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Abstract: CODEQ is a new, population-based meta-heuristic algorithm that is a hybrid of concepts from chaotic 

search, opposition-based learning, differential evolution and quantum mechanics. CODEQ has successfully 

been used to solve different types of problems (e.g. constrained, integer-programming, engineering) with 

excellent results. In this paper, a new mutated vector based on quadratic interpolation (QI) is incorporated 

into CODEQ.  The proposed method is compared with the original CODEQ and a differential evolution 

variant the uses QI on eleven benchmark functions. The results show that using QI improves both the 

efficiency and effectiveness of CODEQ. 

1 INTRODUCTION 

CODEQ (Omran 2009) is a new, parameter-free 

meta-heuristic algorithm that is a hybrid of concepts 

from chaotic search, opposition-based learning 

(Tizhoosh 2005), differential evolution (DE) (Storn 

and Price 1995) and quantum mechanics. The 

performance of CODEQ was investigated and 

compared with other well-known population-based 

optimization approaches (e.g. DE and Particle 

swarm optimization (Kennedy and Eberhart 1995)) 

when applied to eleven benchmark functions 

(Omran 2009). The results show that CODEQ 

provides excellent results with the added advantage 

of no parameter tuning. In addition, the application 

of CODEQ to constrained problems was 

investigated by Omran and Salman (2009) with 

encouraging results. Furthermore, CODEQ was 

successfully used to solve integer programming 

problems (Omran and al-Sharhan 2009). 

Quadratic interpolation (QI) (Mohan and 

Shanker 1994) is a nonlinear operator that uses three 

solutions to generate a new solution lying at the 

point of minima of the quadratic curve passing 

through the three chosen solutions. QI has been 

successfully used to improve the performance of DE 

(Pant et al. 2008) and PSO (Pant et al. 2007). In this 

paper, we investigate the effect of using QI with 

CODEQ. Eleven well-known benchmark problems 

are used to compare the proposed approach against 

the original CODEQ and the method proposed by 

Pant et al. (2008). 

The reminder of the paper is organized as 

follows: Section 2 provides an overview of CODEQ. 

The proposed method is presented in Section 3. 

Benchmark functions to measure the performance of 

the different approaches are discussed in Section 4. 

Results of the experiments are presented in Section 

5. Finally, Section 6 concludes the paper. 

2 CODEQ 

The CODEQ algorithm (Omran 2009) works as 

follows: 

Step 1. A population of s vectors are randomly 

initialized within the search space.  

Step 2. For each parent, , of iteration t, a trial 

vector, , is created by mutating the parent 

vector. Two individuals , and  are 

randomly selected with i1 ≠ i2 ≠ i, and the difference 
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vector,  - , is calculated. The trial vector is 

then calculated as  



vi(t)  xi(t)  (xi1 (t) - xi2 (t))ln 1/u  (1) 

where u ~ U(0,1).  

The generated offspring, 



vi(t) , replaces the 

parent,   



xi(t) , only if the fitness of the offspring is 

better than that of the parent (i.e. apply greedy 

selection). 

Step 3. For each iteration t, a new vector is created 

as, 



w t 
LU r  xb t                     if U 0,1  0.5

xg t  xi1 t  xi2 t   2c t 1    otherwise





 (2) 

  

where r ~ U(0,1), L and U are the lower and upper 

bounds of the problem’s variables, xb(t) is the worst 

(i.e. least fit) vector in iteration t, xg(t) is the best 

(i.e. fittest) vector in iteration t, 
  



xi1 (t) , and 
  



xi2 (t) 

are randomly selected vectors with i1 ≠ i2 ≠ i and c(t) 

is a chaotic variable defined as, 



c t 
c t 1  p                  c t 1 (0, p)

1 c t 1   1 p    c t 1 [p,1)





 

where c(0) and p are initialized randomly within the 

interval (0,1).  

Step 4. The generated vector, 



wi(t), replaces the 

worst vector in iteration t,   



xb (t) , only if the fitness 

of 



wi(t) 
is better than that of   



xb (t) . 

Step 5. Repeat steps 2-4 until a stopping criterion is 

satisfied. 

For more details about CODEQ, the interested 

reader is referred to Omran (2009). 

3 THE PROPOSED METHOD 

The quadratic interpolation (QI) uses the best 
solution found so far and two other solutions from 
the population to determine a new solution lying at 
the point of minima of the quadratic curve passing 
through them. In Pant et al (2007; 2008), two 
randomly chosen solutions were used along with the 
best solution. In this paper, the individual solution 
itself is used along with the best solution and a 
randomly chosen solution. The rationale behind this 
modification is that including the individual itself 

induces an intensification of the search in the 
vicinity of the vector itself (i.e. local search), while 
the global best solution focuses on global 
intensification that improves the quality of the 
solutions generated. Adding a new solution adds 
useful information that significantly improves 
overall performance (Yin et al. 2009). 

