x is the distance to the target eventA occurring
after observing evidences given by both eventsB and
C. The ratioc/a is then the incremental (increasing
or decreasing) information ofC to that distance start-
ing from the prior distancea. Similarly, the rationx/b
is the incremental information ofC starting from the
distanceb. Thus, the permanence of ratios provides
the following relation

x
b
≈

c
a

(4)

which says that the incremental information aboutC
to the knowledge ofA is the same after or before
knowing B. In other words, the incremental contri-
bution of information fromC aboutA is independent
of B. This expression relaxes the restriction of the as-
sumption of full independence ofB andC.

For the generation ofk data eventsE j , j = 1, . . . ,k;
the conditional probability provided by a succession
of (k−1) permanence of ratios is given as

P(A|E j , j = 1, . . . ,k) =
1

1+x
∈ [0,1] (5)

where

x =
∏k

j=1d j

ak−1 ≥ 0

a =
1−P(A)

P(A)

d j =
1−P(A|E j)

P(A|E j)
, j = 1, . . . ,k

It is clear that expression (5) requires only the
knowledge of the prior probabilityP(A), and thek
elementary single conditional probabilitiesP(A|E j),
j = 1, . . . ,k, which can be independently computed.

We next present the concept of fuzzy measures
and how we can implement fuzzy measures into the
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framework of permanence-of-ratio hypothesis for in-
formation fusion, where the independence of joint
events can be more relaxed to provide a better model
for information consistency.

3 RATIO-HYPOTHESIS-BASED
FUZZY INFORMATION
FUSION

Let X be a finite setX = {x1,x2, . . . ,xn}. A fuzzy
measureg defined onX is a set functiong : P (X) →
[0,1] satisfying the following axioms (Sugeno, 1977):

1. g( /0) = 0, andg(X) = 1.

2. If A⊆ B, theng(A) ≤ g(B).

whereP (X) denotes the power set ofX.
It is noted that when the second property is not

satisfied,g is called a non-monotonic fuzzy measure
(Grabisch, 1996). There are 2n coefficients being
equivalent to the cardinality ofP (X) to compute a
fuzzy measure onX. These coefficients are the values
of g for all subsets ofX and they are not independent
since they must satisfy the property of monotonicity.
Theoretically, the concept of fuzzy measures is the
generalization of the classical measure theory which
is restrictive on the hypothesis of additivity; whereas
additivity is relaxed by the theory of fuzzy measures.

Sugeno (1977) defined a fuzzy measure known as
the gλ-fuzzy measure that satisfies the following ad-
ditional condition,∀A,B⊂ X, andA∩B= /0,

gλ(A∪B) = gλ(A)+gλ(B)+ λgλ(A)gλ(B), λ > −1.
(6)

To simplify the notation, letgi = g({xi}) which is
called a fuzzy density function. A fuzzy densitygi

can be interpreted as the degree of belief or degree of
importance that the corresponding attributexi makes
an effect or contribution towards the whole fuzzy sys-
tem when all attributes are considered together. Let
A = {xi1,xi2, . . . ,xim} ⊂ X, gλ(A), λ 6= 0, can be ex-
pressed as(Lesczynskiet al., 1985)

gλ(A) =
1
λ

[

∏
xi∈A

(1+ λgi)−1

]

(7)

The value ofλ can be calculated using the condi-
tion g(X) = 1 as follows.

λ +1=
n

∏
i=1

(1+ λgi) (8)

The following properties of thegλ-fuzzy measure
will be helpful in the computation of the parameterλ
(Tahani and Keller, 1990).

1. Lemma: For a finite set{gi}, 0 < gi < 1, there
exists a unique rootλ ∈ (−1,+∞), and λ 6= 0.
Based on this lemma,λ can be determined by
solving (n− 1) degree polynomial and selecting
the unique root> −1.

