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Kasim Terzić, Lothar Hotz
HITeC e.V., Department of Computer Science, University of Hamburg, Hamburg, Germany
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Abstract: Recognizing structure is an important aspect of interpreting many computer vision domains. Structure can
manifest itself both visually, in terms of repeated low-level phenomena, and conceptually, in terms of a high-
level compositional hierarchy. In this paper, we demonstrate an approach for combining a low-level repetitive
structure detector with a logical high-level interpretation system. We evaluate the performance on a set of
images from the building façade domain.

1 INTRODUCTION

The scene interpretation can be improved by exploit-
ing the structural information present in many do-
mains. In this paper we illustrate the use of high-level
structural models for combining structured low-level
evidence into a complete, coherent interpretation of
an image. The paper addresses the task of window
detection in complex façade scenes. Windows in a
façade are often organised into regular structures but
the structure is often complex and there is a lot of
variation. There are two sources of structure avail-
able: (i) visual structure, manifested in repeated vi-
sual phenomena in the image, and (ii) compositional
structure, expressed as part-of relations in the compo-
sitional hierarchy of scene objects.

We exploit the visual structure by using a struc-
tural component detection algorithm for window de-
tection. It detects structural components in the image
consisting of horizontally and vertically aligned de-
tections based on automatically detected seeds. The
problem with this approach is that it leads to a number
of conflicting and overlapping structural components,
and many false positives. Each of the the detected
structural components explains some of the windows,
but usually none of them explains all the windows.

The compositional structure is modelled in a
knowledge base describing the domain of façade
scenes. Objects can be parts of aggregates and their

arrangement within the aggregates can be modelled
manually or learnt allowing more complex relations
than simple alignment. However, logical interpreta-
tion based on object-level depends on correct detec-
tions. Our approach combines the two sources of
structure by using a middle-layer component to form
a complete interpretation of the façade.

There is a lot of recent interest in the field of com-
puter vision for using high-level context for interpret-
ing scenes from a wide range of domains such as air-
port activity recognition (Fusier et al., 2007), inter-
preting building façades (Hotz et al., 2008; Čech and
Šára, 2007) or analysing traffic situations (Mohnhaupt
and Neumann, 1993; Hummel et al., 2008). However,
we are not aware of other current work combining dif-
ferent high-level and low-level sources of structure for
interpreting highly structured domains.

Several other recent approaches deal with the inte-
gration of low-level image processing and high-level
reasoning like e.g. (Zhu and Mumford, 2006) which
uses grammar-based models for detecting structure at
multiple levels of abstraction including the low level.
Structured scenes are also examined in (Seo et al.,
2009), where images of parking blocks consisting of
parking spots are interpreted. They demonstrate an
approach for filling gaps in structures by using inter-
polation and extrapolation. In contrast to the more
domain-specific approach used in that work our ap-
proach is based on a declarative representation of the
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constraints and object classes, which facilitates the
application of the techniques to different domains (see
(Hotz and Neumann, 2005) for an example). We show
that the combination of high-level and low-level struc-
tural models improves the detection of windows in the
façade domain.

The paper is structured as follows. First, the vi-
sual and conceptual structure models are described in
Section 2. The interpretation process used in our ex-
periments is described in Section 3. The results of an
evaluation on a set of annotated images are presented
in Section 4 and the paper is concluded in Section 5.

2 INTEGRATING DIFFERENT
STRUCTURE MODELS

Two sources of structure are used in this paper. The
visual structure is exploited by a low-level process to
detect repetitive structures in the image. The results
of this procedure are referred to as evidence. The
evidence is mapped into a high-level reasoning sys-
tem which interprets the scene based on a concep-
tual model. The instances of high-level models are
referred to as views. The matching of low-level evi-
dence to high-level views is done by the middle-layer
component Matchbox. This section describes the two
structure models and outlines our integration strategy.

2.1 Visual Structure Model

The structure component detection algorithm is a
greedy procedure for finding sets of self-similar hor-
izontally and vertically aligned windows in a façade
image.

