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Abstract:  Machine learning predictive techniques have been shown to be useful in establishing cancer prognosis. 
However, no single machine learning technique provides the best results in all cases. This paper introduces 
an automated meta-learning technique that learns to predict the best performing machine learning technique 
for each patient. The individually selected machine learning technique is then used for prognosis for the 
given patient. The performance of the proposed approach is evaluated over a database of retrospective 
records of pancreatic cancer resections. 

1 INTRODUCTION 

Despite progress in the treatment of pancreatic 
adenocarcinoma over the past two decades, this 
disease remains one of the most lethal of all cancers. 
The five year survival rate is less than 6%, based on 
the most recent (2009) National Cancer Institute data 
for cancers diagnosed between 1999 and 2005 
(SEER, 2009). Nonetheless, there are groups of 
patients for which the outlook is significantly better. 
Cancer stage at diagnosis is of particular importance. 
For example, the survival rate for localized cancers 
is fully four times the average.  The results of 
specific diagnostic tests and individual patient 
attributes including age also affect prognosis. 

1.1 Machine Learning for Cancer 
Prognosis 

Machine learning refers to a set of techniques, 
including decision tree induction, neural and 
Bayesian network learning, and support-vector 
machines, in which a predictive model is constructed 

or “learned” from data in a semi-automated fashion 
(e.g., Mitchell, 1997). In supervised learning, which 
is the sort considered in the present paper, each data 
instance used for learning (training) consists of two 
portions: an unlabeled portion, and a categorical or 
numerical label known as the class or target attribute 
that is provided by human experts. The object of 
learning is to predict each data instance’s label based 
on the instance’s unlabeled portion. The result of 
learning is a model that can be used to make such 
predictions for new, unlabeled data instances.  

Machine learning has been successfully applied 
to pancreatic cancer detection (Honda et al., 2005) 
and to the analysis of proteomics data in pancreatic 
cancer (Ge and Wong, 2008). Machine learning 
techniques have also been shown to provide 
improved prediction of pancreatic cancer patient 
survival and quality of life when used either instead 
of, or together with, the traditional technique of 
logistic regression (Floyd et al., 2007; Hayward et 
al., 2008). 

The quality of the predictions produced by a 
given machine learning method varies across 
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patients. In particular, the method that provides the 
best predictive model for one patient will not 
necessarily be optimal for another patient. An 
example is suggested pictorially in Figure 1. 

 
Figure 1: Sets of instances classified correctly by different 
models. 

The latter fact suggests that overall predictive 
performance across all patients could be improved if 
it were possible to reliably predict, for each patient, 
what machine learning method will provide the best 
performance for that particular patient. The selected 
method can then be used to make predictions for the 
patient in question. This is the basic idea behind the 
approach described in the present paper.  

1.2 Classical Meta-learning 

Several “meta-learning” approaches have been 
developed in machine learning, including bagging, 
boosting, and stacking (see below). These 
approaches are also known as ensemble methods 
because they aggregate the predictions of a 
collection of machine learning models to construct 
the final predictive model. Ensemble machine 
learning methods have previously been applied to 
cancer (Qu et al., 2002; Bhanot et al., 2006; Ge and 
Wong, 2008). The present paper describes a new 
ensemble machine learning approach and its 
application to prognosis in pancreatic cancer. 

In bagging (Breiman, 1996), the models in the 
ensemble are typically derived by applying the same 
machine learning technique (e.g., decision tree 
induction, or neural network learning) to several 
different random samples of the dataset over which 
learning is to take place. The bagging prediction is 
made by a plurality vote taken among the learned 
models in the case of categorical classification, and 
by averaging the models’ predictions in the case of a 
numerical target. In boosting (Freund and Schapire, 
1997), a sequence of models is learned, usually by 

the same learning technique, with each model 
focusing on data instances that are poorly handled 
by previous models. The overall boosting prediction 
is made by weighted voting among the learned 
models. Stacking (Wolpert, 1992) allows the use of 
different machine learning techniques to construct 
the models over which aggregation is to take place. 
In this context, the individual models are known as 
level 0 models. The outputs of the level 0 models are 
then viewed as inputs to a second layer of learning, 
known as the level 1 model, the output of which is 
used for prediction. 