2. If ∑n
i=1gi < 1, thenλ > 0.

3. If ∑n
i=1gi > 1, then−1≤ λ < 0.

Among other computer methods being useful for
clinical applications such as Mycine (Shortlie, 1976)
and several other medical expert systems (Berner,
1998), the Shafer’s theory of evidence (Shafer, 1976)
is a popular tool for medical decision making (Klir
and Wierman, 1999). There are some connections
between the belief and plausibility measures of the
theory of evidence and the Sugeno’s fuzzy measures.
The function which mapsP (X) to [0,1] is called a
belief function, denoted asbel, iff it satisfies the fol-
lowing conditions (Shafer, 1976):

1. bel( /0) = 0, bel(X) = 1

2. bel(
⋃

i Ai) ≥ ∑ /0 6=I⊆{x1,x2,...,xn}(−1)|I |+1bel(
⋂

i Ai)

The plausibility measure is defined in terms of the
belief measure as

pl(A) = 1−bel(Ā) (9)

Some other mathematical relationships between
belief and plausibility measures,∀A∈ P (X), are

bel(A)+bel(Ā) ≤ 1, pl(A)+ pl(Ā) ≥ 1

and

pl(A) ≥ bel(A)

Based on the definitions and properties of the
belief and plausibility measures, Banon (1981) has
shown that agλ-fuzzy measure is a belief measure
whenλ ≥ 0, and agλ-fuzzy measure is a plausibil-
ity measure whenλ ≤ 0.

By allowing the calculation of the joint fuzzy
eventsg(A|B,C) which makes the termsb andc de-
fined in (5) equal to each other, we can equivalently
define a fuzzy probabilistic fusion operator, denoted
asF , for a target eventA which is to be updated by
eventsB andC, as

F (A|B,C) =
a

a+ f
(10)

where
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a =
1−g(A)

g(A)
, and f =

1−g(A|B,C)

g(A|B,C)

The general form for the ratio-hypothesis-based
fuzzy fusion can be defined by generalizing (10) to
account for the fuzzy measure ofk eventsE j , j =
1, . . . ,k, giving

F (A|E j , j = 1, . . . ,k) =
a

a+x
∈ [0,1] (11)

where

x =
1−g(A|E1, . . . ,Ek)

g(A|E1, . . . ,Ek)

Based on both (10) and (11), the ratio-hypothesis-
based fuzzy fusion of multiple events allows a
stronger conditional dependence than the ratio-
hypothesis-based fusion expressed in (3) and (5) but
still only requires the knowledge of the fuzzy densi-
ties of the multiple events. We next discuss how to
estimate the fuzzy densities using the Gaussian prob-
ability function and also present the Bayes classifier.

4 BAYES CLASSIFIER AND
ESTIMATING FUZZY
DENSITIES BY GAUSSIAN
FUNCTION

Pattern recognition using decision-theoretic frame-
work is based on a discriminant or decision function
to assign the unknown pattern to the best match. Let
x = (x1,x2, . . . ,xn)

T be ann-dimensional feature vec-
tor; andΩ = {ω1,ω2, . . . ,ωm} the set ofm distinct
patterns. The Bayes classifier for a 0-1 loss function
is expressed as (Gonzalez and Woods, 2002)

di(x) = p(x|ωi)P(ωi); i = 1, . . . ,m. (12)

wheredi(x) is a decision function that measures how
likely the unknown patternx belongs to theith pat-
tern class,p(x|ωi) is the probability density function
of the feature vector of classωi , andP(ωi) is the prob-
ability that classωi occurs.

The recognition procedure is to compute themde-
cision functiondi(x), i = 1, . . . ,m; and then assign the
pattern to the class whose decision function value is
maximum. Using the Gaussian probability distribu-
tion function, itsn-dimensional form is given as

p(x|ωi) =
1

(2π)n/2(detCi)1/2
e−

1
2 [(x−mi)

T C−1
i (x−mi)]

(13)

whereCi andmi are the covariance matrix and mean
vector of the pattern feature of classωi , and detCi
is the determinant ofCi . Expression (13) is used to
determine the fuzzy density for each test sample that
will be discussed in the next section

Using the monotonically increasing property of
the logarithm, the decision functiondi(x) has the fol-
lowing logarithmic form

di(x) = ln[p(x|ωi)P(ωi)] = ln p(x|ωi)+ lnP(ωi)
(14)

The substitution of the expression for the Gaus-
sian probability distribution function expressed in
(13) into (14) and after some mathematical rearrange-
ment give

di(x) = lnP(ωi)−
1
2

ln(detCi)

−
1
2
[(x−mi)

TC−1
i (x−mi)] (15)

The equation expressed in (15) is known as the
Bayesian decision function for Gaussian pattern class
ωi under the condition of a 0-1 loss function.