The detection process starts by running a sliding
window detector over the image. It produces a set
of initial window hypotheses – component seeds –
xi(α,β,s), i = 1, . . . ,N, parametrised by their position
(α,β) in the image and their scale s. We trained an
AdaBoost classifier as the seed detector (Freund and
Schapire, 1997). It is intentionally built to be weak
(trained on about 100 window images only) to demon-
strate the advantage of structural priors for window
detection. Consequently, the seed set contains many
false positives and usually several windows on the
façade are missed.

The structural component growing starts by ini-
tialising each component by one seed xi. When ex-
tending a component by a new window, two factors
are considered besides the alignment with already in-
cluded windows: (i) a window model similarity FW ,
and (ii) a component elements appearance similarity
FC.
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Figure 1: A row component growing process. Right column
shows the incrementally updated component confidence L
over the row positions β (blue). Already accepted window
positions are marked by a small circle in the confidence plot
and by a solid-line rectangle in the image (left column).
Their neighbourhood which is suppressed for further search
is shown as red parts in the confidence plot. A new candi-
date for the compoment expansion is marked by a big circle
in the confidence plot and by a dashed rectangle in the im-
age. The acceptance threshold is plotted in green.

The window model similarity FW is used to pre-
vent the search to drift away from the window class
appearance. In our case, the window class is de-
fined by the AdaBoost classifier. Its real-valued out-
put fW (x) = ∑t ht(x) is used to compute an a poste-
riori probability estimate of an image x being a win-
dow (Friedman et al., 1998)

FW (x) =
exp( fW (x))

exp(− fW (x))+ exp( fW (x))
. (1)

The component appearance similarity FC assures
only the windows of the same type are included into
a component. It is computed as in equation (1) but
with the use of an on-line adapted AdaBoost classifier
fC (Grabner et al., 2006) trained on the compoment
windows only. Each time a new window is added
to the compoment, the appearance consistency clas-
sifier fC is updated. The negative examples for the
update are collected from the window neighbourhood
as in (Grabner et al., 2006).

The complete component growing procedure is
demonstrated in Figure 1 on a single row of win-
dows. Each component is extended independently in
a greedy way maximising a criterion function

L(α,β,s) = FW (x(α,β,s))+FC(x(α,β,s)) . (2)

Since the windows in the component are assumed to
be aligned and of the same size, only a 1D search
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start 3rd step conflict

Figure 2: Full 2D growing process with alignment conflict
illustration.

Figure 3: Examples of components detected using sctruc-
ture component detection algorithm.

in vertical (α parameter, not used in this example) or
horizontal (β parameter) direction is needed. Due to
the non-overlapping assumption, the surrounding of
already visited positions defined by the window size
is masked-out for the search.

To compute the confidence L, the appearance clas-
sifier FC is first initialised by the seed xi(α,β,s). As
new windows are added to the component, the classi-
fier is updated incrementally. The search is terminated
when max(L) falls below a threshold θ = 1.

Figure 2 shows an example of the component ex-
pansion in both vertical and horizontal direction at the
same time. For each expansion step a maximum of L
is searched along possible horizontal and vertical ex-
pansion of all component elements. To preserve the
alignment of all component elements, the search is
further restricted to positions which are not in conflict
with other component windows (Figure 2, right). Sev-
eral detected components grown from different seeds
are shown in Figure 3. The expansion directions used
here are particularly suited for façade images, but they
can be expressed more generally as a grammar, allow-
ing different types of alignment.

2.2 Compositional Structure Model

As shown in (Hotz and Neumann, 2005), scene inter-
pretation can be formally modelled as a knowledge-
based process. Our conceptual model uses a
knowledge-based representation of all scene objects
that can occur in a façade scene, i.e. primitive ob-
jects like window or door, aggregates like balcony
or entrance, and alignments. Alignments are used
to represent vertical and horizontal structures like a
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Figure 4: Part of the ontology including instances for an
image.

collection of aligned rectangles as they are given by
low-level structure detector (see Section 2.1). Such
structures can be specialised into alignments like
window-array or stack-of-storages. The ap-
proach is general enough to be used on a wide range
of domains, and it is applied to windows and window
arrays in this case.

