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Abstract: Ambient intelligence is an interdisciplinary paradigm which envisages smart spaces that provide services 
and adapt transparently to the user. As the most natural interface for human interaction, speech can be ex-
ploited for adaptation purposes in such scenarios. Low latency is required, since adaptation must be conti-
nuous. Most speaker tracking approaches found in the literature work offline, fully processing pre-recorded 
audio files by a two-stage procedure: (1) performing acoustic segmentation and (2) assigning each segment 
a speaker label. In this work a real-time low-latency speaker tracking system is presented, which deals with 
continuous audio streams. Experimental results are reported on the AMI Corpus of meeting conversations, 
revealing the effectiveness of the proposed approach when compared to an offline speaker tracking system 
developed for reference. 

 1  INTRODUCTION 

Ambient Intelligence (AmI) is an interdisciplinary 
applied research field, aiming to create smart spaces 
which provide services featuring user and context 
adaptation capabilities (ISTAG, 2001) (Cook, 2009). 
It was originally devised as Ubiquitous Computing 
in (Weiser, 1991) where it was suggested the 
interaction of consumer electronics, 
telecommunications and computing devices to 
support people carrying out everyday life activities 
in a natural way. In such environment, daily objects 
feature computing and telecommunication 
capabilities. Transparency is critical, so natural and 
intelligent interfaces are needed for human-computer 
interaction (Abowd, 2005). Speech is a natural 
interface for human interaction and the most suitable 
means to support user interaction and adaptation. 
Speech streams can be exploited to extract user 
related information such as location, identity, etc. 
But in such environments, user adaptation must be 
continuous, and low-latency online processing is 
needed. 

Speaker diarization and speaker tracking are well 
known tasks which aim to answer the question Who 
spokes when?. Speaker tracking aims to detect 
segments corresponding to a known set of target 
speakers (Martin, 2001). Speaker diarization consists 
of detecting speaker turns without any prior 
knowledge about the target speakers (Tranter, 2006) 
(Meignier, 2006). Speaker diarization and tracking 
primary applications domains assume that audio 
recordings are fully available before processing. 
Common approaches to these tasks consist of two 
uncoupled steps: (1) audio segmentation and (2) 
speaker detection. In speaker diarization, segments 
hypothetically uttered by the same speaker are 
clustered together. In speaker tracking, however, 
once the audio stream is segmented, speaker 
detection is carried out through classical speaker 
recognition techniques (Moraru, 2005) (Istrate, 
2005) (Bonastre, 2000). In any case, these 
methodologies are not suitable for low-latency 
online speaker detection. 

Few works related to real-time speaker 
segmentation and tracking can be found in the 
literature (Wu, 2003) (Lu, 2005) (Liu, 2005). Most 
of the speaker segmentation approaches are based on 
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metrics measuring spectral changes, such as 
Bayesian Information Criterion (Chen, 1998) and 
Generalized Likelihood Ratio (Bonastre, 2000) (Liu, 
2005). These procedures are robust but 
computationally expensive since two or three 
Gaussian models must be estimated for scoring each 
possible change point in each analysis window, and 
there can be between 100 and 1000 analysis 
windows per second. In (Wu, 2003), a real-time 
model-based speaker change detection system is 
proposed, where a Universal Background Model 
(UBM) is taken as reference to classify speech 
segments, and a distance between two adjacent 
windows is computed which accounts for the 
spectral change. In (Lu, 2005), an unsupervised 
speaker segmentation and tracking algorithm is 
presented. Once the speaker change boundaries are 
determined, each segment is scored with a set of 
incremental quasi Gaussian Mixture Models 
corresponding to unknown target speakers. In (Liu, 
2005), an online speaker adaptation methodology is 
applied for real-time speaker tracking, with 
unknown target speakers. This approach combines a 
phonotactic speaker change detection module with 
an online speaker clustering algorithm. Speaker 
adaptation is based on feature transformation. The 
transformation matrix is incrementally adapted as 
labeled segments become available. 