1.3 Proposed Model Selection 
Meta-learning 

The model selection approach proposed in the 
present paper is an ensemble meta-learning approach 
in that it involves learning a collection of models. 
Our approach is more similar to boosting and 
stacking than to bagging in its use of the full training 
dataset to learn the individual models. However, it 
differs from classical bagging, boosting, and 
stacking, and is characterized by, its adoption of a 
new prediction target. Rather than aiming to predict 
the original target, say survival, directly, the goal 
changes in our approach to identifying what learned 
model is best qualified to make the desired 
prediction for a given data instance. Once identified, 
the selected model alone is used to predict the 
original target.  

1.4 Plan of the Paper 

Section 2 describes the pancreatic cancer patient 
database that was constructed for our work. Section 
3 presents the details of the model selection meta-
learning method proposed in the present paper. 
Section 4 describes the results of an experimental 
evaluation of model selection meta-learning over 
pancreatic cancer data. 

2 PANCREATIC CANCER 
DATASETS 

A clinical database was assembled containing 
retrospective records of 60 patients treated by 
resection for pancreatic adenocarcinoma at the 
University of Massachusetts Memorial Hospital in 
Worcester. Each patient record is described by 190 
fields comprising information about preliminary 
outlook, personal and family medical history, 
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diagnostic tests, tumor pathology, treatment course, 
surgical proceedings, and length of survival.  

A summary of the categories of attributes and the 
number of attributes in each category is presented in 
the Table 1.  Note that the attributes are divided into 
three major categories: 111 pre-operative attributes, 
78 peri-operative attributes, and the target attribute.  

Table 1: Attribute categories for the pancreatic cancer 
database. 

Category Number of 
attributes 

Category 
Description 

Pre-operative attributes 
Patient 6 Bio. info. patient 
Presentation 21 Symptoms at 

diagnosis 
History 27 Past health history 
Serum 8 Lab test scores 
Diagnostic 
imaging 

23 Imaging scan details 

Endoscopy 25 Endoscopy details 
Prelim. Outlook 1 Physician’s pre-

surgical evaluation 
Total 111  
Peri-operative attributes 
Treatment 36 Treatment details 
Resection 24 Surgical removal 

details 
Pathology 7 Post-surgical tumor 

type results 
No Resection 11 Reasons for tumor 

non-removal 
Total 78  
Target attribute 
Survival 1 Time between 

diagnosis and death 
Grand Total 190  

The prediction target (or target attribute) of 
our analysis is survival time, measured as the 
number of months between diagnosis and death. In 
this work, we considered different binnings of this 
target attribute:  
 
• 9 month split, resulting in 2 target values: <9 

months (containing 30 patients), and >9 months 
(30 patients). 

• 6 month split, resulting in 2 target values: <6 
months (20 patients), and >6 months (40 
patients). 

• 6 and 12 month splits, resulting in 3 target 
values: less than 6 months (20 patients), 6 to 12 
months (20 patients), and over 12 months (20 
patients). 

 

Also, we consider two subsets of attributes of this 
dataset: one containing all 190 attributes (denoted by 
“All-Attributes Dataset”), and one containing only 
the 111 pre-operative attributes together with the 
target attribute (denoted by “Pre-Operative 
Dataset”). In our experimentation we consider a total 
of 6 datasets determined by the 2 subset of attributes 
used and the 3 types of binning of the target 
attribute.  

3 OUR MODEL SELECTION 
META-LEARNING 
TECHNIQUE 

The present paper proposes a new meta-learning 
approach based on predicting for each data instance 
the machine learning model that is best suited to 
handle that instance. We refer to this approach as 
model selection meta-learning. The motivation 
behind our approach is visually depicted in Figure 
1, in which each of two models correctly covers only 
a subset of the instances. If we could correctly 
predict which model to use for each instance, overall 
classification performance would be improved. 

3.1 Model Selection Meta-learner for 
Prediction 

Figure 2 shows how the proposed model selection 
meta-learner uses two levels of classifiers to predict 
the unknown target class of a set of a previously 
unseen input instance. After the level 1 classifier 
predicts which of the level 0 models is expected to 
perform best on the given instance, the instance’s 
attributes are run through the selected model to 
make a prediction.  