Besides the part definitions, the spatial relations
(constraints) are given for aggregates and alignments
that have to be fulfilled for scene objects of a partic-
ular object class. Those constraints are learnt in this
case (Hartz et al., 2009) , but they can also be man-
ually constructed. In the case of a window array, the
main constraints on the parts are: (i) same size, (ii)
same distance, and (iii) vertical alignment, all within
a certain tolerance.

The conceptual model represents all known prim-
itive objects, aggregates and alignments, in a declar-
ative way. The interpretation process uses this model
for performing interpretation steps that subsequently
construct an interpretation of a given scene. The final
interpretation of the scene includes the detections pro-
vided by the structure as well as hypotheses which are
made according to the conceptual model (see Section
3.2).

2.3 The SCENIC System

A realization of a knowledge-based interpretation sys-
tem capable of interpreting scenes based on models
described in the previous section exists in SCENIC
(Terzic et al., 2007). SCENIC includes a high-level
reasoning layer, a set of low-level image process-
ing modules (IPMs), and a middle-layer component
called Matchbox which matches high-level concepts
to the detections provided by the IPMs.

The reasoning layer of SCENIC is based on the
configuration methodology (Soininen et al., 1998),
which provides commonly known domain indepen-
dent reasoning techniques like constraint propagation
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(Yang and Yang, 1997) or rule-based reasoning (Rus-
sel and Norvig, 2003) in combination with a declara-
tive domain-specific knowledge base of concepts and
constraints. Furthermore, the high-level layer consists
of a declarative interpretation process, which struc-
tures the reasoning tasks of propagating constraints,
instantiating concepts to instances, determining rela-
tions between instances, etc. Concepts are mainly
aggregate models, their instances represent aggregate
instantiations (or simply: “aggregates”), i.e. configu-
rations of concrete objects in scenes. The interpreta-
tion process attempts to recognise aggregates, which
describe the observed evidence. Figure 4 shows a part
of the conceptual model.

Within SCENIC , a strict separation of observed
views (2D projections within an image) and 3d-
objects is given. Views represent typical appearances
of scene objects and 3d-objects collect all kinds of
information known or inferred for scene objects, e.g.
compositional and spatial relations. This allows for
occlusion inferences and 3D reasoning, but since this
paper focusses on interpreting rectified façade images
(façade edges are parallel to image edges), this feature
is not exploited in this paper.

The main task of the Matchbox is the grounding
of high-level concepts by matching evidence to high-
level views. This occurs either in a bottom-up direc-
tion, where new views are created from available evi-
dence, or a top-down direction, where view hypothe-
ses are matched to available evidence. In the context
of this paper, the bottom-up step is the selection of the
best low-level structures and passing them to the high-
level. The top-down step is looking for the low-level
window detections which fit the hypotheses created
by the high-level.

2.4 Integration Approach

The structure component detection algorithm outputs
a set of structural components, one for each seed
(components containing only a single window are re-
moved). They are overlapping as they represent dif-
ferent parts of the same façade structure grown from
different seeds. Since logic-based interpretation sys-
tems (in our case SCENIC ) expect consistent input,
these structures can not all be passed to the high-level
at the same time, as they would lead to logical con-
flicts. Our approach is to integrate the structured evi-
dence by starting with strong evidence and relying on
top-down inference to fill in the missing objects. The
algorithm is sketched below:

1. select the strongest evidence from the structured
bag of evidence by the Matchbox (Section 3.1),

2. interpret the image based on the available evi-
dence (Section 3.2),

3. suggest hypotheses of missing objects (Section
3.2),

4. match the hypotheses to existing unused evidence
(Section 3.3).

Steps 3-4 are repeated until all hypotheses are
checked and no more hypotheses can be made. The
structural information from the low-level. which ar-
ranges objects into structures, helps the high-level to
instantiate the correct aggregates and thus propagate
the necessary constraints. The use of high-level hy-
potheses means that high-level context is used to pick
out the correct evidence from a set of conflicting and
spurious detections. This way, both sources of context
are combined to create a single interpretation

3 INTERPRETATION PROCESS

3.1 Initialising the High-Level

The low-level evidence consists of many structural
components, which in turn consist of many individ-
ual window detections. The window detections often
overlap with detections from other structural compo-
nents. We define the confidence Cw of a window de-
tection Wn as