In this paper, a real-time low-latency online 
speaker tracking approach is presented, designed for 
an AmI scenario (for example, an intelligent home 
environment), where the system continuously tracks 
known speakers. The expected number of target 
speakers is low (i.e. the members of a family). This 
scenario requires taking almost instantaneous (low 
latency) speaker tracking decisions. A very simple 
speaker tracking algorithm is proposed, where audio 
segmentation and speaker detection are jointly 
accomplished by defining and processing fixed-
length audio segments and scoring each of them to 
decide whether it belongs to a target speaker or to an 
impostor. Audio segments are scored by means of 
acoustic models (corresponding to target speakers) 
estimated via Maximum a Posteriori (MAP) 
adaptation of a UBM (Reynolds, 2000). The MAP-
UBM methodology yields good speaker recognition 
performance and allows for a fast scoring technique 
which speeds up the score computation. Finally, 
detection scores are calibrated (i.e linearly mapped 
to likelihood ratios) and then, based on the scores 
obtained for a development corpus, an optimal 
application-dependent decision threshold (that 
minimizes the expected error cost) is established 
(Brummer, 2006). The performance of the proposed 

approach is compared to that of an offline system 
developed for reference, which follows the classical 
two-stage approach: audio segmentation is done 
over the whole input stream, and MAP-UBM 
speaker detection is performed on the resulting 
segments. Speaker tracking experiments applying 
both systems were carried out on the AMI Corpus 
(Carletta, 2007), which contains human 
conversations in the context of smart meeting rooms, 
close to the AmI scenario described above. 

The rest of the paper is organized as follows. In 
section 2 the main features of the speaker tracking 
systems are described, including the acoustic front-
end, the audio segmentation (required for the offline 
reference system) and the speaker detection and 
calibration stages. Section 3 gives details about the 
experimental corpus and the UBM estimation. 
Speaker tracking results using the proposed and the 
reference systems are presented in section 4. Finally, 
conclusions and guidelines for future work are given 
in Section 5. 

 2  SPEAKER TRACKING 
SYSTEMS 

 2.1  Acoustic Front-End 

In this work, 16 kHz audio streams are analyzed in 
frames of 20 milliseconds, at intervals of 10 
milliseconds. A Hamming window is applied and a 
512-point FFT computed. The FFT amplitudes are 
then averaged in 24 overlapped triangular filters, 
with central frequencies and bandwidths defined 
according to the Mel scale. A Discrete Cosine 
Transform is finally applied to the logarithm of the 
filter amplitudes, obtaining 12 Mel-Frequency 
Cepstral Coefficients (MFCC). To increase 
robustness against channel distortion, Cepstral Mean 
Normalization (CMN) is applied. When the audio 
stream is processed on-the-fly, a dynamic CMN 
approach is applied, the cepstral mean being updated 
at each time t as follows: 

௧ߤ ൌ ሻݐሺܥߙ  ሺ1 െ ௧ିଵ   (1)ߤሻߙ

where α is a time constant, C(t) is the vector of 
cepstral coefficients at time t and µt-1 is the dynamic 
cepstral mean at time t-1. After CMN, the first 
derivatives of the MFCC are also computed, 
yielding a 24-dimensional feature vector. 
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 2.2  Audio Segmentation 

Audio segmentation, also known as acoustic change 
detection, is required by most speaker tracking 
systems as a previous step to the detection of target 
speakers. A simple algorithm is applied in this work, 
which segments the audio signal in a fully 
unsupervised way, by locating the most likely 
change points from a purely acoustic point of view. 
The algorithm considers a sliding window W of N 
acoustic vectors and computes the likelihood of 
change at the center of that window, then moves the 
window K vectors ahead and repeats the process 
until the end of the vector sequence. To compute the 
likelihood of change, each window is divided in two 
halves, Wleft and Wright, then a Gaussian distribution 
(with diagonal covariance matrix) is estimated for 
each half and finally the cross-likelihood ratio is 
computed and stored as likelihood of change. This 
yields a sequence of cross-likelihood ratios which 
must be post-processed to get the hypothesized 
segment boundaries. This involves applying a 
threshold τ and forcing a minimum segment size δ. 
In practice, a boundary t is validated when its cross-
likelihood ratio exceeds τ and there is no candidate 
boundary with greater ratio in the interval [t-δ,t+δ] 
(see (Rodriguez, 2007) for details). 