 
Figure 2: Model selection meta-learner. 

The prediction process is described in 
pseudocode below. It is assumed here that the meta-
learner has previously been trained (see Section 3.3).  
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For a previously unseen data instance: 

1. Run data instance through level 1 classifier to 
select which level 0 classifier to use. We 
assume that the learned level 0 models 
produce class probability distributions 
(p1…pk) as their outputs for a given input 
instance x, with each pj an estimate of the 
conditional probability P(target value j | x) 
that the given instance has target value j 
(e.g., the conditional probability of a patient 
surviving  > 6 months given the patient’s 
data). See Figure 3 for an example in which 
the target attribute is binary with possible 
values “+” and “-”. These numerical 
outputs provide the basis for the selection 
of a “best” model during meta-learning. In 
brief, the “best” model is the one that 
outputs the highest posterior probability 
P(correct target value for x | x) for the input 
instance x. 

2. Run data instance through level 0 classifier 
recommended by level 1 classifier to 
predict the target value of the instance (e.g., 
survival time of the patient). 

Our model selector meta-learning approach is 
similar to stacking in that it uses a collection of level 
0 machine learning models followed by a level 1 
learner.  The key difference is in the function of the 
level 1 meta-learner. Stacking's level 1 classifier 
combines the target class probability distributions 
generated by running the unseen instance through 
each of the level 0 models, while our model 
selector's level 1 classifier selects which of the level 
0 models is expected to output the highest 
probability for the correct class of the given test 
instance. Despite this fundamental difference with 
stacking, we will use the level 0 and level 1 stacking 
terminology throughout, for convenience. 

3.2 Training the Level 0 Models 

A level 0 model is obtained by applying a machine 
learning technique to the input dataset. We will 
denote that dataset by I0. As explained in Section 
3.1, we assume that the prediction that the trained 
model outputs is a probability distribution over the 
possible target values. In our case, the input dataset 
is the pancreatic cancer dataset described in Section 
2. Hence each level 0 model is trained to predict the 
survival time of patients. The prediction output by 
the trained model is then a probability distribution 
over the possible survival time values. For instance, 
if the 6 and 12 month splits are used, then given a 

patient’s data, the trained level 0 model will output 
the probabilities that the patient will survive < 6 
months, between 6 and 12 months, and > 12 months.     

3.3 Training the Level 1 Model 

In section 3.1 we described how the model selection 
meta-learner is used to predict the target class of a 
new instance, assuming that the meta-learner has 
previously been trained. We now describe how the 
training is carried out. A two-stage approach is used. 
First, a new dataset I1 is constructed from the 
original dataset of instances I0 using cross 
validation, by relabeling each training instance with 
the name of the level 0 model that outputs the 
highest probability for that instance’s correct target 
class; this model is considered to be the best 
predictor for the given instance. In the second stage, 
the level 1 model is trained over the new dataset I1. 
Once the level 1 model has been trained, level 0 
models are retrained over the full original dataset as 
described in section 3.2.  

Example. An example to illustrate the construction 
of the dataset to train the level 1 model is shown in 
Figure 3. The example patient in the figure with the 
given medical history as the input attributes is 
known to fall into the positive class (say survival 
time > 6 months).  When M1 uses this set of 
symptoms to predict that there is a 90% chance that 
this patient is in the positive class and M2 predicts 
that there is a 70% chance that this patient is in the 
positive class.  Since M1 has the highest confidence 
in the correct classification, this is the model said to 
best predict this instance.  A new instance is then 
created using the patient's medical history as the 
input attributes and M1 as the target value.  This 
new instance is added to the dataset used to train the 
level 1 model. 

 
Figure 3: Transformation of a level 0 data instance into a 
level 1 instance. 
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The model selector meta-learning algorithm is 
described in greater detail below. 