Cw(Wn) = ∑
n6=m

Area(Wn∩Wm)

max(Area(Wn),Area(Wm))

Based on the confidences of individual window de-
tections W , the confidence Cr is calculated for each
window row R as:

Cr(R) = ∑
Wn∈R

Cw(Wn)

The rows are then sorted according to their confi-
dence, and a best set of non-overlapping rows is se-
lected as initial evidence for interpretation by using
a greedy algorithm. The row with the highest con-
fidence Cr is selected as the best row and all rows
overlapping with that row in the vertical dimension
are removed. Then the row with the second highest
confidence is selected, and the process continues un-
til there are no rows left. Figure 6 shows the result of
this algorithm on one example image.

The selected rows and the corresponding window
detections are passed to the high level. It is impor-
tant to note that the partonomical relations are also
passed as evidence along with the instantiated views,
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Figure 5: All the evidence from the low level.

Figure 6: Automatically selected initial evidence. All hor-
izontally aligned windows belong to the same rows (not
shown here).

i.e. each window belongs to a row formation along
with other windows. This means that the high-level
doesn’t have to examine all possible combinations of
low-level detections in order to find a structure. Af-
ter the initialization, the high-level interpretation is
started.

3.2 High-Level Interpretation Process

The task of the high-level reasoning is to find a logi-
cal model for the set of observed scene objects passed
as evidence by a lower-level process, i.e. to integrate
all scene objects into aggregates corresponding to a
conceptual model described in Section 2.2. The in-
terpretation process can hypothesise scene objects if
their existence is likely, considering the current inter-
pretation context. All hypotheses made by the inter-
pretation process should be confirmed by the evidence
in the scene. For confirmation, a request is sent to the
Matchbox, which controls the image processing mod-
ules (see Section 3.3 and (Hotz et al., 2008)).

Instance

has-part

Facade-1

Building-1

1. Decomposition Hypothesis

hypothesized has-part

Facade-Scene-1

Interpretation goal

Window-2

Horizontal-Alignment-1

Horizontal-Alignment-2

Window-1 Window-3

Window-5Window-4

has-view for each instanceHorizontal-Alignment

Window-Array

has-instance

has-specialisation

Horizontal-Alignment-View-1

Window-View-1
Window-View-2

Window-View-3

Window-View-4
Window-View-5

Horizontal-Alignment-View-2

3. Specialization

Window-102 Window-103

5. Extrapolation with
position, distance, size
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6. Integration

2. Instantiating view and 3d instances.

Figure 7: An interpretation process realisation example.

The high-level reasoning used in this paper is re-
alised through a combination of constraint process-
ing, description-logic like inferences, and configura-
tion inferences. See (Hotz and Neumann, 2005) for
more details.

The interpretation process starts by creating
mandatory parts that directly follow from a given in-
terpretation goal (see Figure 7). In the case of the
façade domain, this step is caused by the fact that
each façade scene (the goal) has a building which has
a façade as a part. These steps are called decomposi-
tion steps.

As described in the previous section, the next step
is to represent structured and primitive views from
the Matchbox as instances of view concepts (e.g.
horizontal-alignment-view-1) and 3d-concepts
(e.g. horizontal-alignment-1). If the parts of a
horizontal alignment are determined by the Matchbox
to be of object class window, the horizontal alignment
can be specialised to a window-array (see Step 3).
Such window arrays are extended with further win-
dow hypotheses based on the the position, size, and
distance constraints between the windows of an array.
For this step of identifying window hypotheses, three
heuristics are applied.

The first one tries to adopt the structure of the
nearby window array with the strongest confidence.
This structure is considered to be context which might
influence positions, distances, and sizes of hypothe-
sised windows. If no context is present, the second
heuristic, interpolation, fills gaps in a window array
by trying to fit window hypotheses between exist-
ing windows while observing the window array con-
straints. The third one, extrapolation, hypothesises
windows on the left and right side of a window array
(see (Seo et al., 2009) for similar steps). As a last
step, the observed structure instances are integrated
into the façade instance.