5 FUSION-BASED
CLASSIFICATION OF
CELLULAR MORPHOLOGIES
USING PHENOTYPE
FEATURES

Fluorescent microscopy images of cells stained to re-
veal complex cellular features, such as cytoarchitec-
ture, are considered to be high-content images due to
the large amount of information they contain. These
images reveal numerous biological readouts, includ-
ing cell size, cell viability, DNA content, cell cycle,
and cell morphology. A gene’s function can be as-
sessed by analyzing alterations in a biological process
caused by the absence of that gene. A specific study
concerns a cell-based assay for the activity of theRho
GTPase Rac1using the DrosophilaKc167embryonic
cell line (Wang et al., 2008).

Distinct morphological changes in cells both in
vitro and in vivo caused by constitutively active forms
of Rho proteins can be observed.Kc167 cells are
small and uniformly round.

We used 643normal, 321ruffling, and 210spiky
RNAi cell samples in this study. Using a feature ex-
traction procedure (Wanget al., 2008), 211 texture
and shape features for each cell image were obtained.
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Figure 1: Three cellular phenotypes of Drosophila Kc167
cells: a) Normal; b) Spiky; c) Ruffling.

Figure 2: Typical screening image.

To test the performance of the proposed fuzzy infor-
mation fusion, we used only 2 sets of features, each
set consists of 12 different features of the 211 tex-
tures and shapes previously discussed. We used half
of the samples for data testing (320, 100, and 160
for class 1, class 2, and class 3; respectively) and the
other samples were used for training. LetA be a tar-
get class, andB andC the two different feature sets
used to identifyA. For each set of features, expres-
sion (13) was used to computep(x|ωi) for each sam-
ple x for classωi , giving values forP(A|B) = g(A|B)
andP(A|C) = g(A|C) for each of the 3 classes (nor-
mal, spiky, andruffling). Prior probabilities or fuzzy
densities forA for each of the 3 classes are assumed
to be equal, givingP(A) = g(A) = 1/3. We consider
that these sets of feature vectors do not completely
cover all possible features associated with the pheno-
types. Therefore, the subsetφ was introduced to rep-
resent the set of all remaining possible features. The
fuzzy density ofφ can be subjectively estimated. In
this study we setg({φ}) = 0.4 to represent the degree
of belief of the phenotype existence when all other
unforseen features are considered. It is noted that us-
ing different reasonable values ofg({φ}) will not af-
fect the relative comparisons of the interactions of the
actual features. The Bayes classifier was used to
classify the testing samples based on each of the two
feature sets. The two sets of output obtained from
the Bayes classifier were then combined by the ratio-
based (probabilistic) fusion and the ratio-based fuzzy

Table 1: Correction rates (%) on classification of cellular
phenotypes using different methods.

Class 1 2 3
Bayes classifier 1 66.25 62.00 63.12
Bayes classifier 2 64.06 64.00 61.25
Ratio-based fusion 76.88 65.00 65.00
Ratio-based fuzzy fusion 80.31 74.00 66.25

Table 2: Confusion matrix of Bayes classifier 1.

Class 1 2 3 Total
1 212 39 69 320
2 18 62 20 100
3 27 32 101 160

Table 3: Confusion matrix of Bayes classifier 2.

Class 1 2 3 Total
1 205 44 71 320
2 14 64 22 100
3 26 36 98 160

Table 4: Confusion matrix of probabilistic fusion.

Class 1 2 3 Total
1 246 25 49 320
2 16 65 19 100
3 24 32 104 160

Table 5: Confusion matrix of fuzzy fusion.

Class 1 2 3 Total
1 257 24 39 320
2 11 74 15 100
3 24 30 106 160

fusion operators.
The classification rates obtained from Bayes clas-

sifier 1 (using feature set 1), Bayes classifier 2 (using
feature set 2), probabilistic fusion, and fuzzy fusion
are given in Table 1. The confusion matrices (non-
diagonal elements indicate misclassified samples) of
the Bayes classifier 1, Bayes classifier 2, probabilis-
tic fusion, and fuzzy fusion are given in Tables 2-5,
respectively. The experimental results show that the
combined results are better than those obtained from
individual classifiers, and suggest the best perfor-
mance of the proposed fuzzy approach in all classes.

6 CONCLUSIONS

A proposed fusion scheme and its preliminary appli-
cation for classifying phenotypic classes of biologi-
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cal cells have been discussed. The initial result for
validating the proof of concept of the model seems
to be promising for combining results from various
sources.

Extended investigation of the proposed approach
is under way to develop a key component for auto-
matic cellular phenotype identification as an effort to-
ward the construction of a robust automated imaging
system for high-content genome-wide screening.
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