 
Training Algorithm: 
 
Inputs:  
- Set I0 of input data instances 

(in our case, each input instance corresponds to 
the data of a pancreatic cancer patient labeled 
with the patient’s survival time as a nominal 
range) 

- Set of level 0 machine learning techniques to 
use, each of which outputs a class probability 
distribution 

- Level 1 machine learning technique to use 
- Integer n (user selected number of folds in 

which to split the input dataset)   

Output: Trained Level 1 model  

(A) Construct a new dataset of training instances I1 
(to be used to train the level 1 classifier) as follows: 

1. Initialize I1 as empty 

2. Randomly split I0 into n stratified folds:  I0
1,…, 

I0
n. 

3. For each fold I0
i, with 1 ≤ i ≤ n, and for each 

level 0 machine learning technique received as 
input:  

a. Train a level 0 classifier using the machine 
learning technique and the data instances in 
the union of all the n folds except for fold 
I0

i 

b. For each data instance d in fold I0
i: 

o Run each level 0 classifier on d. Each 
will output a probability distribution of 
the target values. 

o Among the level 0 classifiers, select 
one with the highest probability for d's 
correct target value. This correct target 
value is given in the input training data 
I0. 

o Add instance d to I1 replacing its 
original target value with the identifier 
of the level 0 classifier selected above 
(e.g., if d corresponds to a patient 
whose survival time was more than 12 
months, and the neural network was 
the classifier with the highest 
probability for “more than 12 months”, 
then the instance d will appear in I1 
with its target value (“more than 12 

months”) replaced by “neural 
network”.  

(B)  Train the level 1 classifier using the dataset I1. 

(C) Rebuild each level 0 classifier over all training 
instances in I0. 

4 EVALUATION OVER 
PANCREATIC CANCER DATA 

We discuss in this section the experimental 
evaluation that we performed over the database of 
pancreatic cancer resections that we constructed, 
which is described Section 2. 

4.1 Data Mining Techniques used 

Feature Selection. We use Attribute Selection to 
evaluate models built with different machine 
learning algorithms using the features selected by 
various feature selection algorithms.  Previous work 
in pancreatic cancer (Ge and Wong, 2008; Hayward 
et al., 2008) has shown that feature selection can 
improve the prediction performance of classification 
methods. In the current paper we investigate the use 
of the Gain Ratio, Principal Components Analysis 
(PCA), ReliefF, and Support Vector Machines 
(SVMs) for feature selection.  All of these algorithms 
rank order the most important features, allowing the 
number of features retained to be prescribed.  
Through these experiments we attempt to determine 
the optimal feature selection approach for a given 
machine learning algorithm. 

Machine Learning Techniques for Level 0 and 
Level 1 Classifiers. We consider artificial neural 
networks (ANNs), Bayesian networks (BNs), 
decision trees, naïve Bayes networks, and support 
vector machines (SVM). The first three classification 
methods above have previously been identified 
(Hayward et al., 2008) as the most accurate over a 
pancreatic cancer dataset among a wide range of 
methods. SVM is included in the present work both 
as a feature selection method and as a classification 
method.  

For each dataset, we find the best combination of 
feature selection and machine learning algorithm.  
We use ZeroR (majority class classifier) and logistic 
regression as benchmarks against which to compare 
the performance of the models constructed.  
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4.2 Experimental Protocol 

All experiments reported here were carried out using 
the Weka machine learning toolkit (Witten and 
Frank, 2005). The classification accuracy for all 
experiments is calculated as the average value over 
ten repetitions of 10-fold cross validation, each 
repetition with a different initial random seed (for a 
total of 100 runs of each experiment).  

For each of the 6 datasets described in Section 2, 
we apply the following procedure systematically: 

1. Select the Level 0 Classifiers. We applied each 
of the machine learning techniques under 
consideration with and without feature selection to 
the dataset and recorded the resulting accuracy 
reported by the 10 repetitions of 10-fold cross 
validation procedure described above. For each of 
the machine learning techniques, all the feature 
selection approaches were tested with a varying 
number of attributes to be selected. In most cases, 
feature selection increased the accuracy of the 
machine learning methods. Then we selected the top 
3 most accurate models among all models: the ones 
with and the ones without feature selection.   