In the proposed algorithm, called CODEQ-QI, 

step 2 in CODEQ is modified as follows: 

 

For each vector, , in the 

population 

  If (U(0,1)  PQI)  /* Use quadratic 

interpolation */ 



vi t  0.5
xi

2 t  xi1
2 t   f xg t   xi1

2 t  xg
2 t   f xi t   xg

2 t  xi
2 t   f xii t  

xi t  xi1 t   f xg t   xi1 t  xg t   f xi t   xg t  xi t   f xii t  
 

  else  /* Use Eq. 1 */ 



vi(t)  xi(t)  (xi1 (t) - xi2 (t))ln
1

u







 

Endif  

Endfor 

 

In the above, PQI is a user-specified parameter 

representing the probability of applying the QI 

operator, g is the index of the best solution found so 

far, , and 
 

are randomly chosen 

vectors where i1 ≠ i2 ≠ i.  

The QI operator helps in finding better solutions 

and enhancing the explorative capabilities of 

CODEQ by looking for solutions lying between 

three chosen vectors (Pant et al. 2008). All the other 

steps in CODEQ remain intact. 

4 BENCHMARK FUNCTIONS 

Eleven functions have been used to compare the 

performance of CODEQ-QI with that of other 

methods. These benchmark functions provide a 

balance of unimodal, multimodal, separable, non-

separable and noisy functions. 

Sphere, Rosenbrock and Rotated hyper-ellipsoid 

are unimodal, while the Step function is a 

discontinuous unimodal function. The Quartic  
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Table 1: Results of CODEQ and CODEQ-QI algorithms (D=30). The average and standard deviation (in parenthesis) of the 

number of function evaluations are shown in italic (between square brackets). 

 CODEQ  CODEQ-QI 

Sphere 1.0162e-18(3.7317e-18) 

[20740.7(2683.674015)] 

3.1080e-31(1.6615e-30) 

[12641.9(1589.139614)] 

Camel Back -1.031628(0) 

[4461.5(725.928074)] 

-1.031628(0) 

[1748.3(460.297591)] 

Rosenbrock 26.220137(0.647238) 

[50000(0)] 

21.732962(0.740005) 

[50000(0)] 

Step 0(0)  

[5977.9(3111.437702)] 

0(0)  

[3985.5(1619.979709)] 

Quartic function 9.8307e-04(8.3342e-04) 

[50000(0)] 

8.7277e-04(4.1858e-04) 

[50000(0)] 

Rotated hyper-ellipsoid 2.2595e-08(4.4983e-08) 

[38257.5(5657.586032)] 

3.7291e-15(1.1353e-14) 

[22342.1(3210.705996)] 

Rastrigin 0(0)  

[21572.0(2746.662639)] 

0(0) 

[15588.0(1360.410283)] 

Ackley 1.4585e-10(1.8038e-10) 

[31914.8(3205.647252)] 

8.8818e-16(0) 

[17354.3(5654.812135)] 

Griewank 0(0) 

[19882.2(2842.014031)] 

0(0) 

[12388.6(1743.796465)] 

Salomon 3.0882e-04(0.0012) 

[48394.633333(2756.866255)] 

9.3422e-08(5.0485e-07) 

[38533.666667(4519.078845)] 

Normalized Schwefel -413.6818(27.4813) 

[45003.466667(7553.827788)] 

-418.5922(1.1923) 

[31911.066667(9817.485808)] 

 

function is a noisy function. Rastrigin, Ackley, 

Griewank, Salomon and Normalized Schwefel are 

difficult multimodal functions where the number of 

local optima increases exponentially with the 

problem dimension. The Camel-Back function is a 

low-dimensional function with only a few local 

optima. For more details regarding these functions, 

interested reader is referred to (Omran and 

Englebrecht 2009). 

5 EXPERIMENTAL RESULTS 

This section compares the performance of CODEQ-

QI with that of the original CODEQ (Omran 2009) 

and DE-QI (Pant et al. 2008) algorithms. 

Performance is measured in terms of effectiveness 

and efficiency. For the DE-QI, F = 0.5, pr = 0.5 and 

PQI = 0.1 as suggested in Pant et al. (2008). For 

CODEQ-QI, PQI = 0.1 as recommended in Pant et al. 

(2008). The results reported in this section are 

averages and standard deviations over 30 

simulations. Each simulation was allowed to run for 

50,000 evaluations of the objective function using a 

population size of 50 individuals (i.e. s = 50). All 

functions were implemented in 30 dimensions 

except for the two-dimensional Camel-Back 

function. The statistically significant best solutions 

have been shown in bold (using the non-parametric 

statistical test called Wilcoxon’s rank sum test for 

independent samples (Wilcoxon 1945) with α = 

0.05).  