 2.3  Speaker Detection 

The real-time speaker tracking system proposed in 
this work computes a detection score per target 
speaker and outputs a speaker identification decision 
at fixed-length intervals. That length has been 
empirically set to one second, which provides 
relatively good time resolution and spectral richness, 
and a reasonably small latency for most online 
speaker tracking scenarios. The offline system 
developed for reference does the same computation, 
but using the segments produced by the algorithm 
described in Section 2.2. Regardless the way audio 
segments are obtained, they are scored with the same 
set of MAP-UBM target speaker models (Reynolds, 
2000). 

In the adaptation of a speaker model from the 
UBM, only non-overlapped training segments (i.e. 
those segments containing only speech from that 
speaker, according to the time references of manual 
annotations) are used. This way, component 
densities related to the acoustic classes strongly 
observed in training data will change, whereas 
component densities that correspond to weaker or 
missing acoustic units (such as silence or impostors) 
will remain un-adapted. Therefore, it is assumed that 

the resulting MAP-UBM system should be able to 
detect speech from target speakers and reject silence, 
noise and speech from impostors. 

Given the acoustic model λs for the target 
speaker s and λUBM for the UBM, the detection score 
∆s(X) is computed as follows: 

∆s(X)= L(X|λs) - L(X|λUBM)  (2)

where L(X|λ) is the log-likelihood of X given λ. 
Once the detection scores are computed for all the 
target speakers, a unique identification decision is 
made per segment: X is marked as coming from the 
most likely target speaker s*=arg maxs∈[1,S]{∆s(X)}, 
if ∆s*(X) > θ. Otherwise X is marked as coming from 
an impostor. The decision threshold θ can be 
heuristically established to optimize the 
discrimination. Note that, for any given segment X, 
there could actually be two or more speakers 
speaking at the same time. However, the detection 
approach described above cannot inform of speaker 
overlaps, because only the most likely speaker can 
be detected. 

 2.4  Calibration of Scores 

Calibration maps detection scores {∆s | s ∈ [1,S]} to 
likelihood ratios {C(∆s) | s ∈ [1,S]} without any 
specific application in mind. The scaling parameters 
are computed over a development corpus by 
maximizing Mutual Information, which is equivalent 
to minimizing the so called CLLR (a metric defined in 
(Brummer, 2006)), which integrates the expected 
cost over a wide range of operation points 
(representing specific applications) in the Detection 
Error Tradeoff (DET) curve (Martin, 1997). The 
final decision is taken by applying the minimum 
expected cost Bayes decision threshold to calibrated 
scores C(∆). The target speaker is accepted only if 
the following inequality holds: 

ሻ߂ሺܥ  ln
ሺ1ܥ െ ௧ܲ௧ሻ
௦௦ܥ ௧ܲ௧

    (3)

where Cmiss and Cfa are miss and false-acceptance 
error costs, and Ptarget the prior probability of target 
speakers. Scores are calibrated by means of the 
FoCal toolkit, applying a linear mapping strategy 
(see http://www.dsp.sun.ac.za/~nbrummer/focal/). 
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 3  EXPERIMENTAL SET-UP 

 3.1  The AMI Corpus 

Experiments are carried out over the AMI Corpus of 
meeting conversations, available as a public resource 
(see http://corpus.amiproject.org/). The AMI Corpus 
is a multimodal dataset concerned with real-time 
human interaction in the context of smart meeting 
rooms. Data, collected in three instrumented meeting 
rooms, include a range of synchronized audio and 
video recordings. Meetings contain speech in 
English, mostly from non native speakers. 

In this work, the development and evaluation of 
speaker tracking systems is based on a subset of the 
AMI Corpus, the Edinburgh scenario meetings, 
including 15 sessions: ES2002-ES2016, with four 
meetings per session, each meeting being half an 
hour long on average. Training data are taken from 
meetings recorded at the three AMI sites. The audio 
stream is obtained by mixing the signals from the 
headset microphones of the participating speakers. 
Three of the four speakers participating in each 
session are taken as target speakers, the remaining 
one being assigned the role of impostor. Careful 
impostor selection –not random– is made to account 
for gender unbalanced sessions. In sessions 
containing just one female speaker, the impostor is 
forced to be male (and vice versa), in order to avoid 
that gender favors impostor discrimination. 