The interpretation process creates hypotheses of
missing parts based on the conceptual models and the
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current scene context. The hypotheses describe the
expected objects with their size, position, and object
class (in this case, a window). They are matched to
available evidence as described in the next section.
The hypotheses are updated to reflect the observed ev-
idence position and size ranges and the interpretation
process proceeds with those confirmed hypotheses. A
result is shown in Figure 8 (c). The white rectangles
show the low-level detections selected as initial ev-
idence, and the red rectangles show the hypotheses
created by the interpretation process.

3.3 Matching Hypotheses to Evidence

The hypotheses created as a part of the interpretation
process need to be confirmed by evidence from the
low level. The task of the Matchbox is to look for
the unused evidence which can confirm the generated
hypotheses.

The hypotheses are described in terms of allowed
ranges for the position and size. The position and
the size ranges are computed at the high-level such
that the created hypotheses satisfy all the constraints
imposed by the high-level window-array model (e.g.
vertically aligned windows of similar size, which do
non intersect). The hypothesis is confirmed if there is
evidence detected in the provided area which has not
been passed to the high level during the initial step
and which has a size allowed by the size ranges de-
scribing the hypothesis. If there are several possible
matches, the match with the highest confidence Cw is
selected.

Due to the imperfection of low-level detectors,
the exact position and size of the detections is ex-
tended to ranges of allowed values. These uncertainty
ranges cover the observed inaccuracy of the detector
and were determined experimentally on a set of an-
notated images. The matching process then looks at
the intersection of the position and size ranges of the
hypothesis and the available evidence and confirms
the hypothesis if the intersection of all ranges is not
empty.

At the end of the interpretation, the unconfirmed
hypotheses are discarded as hallucinations, and the
combination of the evidence selected in the initial step
and the confirmed high-level instances forms the final
interpretation of the image.

4 EVALUATION AND
DISCUSSION

We have tested the combined system on 7 hand-
annotated images from the façade domain, consisting
of 261 windows.

Table 1 shows the effect of the combined struc-
ture models on the detection rate. The selected low-
level detections used for initialisation (third column)
are tested against the annotation. The detection rate of
this bottom-up approach is shown in the sixth column
as a baseline for comparison. If the confirmed high-
level hypotheses (fifth column) are added, the detec-
tion rate generally improves (seventh column).

The different steps of the process can be seen in
Figure 8. An interesting observation is that a num-
ber of hypotheses which correspond to windows in
the image, shown in (d) are not among the hypothe-
ses which were confirmed by the low-level (e). The
main cause for this was poor contrast and occlusions
which prevented some of the windows from being de-
tected by the low-level stage. In other words, there
were no window detections in any of the structural
components which corresponded to these windows.

Figure 9 shows the results on the remaining im-
ages. In three cases, there was no improvement, since
the initially selected evidence has already detected all
the windows. The created hypotheses were not con-
firmed. Image 5 (shown at the bottom) was particu-
larly challenging due to the rich and irregular struc-
ture. The confirmed high-level hypotheses detected
15 further windows compared to the bottom-up ap-
proach, but also found 3 false positives. The evalua-
tion data show that the combined approach improved
the detection considerably on some images (espe-
cially images 2, 3 and 5). At the same time, it didn’t
hurt the cases where the low-level approach was al-
ready successful (images 4, 6 and 7). Our combined
approach has only resulted in false positive detections
in one case (image 5).

False positives can only occur if both structure
models expect an object at a wrong location. Since
both structure models rely on regularity assumptions,
this sometimes occurs on images with an irregular
structure. However, as can be seen in Figure 8 (c), the
combination of the two structure sources makes good
hypotheses that are confirmable by a human. There-
fore, we see a potential for further improvement of
the detection rate if additional low-level detectors are
integrated into the system and used for confirming hy-
potheses.
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(a) (b) (c) (d) (e)

Figure 8: The interpretation process shown on image 3. From left to right: (a) all evidence provided by the structure detector,
(b) the evidence used to initialise the high level, (c) all hypotheses (shown in red), (d) the hypotheses which correspond to real
objects and (e) the hypotheses which were automatically confirmed by low-level evidence. The windows partially occluded
by balconies were hypothesised correctly, but there were no low-level detections to confirm them.