2. Select the Level 1 Classifier. Once the top 3 
performing level 0 models were identified, we ran 
experiments to determine what subset of those 3 top 
models together with what level 1 machine learning 
technique would yield the model-selector meta-
classifier with the highest predictive accuracy. As 
above, all machine learning techniques with and 
without feature selection (and allowing the size of 
the selected attribute set to vary) were considered. 
Note than in this case, feature selection is applied to 
the level 1 dataset, not to the original dataset. The 
model selector meta-classifier with highest 
predictive accuracy is reported.  

4.3 Results and Discussion 

We describe the results of our experimental 
evaluation, focusing on the pre-operative dataset 
described by 111 attributes. 

4.3.1 Pre-operative Dataset, 9 Month Split 

• Individual Machine Learning Methods. The 
classification accuracies obtained by individual 
machine learning methods with no attribute selection 
appear in Table 2. The ZeroR, or majority class, 
classifier in the first row is a simple benchmark that 
selects the most frequent class for all instances. For 

a 9-month split, the two classes occur equally 
frequently in the dataset; the ZeroR prediction 
amounts to a random choice between them. 
 
• Feature Selection. Attribute selection allowed 
classification performance to be improved slightly. 
The best results were obtained using GainRatio 
attribute selection in conjunction with either a 
logistic regression classifier (65.5% accuracy) or an 
SVM classifier (65.5% accuracy), and ReliefF 
attribute selection with a Bayesian network classifier 
(65.3% accuracy). 

Table 2: No Feature Selection, Nine Month Split. 

Machine Learning Algorithm  Classification 
Accuracy % 

ZeroR  50.0  
Logistic Regression  58.8  
SVM  62.5  
ANN 58.5  
Naïve Bayes  49.3  
C4.5 decision tree   49.5  
Bayesian Network 64.7 

• Comparison of Model Selection Meta-learning 
with other Techniques. Table 3 shows the 
classification accuracies of the best performing 
classifier / feature selection combinations for 9 
month split, together with the accuracy of the model 
selection meta-learning approach proposed in the 
present paper. The proposed approach slightly 
outperforms the best individual level 0 classifier 
methods. In passing, we note that the model 
selection meta-classifier also outperformed the 
standard meta-learning techniques of bagging, 
boosting, and stacking. 

Table 3: Classification accuracy: pre-operative attributes 
only, nine month split. 

Machine Learning (ML) 
Technique(s) 

Feature 
Selection 
(FL) 

# 
attrib
utes 

Accu
racy
% 

Pre-Operative Attributes only, 9 month split 
Best Performing ML + FL Combinations: 
Logistic Regression GainRati

o 
70 65.5 

SVM GainRati
o 

80 65.5 

Bayesian Net ReliefF 100 65.3 
Best Performing Model Selection Meta-Classifier: 
Level 1: Naïve Bayes 
Level 0: Logistic, SVM 

None 
GainRati
o 

111 67.3 
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4.3.2 Pre-operative Dataset, 6 Month Split 

Since this dataset contains 20 patients with survival 
time < 6 months and 40 patients with > 6 months, 
the accuracy of ZeroR (majority class) classification 
is 66.6%. Table 4 shows the top three combinations 
of machine learning classification and feature 
selection obtained, and the most accurate level 1 
classifier constructed over them. Once again our 
model selection meta-learning method outperformed 
bagging, boosting, and stacking. 

Table 4: Classification accuracy: pre-operative attributes 
only, six month split. 

Machine Learning (ML) 
Technique(s) 

Feature 
Selection 
(FL) 

# 
attrib
utes 

Accu
racy
% 

Pre-Operative Attributes only, 6 month split 
Best Performing ML + FL Combinations: 
Logistic Regression GainRati

o 
40 70.2 

SVM GainRati
o 

30 69.8 

ANN GainRati
o 

30 68.5 

Best Performing Model Selection Meta-Classifier: 
Level 1: Logist. 
Regression 
Level 0: Log. Regr., 
SVM 

PCA 
GainRati
o 

15 70.8 

4.3.3 Pre-operative Dataset with 6 and 12 
Month Splits 

Classification performance results for the three class 
dataset obtained by splitting the target attribute at 
both 6 and 12 months appear in Table 5. The 
accuracy values are lower than in Table 3 and Table 
4 because of the larger number of classes (3 vs. 2). 
For comparison, randomly guessing the class would 
lead to an accuracy of approximately 33.3% for this 
dataset, as the three classes are equally frequent. 
Model selection meta-learning once again slightly 
outperforms the individual level 0 models. 