All the tests are run on an Apple MacBook 

computer with Intel Core Due 2 processor running at 

2.0 GHz with 2GB of RAM. Mac OS X 10.5.6 is the 

operating system used. All programs are 

implemented using MATLAB version 7.6.0.324 

(R2008a) environment.  

5.1 Effectiveness 

Performance effectiveness is measured ―in terms of 

the mean best solution quality that can be obtained 

by a competing algorithm when both algorithms runs 

for a specified maximum number of function 

evaluations‖(Yin et al. 2009). Table 1 summarizes 

the results obtained by applying CODEQ and 

CODEQ-QI to the benchmark functions. The results 

show that CODEQ-QI outperformed CODEQ in 

seven out of eleven benchmark functions. In the 

remaining four functions, both CODEQ and 

CODEQ-IQ reached the global optimum solution.  
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Table 2: Results of DE-QI and CODEQ-QI algorithms (D=30). The average and standard deviation (in parenthesis) of the 

number of function evaluations are shown in italic (between square brackets). 

 DE-QI CODEQ-QI 

Sphere 5.1719e-19(3.3093e-19) 

[23300(411.682837))] 

6.0092e-33(1.4112e-32) 

[11858.2(1553.313642)] 

Camel Back -1.031628(0) 

[1596.666667(292.708321)] 

-1.031628(0) 

[1617.4(343.278674)] 

Rosenbrock 25.671742(0.369040) 

[50000(0)] 

21.705992(0.531362) 

[50000(0)] 

Step 0(0) 

[10133.333333(356.064052)] 

0(0) 

[4051.8(1566.423235)] 

Quartic function 0.008695(0.003032) 

[50000(0)] 

0.000712(0.000479) 

[50000(0)] 

Rotated hyper-ellipsoid 7318.220555(2683.290797) 

[50000(0)] 

1.1695e-15(2.3274e-15) 

[22024.2(3802.027521)] 

Rastrigin 119.363797(9.357981) 

[50000(0)] 

0(0) 

[15089.9(1694.940246)] 

Ackley 1.7370e-10(7.0892e-11) 

[33556.666667(573.965837)] 

8.8818e-16(0) 

[19156.3(5045.179031)] 

Griewank 0(0) 

[24531.666667(941.063534)] 

0(0) 

[12902(1639.730613)] 

Salomon 0.189943(0.030300) 

[50000(0)] 

2.5158e-08(1.0696e-07) 

[39236.7(4189.038925)] 

Normalized Schwefel -352.316511(7.430610) 

[50000(0)] 

-418.472872(2.793468) 

[31301.866667(8886.902279)] 

 

  

  

Figure 1: Comparison between CODEQ and CODEQ-QI for selected benchmark problems. The vertical axis represents the 

average best function value and the horizontal axis represents the number of generations. 
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Figure 2: Comparison between DE-QI and CODEQ-QI for selected benchmark problems. The vertical axis represents the 

average best function value and the horizontal axis represents the number of generations. 

Similarly, Table 2 shows the results obtained by 

applying DE-QI and CODEQ-QI to the benchmark 

functions. The results show that CODEQ-QI 

outperformed DE-IQ in eight out of eleven 

functions. On the remaining three functions both 

approaches reached the global optimum solution. 

Note that, Omran (2009) showed that CODEQ 

outperformed PSO, DE and other algorithms on the 

same set of benchmark functions. Thus, it can be 

concluded that CODEQ-QI outperforms these 

approaches on the examined set of benchmark 

functions. 

5.2 Efficiency 

The number of function evaluations (FEs) required 
to reach an error value less than 10

-6
 (provided that 

the maximum limit is 50,000 FEs) was recorded in 
the 30 runs and the mean and standard deviation of 
FEs were calculated and shown in Tables 1 and 2 
between brackets. FEs can be used to compare the 
convergence speed (i.e. the efficiency) of the 
different methods. A smaller FE means higher 
convergence speed. On the other hand, having FEs 
equal to 50,000 indicates that the approach cannot 
converge to the global optima. Tables 1 and 2 show 
that CODEQ-QI generally reached good solutions 
faster than (or equal to) the other approaches in all 

the benchmark functions (except for the Camel back 
function when DE-QI performed better). Figures 1 
and 2 illustrate results for selected functions. The 
figures show that CODEQ-QI reached good 
solutions faster than the other approaches. 

6 CONCLUSIONS 

In this paper, we investigated the effect of 
embedding a quadratic interpolation (QI) operator 
into CODEQ. The proposed method, CODEQ-QI, 
was compared against CODEQ and DE-QI on 
eleven benchmark functions. The results showed that 
QI significantly improved the performance of 
CODEQ (in terms of both efficiency and 
effectiveness).  

Future work will study the effect of PQI on the 
performance of CODEQ-QI. In addition, the 
performance of CODEQ-QI when applied to real 
engineering optimization problems needs to be 
investigated. 
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