Img1 hypotheses Img2 hypotheses Img4 hypotheses Img6 hypotheses Img7 hypotheses

Img1 confirmed Img2 confirmed Img4 confirmed Img6 confirmed Img7 confirmed

Img5 hypotheses Img5 confirmed

Figure 9: The result of the combined structured models on the testing images.

Table 1: Improvement of the window detection rate after combining two structure sources. In images 4, 6 and 7, the low-level
structure detector detected everything except partial windows at the edge of the image, so there was no improvement.

Img annotated correct correct confirmed low-level combined improvement combined
low-level high-level correct detection detection over pure false

windows windows hypotheses hypotheses rate rate bottom-up positives
1 44 27 13 5 61.4% 72.7% 11.3% 0
2 37 23 7 3 62.2% 70.3% 8.1% 0
3 40 33 9 3 82.5% 90% 7.5% 0
4 35 33 4 0 94.3% 94.3% 0% 0
5 60 22 15 15 36.7% 61.7% 25% 3
6 25 24 4 0 96% 96% 0% 0
7 20 19 0 0 95% 95% 0% 0
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5 CONCLUSIONS

One of the challenges of scene interpretation is the
use of structural information for improving the inter-
pretation of a scene. This paper describes an approach
for integrating two separate sources of structure and
shows that this combination improves the detection
of windows in the façade domain. The low-level
structure detector typically computes a large number
of potential primitive and structured evidences. A
middle-layer component called “Matchbox” reduces
this number by selecting the best primitives and struc-
tures. High-level reasoning creates hypotheses of
missing objects that are caused by the context of the
surrounding scene objects. These hypotheses are con-
firmed or refuted by comparing them to the low-level
results. Thus, the Matchbox mediates between both
sources of structures, and relates high-level concepts
to low-level detections.

The approach was tested on a set of façade im-
ages, which are rich in structure. The results show
that combining visual and compositional structure can
considerably improve the detection of windows in
this domain compared to pure bottom-up approach
based on visual structure alone. Not all the correct
high-level hypotheses were confirmed by low-level
evidence, mostly due to poor contrast and partially
occluded windows. Further improvements might be
possible by using additional low-level detectors for
confirming or refuting high-level hypotheses.
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R., and Neumann, B., editors, Logic and Probability
for Scene Interpretation, number 08091 in Dagstuhl
Seminar Proceedings, Dagstuhl, Germany. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, Ger-
many.

Mohnhaupt, M. and Neumann, B. (1993). Understanding
object motion: recognition, learning and spatiotem-
poral reasoning. Robotics and Autonomous Systems,
pages 65–91.

Russel, S. and Norvig, P. (2003). Artificial Intelligence - A
Modern Approach. Prentice-Hall.

Seo, Y.-W., Ratliff, N., and Urmson, C. (2009). Self-
supervised aerial image analysis for extracting park-
ing lot structure. In Proc. of Twenty-First Int. Joint
Conf. on AI IJCAI-09, pages 1837–1842, Pasadena.

Soininen, T., Tiihonen, J., Männistö, T., and Sulonen, R.
(1998). Towards a General Ontology of Configura-
tion. Artificial Intelligence for Engineering Design,
Analysis and Manufacturing (1998), 12, pages 357–
372.

Terzic, K., Hotz, L., and Neumann, B. (2007). Division of
Work During Behaviour Recognition - The SCENIC
Approach. In Schuldt, A., editor, Behaviour Moni-
toring and Interpretation, Workshop Proceedings KI,
Universität Bremen.

Čech, J. and Šára, R. (2007). Language of the structural
models for constrained image segmentation. Tech-
nical Report Technical Report TN-eTRIMS-CMP-03-
2007, Czech Technical University, Prague.

Yang, C. and Yang, M.-H. (1997). Constraint Networks: A
Survey. In Proc. of the IEEE International Conference
on Systems, Man and Cybernetics, volume 2, Orlando,
Florida, USA. Institute of Electrical and Electronics
Engineers (IEEE).

Zhu, S. and Mumford, D. (2006). A Stochastic Grammar of
Images. Foundations and Trends in Computer Graph-
ics and Vision. Prentice-Hall.

ICAART 2010 - 2nd International Conference on Agents and Artificial Intelligence

364