In order to assess the speaker tracking 
performance in realistic conditions, two independent 
subsets are defined, consisting of different sessions 
(and therefore different speakers), for development 
and evaluation purposes, respectively. The 
development set, consisting of 8 sessions (32 
meetings), is used to tune the configuration 
parameters of the speaker tracking systems. The 
evaluation set, including the remaining 7 sessions 
(28 meetings), is used only to evaluate the 
performance of the previously tuned speaker 
tracking systems. 

Both the development and evaluation subsets are 
further divided into train and test datasets. Two 
meetings per session are randomly selected for 
training speaker models, and the remaining two are 
left for testing purposes. Time references are based 
on manual annotations provided in the AMI Corpus. 

 3.2  UBM Estimation 

Two speaker detection systems have been developed 
based on the MAP-UBM approach. They only differ 
in the data used to estimate the UBM: UBM-g uses 

15 gender-balanced AMI meetings from all sites 
except Edinburgh (so, a kind of room mismatch may 
be expected), whereas UBM-t uses only speech from 
target speakers in training meetings. UBM-g is 
estimated once and can be applied to whatever 
evaluation data and target speakers, whereas UBM-t 
must be estimated specifically for each set of target 
speakers. 

 3.3  Performance Measures 

The performance of speaker tracking systems is 
commonly analyzed by means of Detection Error 
Tradeoff (DET) plots (Martin, 1997). Performance is 
measured in terms of time that is correctly or 
incorrectly classified as belonging to a target. 
Therefore, miss and false alarm rates are computed 
as a function of time (Martin, 2001) and not as a 
function of trial number, like in speaker detection 
experiments. 

DET performance can be summarized in a single 
figure by means of the Equal Error Rate (EER), the 
point of the DET curve at which miss and false 
alarm rates are equal. Obviously, the lower the EER, 
the higher the accuracy of a speaker tracking system. 

Another way to summarize in a single figure the 
performance of a speaker tracking system is the so 
called F-measure, defined as follows: 

ܨ ൌ
2.0 כ PRC כ RCL

PRC  RCL
    (4)

where precision (PRC) and recall (RCL) are related 
to false alarm and miss rates respectively. PRC 
measures the correctly detected target time from the 
total target time detected. RCL computes the 
correctly detected target time from the actual target 
time. The F-measure ranges from 0 to 1, with higher 
values indicating better performance. Collar periods 
of 250 milliseconds at the end of speaker turns are 
ignored for scoring purposes. Thus, speaker turns of 
less than 0.5 seconds are not scored. 

 4  EXPERIMENTAL RESULTS 

Figures 1 and 2 show the performance of the online 
and offline speaker tracking systems, using UBM-g 
and UBM-t as background models, for the 
development and evaluation sets, respectively. Since 
the speaker detection strategy followed in this work 
cannot detect speaker overlaps, all the segments 
containing speech from two or more speakers are 
removed when scoring test meetings. 
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Figure 1: DET performance of speaker tracking systems 
on the development set defined on the AMI corpus. 

 
Figure 2: DET performance of speaker tracking systems 
on the evaluation set defined on the AMI corpus. 

As expected, the classical offline system 
outperforms the proposed low-latency online 
system, but the performance of the latter is quite 
good. Taking the performance of the offline system 
as reference, in speaker tracking experiments over 
the evaluation set, the EER increases from 25.80 to 
26.20 (1.55% relative degradation) when using 
UBM-g, and from 19.07 to 21.14 (10.85% relative 
degradation) when using UBM-t. On the other hand, 
UBM-t systems outperform UBM-g systems, maybe 
due to the aforementioned room mismatch in UBM-
g and the limited amount of training data. 