4.3.4 All-attributes Dataset with 6 Month 
Split 

We discuss here the best meta-classifier obtained via 
the approach presented in this paper for the All-
Attributes dataset with 6 months split, as it 
illustrates several interesting points. The 
classification accuracy of this model (75.2%) is 
significantly greater than that of logistic regression 
(61.3%), the most widely accepted statistical method 

Table 5: Classification accuracy: pre-operative attributes 
only, 6 and 12 month splits. 

Machine Learning (ML) 
Technique(s) 

Feature 
Selection 
(FL) 

# 
attri
bute
s 

Accu
racy  
% 

Pre-Operative Attributes only, 6 and 12 month splits 
Best Performing ML + FL Combinations: 
Bayesian Net ReliefF 20 52.7 
ANN GainRatio 50 51.8 
SVM ReliefF 20 48.5 
Best Performing Model Selection Meta-Classifier: 
Level 1: Naïve Bayes 
Level 0: ANN 
              SVM 

None 
GainRatio
, 
ReliefF 

111 53.3 

in the medical community. Meta-classifier accuracy 
also exceeds that of majority classification (66.6%). 

This meta-classifier constructed by our model 
selector combines the models constructed by two top 
performing level 0 classifiers: Naïve Bayes (using 
Gain Ratio feature selection) and Artificial Neural 
Network (using Gain Ratio feature selection also). A 
C4.5 decision tree (J4.8 in Weka) coupled with 
SVM feature selection was used as the level 1 
classifier. As in our other experiments, the resulting 
model selection meta-classifier was superior in 
prediction performance (75.2% accuracy) to the best 
models constructed with the standard meta-learning 
techniques of bagging (74.5%), boosting (67%), and 
stacking (72.5%). 

Table 6: Class probability distributions and correct level 0 
models for a subset of data instances. {x,y} values are 
probabilities of survival for less than 6 months (x) and at 
least 6 months (y). 

ANN class 
probabilities 

Naïve 
Bayes class 
probs. 

Actual 
Target 
Value 

Correct 
Level 0 
Model(s) 

{0.72,0.28} {0.12,088} < 6 months ANN 
{0.88,0.12} {0.39,0.61} < 6 months ANN 
{0,1} {0.85,0.15} < 6 months Naïve Bayes 
{0.95,0.05} {0.08,0.92} > 6 months Naïve Bayes 
{0.99,0.01} {0.48,0.52} > 6 months Naïve Bayes 
{0.59,0.41} {0.47,0.53} > 6 months Naïve Bayes 
{0.99,0.01} {0.85,0.15} < 6 months Both 
{0.05,0.95} {0.09,0.91} > 6 months Both 
{0,1} {0.39,0.61} > 6 months Both 
{0.01,0.99} {0.45,0.55} > 6 months Both 
{0.07,0.93} {0.1,09} > 6 months Both 
{0.01,0.99} {0.12,0.88} > 6 months Both 
{0,1} {0.1,0.9} > 6 months Both 
{0.1} {0.1,0.9} < 6 months Neither 
{0.03,0.97} {0.11,0.89} < 6 months Neither 
{0.06.0.94} {0.07,0.93} < 6 months Neither 
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Table 6 shows the class probability distributions 
for selected instances over each of the two level 0 
models. The actual target value is also in the table 
along with a label stating which of the two models 
(or both) predict this value correctly, or if neither of 
the models predicts the target value correctly. In 36 
out of these 60 instances both models produce the 
correct classification (31 of which are > 6 months, 
and 5 are < 6 months). In eight instances neither 
model produces the correct prediction (which is < 6 
months for all eight instances). This leaves 16 
instances for which picking the right model would 
lead to making the correct prediction: in 11 of these 
naïve Bayes is correct (of which 2 are < 6 months), 
and in 5 ANN is correct (of which all are < 6 
months). An interesting observation is that when the 
artificial neural network and the naïve Bayes model 
both predict the same target, the artificial neural 
network is much more certain of its prediction.  

As mentioned above, SVM feature selection was 
applied to the level 1 training dataset reducing the 
number of attributes from 190 to 70.  Remarkably all 
these 70 selected attributes are pre-operative. We 
describe below this resulting set of 70 attributes by 
grouping them into related categories: 

Presentation - Demographic (3 attributes selected): 
Patient's Height, Weight, and Quality-of-life score 
(ECOG) at admission 

Presentation - Initial Symptoms (18 attributes 
selected): Abdominal pain, Back pain, Biliary colic, 
Clay colored stool, Cholecystitis, Cholangitis, 
Dysphagia, Fatigue, Indigestion, Jaundice, Nausea, 
Pruritis, Early Satiety, Vomiting, and Weight Loss. 

Presentation - Presumptive Diagnosis (1 attribute 
selected): Initial diagnosis (e.g., pancreatic tumor, 
periampullary tumor, etc.). 

Medical History - Comorbidities (3 attributes 
selected): Heart Failure, Ischemic Heart Disease, 
and Respiratory Diseases. 

Serum Laboratory Tests (8 attributes selected): 
Albumin, Alkaline phosphotase, ALT (alanine 
transaminase), AST (aspartate aminotransferase), 
Bilirubin, Amylase, CA19-9 (carbohydrate antigen 
19-9), and CEA (carcinoembryonic antigen). 

Diagnostic Imaging - Computer Tomography 
(CT) (19 attributes selected): Celiac Artery 
Involvement, Celiac Nodal Disease, Hepatic Vein 
Involvement, Inferior Vena Cava Involvement, 
Lymph node disease or other nodal disease, Node 
Omission, Portal Vein Involvement, Superior 
Mesenteric Artery Involvement, Superior Mesenteric 

Vein Involvement, Tumor Height (cm), Tumor 
Width (cm), Vascular Omission, and CT Diagnosis. 

Diagnostic Imaging - Endoscopic UltraSound 
(EUS) (15 attributes selected): Virtually the same 
attributes as for CT, and EUS Diagnosis. 

Diagnostic Imaging - Chest X-Rays (1 attribute): 
Chest X-Ray Diagnosis. 

Diagnostic Imaging - Percutaneous Transhepatic 
Cholangiography (PTC) (3 attributes selected): If 
stent was used and what type, and PTC diagnosis. 
The level 1 machine learning technique used here is 
C4.5 decision trees (J4.8 in Weka). The resulting 
pruned decision tree is included below. Out of the 70 
attributes, only 6 are used in the pruned decision 
tree: 2 initial symptoms (presentation), including 
back pain (which was shown to be an important 
attribute by the Bayesian Nets constructed in other 
of our experiments) and the occurrence of jaundice; 
2 results of diagnostics imaging tests (CT and EUS); 
and 2 serum lab tests (Bilirubin and Albumin).    

If patient presents Back Pain  
|  if CT shows Node Omission 
|  then  Use Naïve Bayes 
|  else 
|  |  if Bilirubin Serum Lab Test ≤ 0.9 
|  |  then Use Naïve Bayes 
|  |  else  Use Artificial Neural Net 
else (* patient does not present Back Pain *) 
|  if patient presents Jaundice  
|  then  
|  |  if EUS shows Vascular Omission 
|  |  then Use Naïve Bayes 
|  |  else 
|  |  |  if Albumin Serum Lab Test ≤ 2.4 
|  |  |  then Use Naïve Bayes 
|  |  |  else Use Artificial Neural Net 
|  else Use Artificial Neural Net 