In addition, performance degradation from 
development to evaluation is small (from around 
20% to 21% EER) in MAP-UBM-t, which means 
that system configuration (based on the development 
set) was also suitable for the evaluation set. The 
MAP-UBM-g system suffers a bigger degradation 
from development to evaluation. It seems that 
estimating the UBM from unknown speakers in 

mismatched conditions (different rooms) degrades 
acoustic coverage and reduces the robustness of 
system configuration with regard to using a room-
specific UBM estimated from target speakers. The 
UBM-t system might be getting advantage not only 
from matching the room, but also from the 
consistency between the speakers in the UBM and 
the target speakers. In fact, 100% of the target 
speakers appearing in the test corpus contribute data 
to the UBM-t, increasing the consistency of speaker 
models estimated through MAP adaptation (because 
a perfect match exists between the adaptation data 
corresponding to any target speaker and some of the 
component densities of the UBM). 

Table 1 shows precision (PRC), recall (RCL) and 
F-measure performance of the speaker tracking 
systems, for both the calibrated and uncalibrated 
speaker detection scores. These results correspond to 
the operation point (threshold) considered optimal in 
the DET curve. The threshold used for calibrated 
scores is based on application-dependent costs and 
target priors, adjusted on the development corpus. 
For uncalibrated scores, the threshold is fixed to 
zero, i.e. a target speaker is detected if the likelihood 
of the null hypothesis is higher than that of the 
alternative hypothesis. 

Table 1: Precision (PRC), Recall (RCL) and F-measure 
performance of the real-time (rt) and reference (ref) 
speaker tracking systems, using UBM-g and UBM-t, on 
the development (Dev) and evaluation (Eval) sets. 

  Uncalibrated Calibrated 
  PRC RCL F PRC RCL F 

Dev 

rt-UBM-g 0.66 0.92 0.77 0.81 0.8 0.81
ref-UBM-g 0.67 0.93 0.78 0.82 0.82 0.82
rt-UBM-t 0.67 0.91 0.77 0.82 0.83 0.82
ref-UBM-t 0.69 0.92 0.79 0.84 0.86 0.85

Eval

rt-UBM-g 0.69 0.92 0.78 0.78 0.85 0.8 
ref-UBM-g 0.69 0.93 0.79 0.78 0.84 0.81
rt-UBM-t 0.71 0.91 0.8 0.81 0.85 0.83
ref-UBM-t 0.72 0.92 0.81 0.81 0.87 0.84

 
Results in Table 1 demonstrate the usefulness of 

the calibration stage, which leads to better 
performance in all cases. Finally, note that the real-
time (online, low-latency) system provides only 
slightly worse performance than the reference 
(offline) system: 1.7% average relative degradation 
in F-measure. Though speaker tracking actually 
takes advantage from an offline acoustic 
segmentation of the audio stream, depending on the 
scenario and the required latency, offline audio 
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segmentation would not be feasible. In such a 
situation, the proposed approach provides real-time 
low-latency online speaker tracking at the cost of 
little performance degradation. 

 5  CONCLUSIONS AND FUTURE 
WORK 

In this paper, an online speaker tracking system, 
designed for an Ambient Intelligence scenario, is 
presented an evaluated. The system processes 
continuous audio streams and outputs a speaker 
identification decision for fixed-length (one second) 
segments. Speaker detection is done by means of a 
MAP-UBM speaker verification backend. A 
calibration stage is applied which linearly maps 
detection scores to likelihood ratios. Calibration 
parameters are estimated beforehand based on 
development data, yielding significant performance 
improvements without increasing the computational 
cost, which is crucial for a real-time low-latency 
system. An alternative speaker tracking system, 
based on an offline segmentation of the audio stream 
has been developed and evaluated for reference. 

Experiments have been carried out on a subset of 
the AMI Corpus of meeting conversations. Results 
demonstrate that better results can be attained when 
the UBM is estimated from data matching test 
conditions (same room, same speakers), instead of 
using general but unrelated data. The calibration 
stage provides performance improvements in all 
cases. Finally, offline segmentation of audio streams 
actually improves speaker tracking performance 
with regard to using fixed-length segments. 
However, depending on the scenario and the 
required latency, offline audio segmentation would 
not be feasible. The proposed system provides real-
time low-latency online speaker tracking with little 
performance degradation. 

Current work involves increasing the robustness 
of detection scores (and decisions) by using 
information from past segments. Future work 
includes using detection scores in a speaker 
verification framework (thus allowing the detection 
of multiple speakers), and making a smart use of all 
the available data through new UBM estimation 
strategies. 
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