5 CONCLUSIONS AND FUTURE 
WORK 

This paper has presented a new approach to 
combination of machine learning methods through 
meta-learning, and an evaluation of this technique 
for pancreatic cancer prognosis using a database of 
retrospective patient records. The proposed 
technique, model selection meta-learning, is based 
on learning which of several available machine 
learning methods can be expected to be the best 
predictor for a given input instance. The motivation 
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for this technique is the fact that different methods 
sometimes produce conflicting predictions for the 
same instance. Thus, a system that reliably identifies 
the best predictor for a given instance will achieve 
better predictive performance than any of the 
individual predictors. The experimental evaluation 
presented in this paper focuses on predicting 
survival time of pancreatic cancer patients based on 
attributes such as demographic information, initial 
symptoms, and diagnostic test results. The 
evaluation results show that the proposed technique 
of model selection meta-learning produces 
predictions that are better than those of the 
individual machine learning methods. Also, the 
proposed technique outperforms the standard meta-
learning techniques of bagging, boosting, and 
stacking in the experiments conducted for this paper. 
Further work is needed to better establish the 
magnitude of observed performance differences, and 
to determine whether any particular machine 
learning predictors are best suited to being combined 
through the model selection meta-learning technique 
introduced in this paper. 

REFERENCES 

Bhanot, G., Alexe, G., Venkataraghavan, B., Levine, A.J. 
A robust meta-classification strategy for cancer 
detection from MS data, Proteomics 2006, 6:592-604. 

Breiman, L.. Bagging predictors, Machine Learning 24(2): 
123-140, 1996. 

Floyd, S., Alvarez, S. A., Ruiz, C., Hayward, J., Sullivan, 
M., Tseng, J., and Whalen, G. Improved survival 
prediction for pancreatic cancer using machine 
learning and regression, Society for the Surgery of the 
Alimentary Tract 48th Annual Meeting (SSAT 2007), 
Washington DC, USA, May 19-23, 2007.  

Freund, Y. and Schapire, R.E. A decision-theoretic 
generalization of on-line learning and an application to 
boosting, Journal of Computer and System Sciences, 
55(1):119--139, 1997. 

Ge, G. and Wong, G.W. Classification of premalignant 
pancreatic cancer mass-spectrometry data using 
decision tree ensembles, BMC Bioinformatics 2008, 
9:275 

Hayward, J., Alvarez, S.A., Ruiz, C., Sullivan, M., Tseng, 
J., and Whalen, G. Knowledge discovery in clinical 
performance of cancer patients, IEEE International 
Conference on Bioinformatics and Biomedicine 
(BIBM08), Philadelphia, PA, USA, Nov. 3-5, 2008.  

Honda, K., Hayashida, Y., Umaki, T., Okusaka, T., 
Kosuge, T., Kikuchi, S., Endo, M., Tsuchida, A., 
Aoki, T., Itoi, T., Moriyasu, F., Hirohashi, S., 
Yamada, T. Possible detection of pancreatic cancer by 
plasma protein profiling. Cancer Res. 2005 Nov 15; 
65(22):10613-22. 

Horner, M.J., Ries, L.A.G., Krapcho, M., Neyman, N., 
Aminou, R., Howlader, N., Altekruse, S.F., Feuer, 
E.J., Huang, L., Mariotto, A., Miller, B.A., Lewis, 
D.R., Eisner, M.P., Stinchcomb, D.G., Edwards, B.K. 
(eds). SEER Cancer Statistics Review, 1975-2006, 
National Cancer Institute. Bethesda, MD, 
http://seer.cancer.gov/csr/1975_2006/, based on 
November 2008 SEER data submission, posted to 
SEER web site, 2009. 

Mitchell, T. Machine Learning, McGraw-Hill, 1997. 
Qu, Y., Adam, B.L., Yasui, Y., Ward, M.D., Cazares, 

L.H., Schellhammer, P.F., Feng, Z., Semmes, O.J., 
Wright, G.L. Jr.: Boosted decision tree analysis of 
surface-enhanced laser desorption/ionization mass 
spectral serum profiles discriminates prostate cancer 
from noncancer patients. Clin Chem 2002, 48:1835-
1843. 

Witten, I.H and Frank, E. Data Mining. 2nd ed. Morgan 
Kaufmann Publishers. 2005. 

Wolpert, D.H. Stacked generalization, Neural Networks, 
Vol. 5, pp 241-259, 1992.  

 
 
 
 

MODEL SELECTION META-LEARNING FOR THE PROGNOSIS OF PANCREATIC CANCER

37


