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Abstract: Heart-rate monitoring is a basic measure for cardiovascular functionality assessment. The electrocardiogram 
(ECG) and Holter monitoring devices are accurate, but their use in the field is limited. 
Photoplethysmography is an optical technique that has been developed for experimental use in vascular 
disease. Because of its non-invasive, safe, and easy-to-use properties, it is considered a promising tool that 
may replace some of the current traditional cardiovascular diagnostic tools. A useful algorithm for a-wave 
detection in the second derivative plethysmogram (SDPTG) is introduced for heart–rate monitoring. The 
performance of the proposed method was tested on 27 records measured at rest and after exercise. Statistical 
HRV measures can be calculated using the a-a interval of the SDPTG. 

1 INTRODUCTION 

Heart rate variability has considerable potential to 
assess autonomic nervous system fluctuations in 
normal healthy individuals and in patients with 
various cardiovascular and non-cardiovascular 
disorders. Heart rate variability (HRV) studies could 
enhance our understanding of physiological 
phenomena, the actions of medications, and disease 
mechanisms. 

Traditionally, HRV measures are based on 
cardiac inter-beat intervals using the 
electrocardiogram (ECG). Some practitioners, 
however, have used a distal measurement of the 
arterial pulse like the fingertip photoplethysmogram 
to measure the heart rate. However, there are some 
potential obstacles to obtaining precise inter-beat 
intervals from arterial pressure pulses, especially 
when measured from a distal source like fingertip 
photoplethysmogram. The lack of sharp peaks in 
blood pressure pulses compared to the R-peaks in 
the ECG makes the accurate determination of heart 
rate challenging. Also the shape and timing of the 
pulse waveform may be influenced by ventricular 
pressure, flow rate, time period, or other parameters 
of cardiac output. Peripheral effects, such as changes 
in vascular tone, may also influence distal pulse 
peak detection. 

(Berntson et al., 1997) reported these potential 
drawbacks of the fingertip plethysomograph. 

Therefore, they strongly advised the usage of R-R 
intervals from ECG signals to determine interbeat 
intervals. However, they also stated that “the use of 
intra-arterial pressure pulses and a sophisticated 
peak detection algorithm may be acceptable,” and 
also recommended, Their opinion is that indirect 
measures, such as photoplethymographic signals 
require further validation.  

(Giardino et al., 2002) proved that distal pulse 
pressure is adequate for determining the heart rate 
variability under resting conditions. Their results 
provided grounds for some caution in the use of 
finger plethysmography in experimental studies, 
where manipulations may alter the relationship 
between cardiac chronotropic control and distal 
blood pressure changes in unpredictable ways. They 
recommended further studies that include test–retest 
reliability assessment of different data collection 
techniques.  

The the second derivative of 
photoplethysmogram (SDPTG) was developed as a 
method to allow more accurate recognition of the 
inflection points and easier interpretation of the 
original plethysmogram wave.  

In literature, the second derivative of 
photoplethysmogram (SDPTG) has also been called 
acceleration plethysmogram (APG). In this paper, 
the abbreviation SDPTG will be used.  
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Figure 1: Signal Measurements (a) Original fingertip 
photoplethysmogram (b) second derivative wave of 
photoplethysmogram (SDPTG). 

As shown in Fig.1, The heart beat in SDPTG 
consists of four systolic waves and one diastolic 
waven (Takazawa et al., 1993), namely a-wave 
(early systolic positive wave), b-wave (early systolic 
negative wave), c-wave (late systolic reincreasing 
wave), d-wave (late systolic redecreasing wave) and 
e-wave (early diastolic positive wave). The height of 
each wave was measured from the baseline, with the 
values above the baseline being positive and those 
under it negative.  

Because the peaks in the SDPTG signal are more 
clearly defined than in the original 
photoplethysmographic signal is more suitable for 
accurate heart rate detection. 

(Taniguchi et al., 2007) used a-a interval in the 
second derivative photoplethysmogram instead of R-
R interval in the ECG to determine the heart rate 
evaluating stress that surgeons experience. 

To calculate the heart rate variability (HRV) using 
the second derivative photoplethysmogram 
(SDPTG), the accurate detection of individual a-
waves is a first essential step. 

Although the clinical significance of using 
SDPTG signals has been discussed, there is still a 
lack of studies focusing on the automatic detection 
of a-waves in SDPTG signals.  

In this paper, we present an algorithm that can be 
used to calculate the heart rate variability using the 
finger photoplethysmograph. This investigation 
aimed to develop a fast and robust algorithm to 
detect a-waves in SDPTG signals. The SDPTG 
waveform was measured in a population-based 
sample of healthy males at rest and after exercise.  

2 DATA 

The photoplethysmograms of twenty seven healthy 
males volunteers with a mean±SD age of 27±6.9 
were measured by a photoplethysmograph (Salus), 
equipped with a sensor located at the cuticle of the 

second digit of the left hand. Measurements were 
performed while the subject was at rest on a chair. 
Data were collected at a sampling rate of 200Hz. 
The duration of each data segment is 20 seconds. 

The test was conducted from 20th of April to 5th 
of May 2006 at Northern Territory Institution of 
Sport (NTIS). 

All procedures were approved by the ethics 
committee of Charles Darwin University. Informed 
consent was obtained from all volunteers. 

3 METHODOLOGY 

An algorithm to detect a-waves is described below. 
The algorithm consists of three main stages: pre-
processing, feature extractions and thresholding. The 
structure of the algorithm is shown in Fig. 2.  

 
Figure 2: Algorithm structure. 

3.1 Pre-Processing 

The pre-processing stage consists of two sub-stages: 
bandpass filtering and taking the second derivative 
of the photoplethysmogram. 

3.1.1 Bandpass Filter 

We remove the baseline wander and high 
frequencies which do not contribute to a-waves 
detection by using a second order Butterworth filter 
with passband 0.5-10 Hz.  
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Fig. 3(b) is the result of applying a Butterworth filter 
to the original signal shown in Fig. 3(a) 

3.1.2 Second Derivative 

z[n] shown in Fig. 3(c) is the second derivative of 
the filtered photoplethysmogram s[n]. Inflection 
points are seen as peaks in the SDPTG. 

3.2 Feature Extraction 

The feature extraction stage consists of two sub-
stages: squaring and selection of potential blocks. 

3.2.1 Squaring 

y[n] is the square of the SDPTG signal z[n]. 
Squaring the signal makes the results positive and 
emphasizes large differences  

3.2.2 Selection of Potential Blocks  

We demarcate the onset and offset of the potential a-
waves in the SDPTG signals by using two moving 
averages, based on the normal duration of the ab 
interval which for a healthy adult is 187±17 ms. 

For a sampling frequency of 200 Hz, the 
maximum window size corresponding to the ab 
interval is approximately 40 points and the 
maximum window size corresponding to complete 
heart beat interval is approximately 220 points. We 
will use the maximum window sizes to detect a-
waves. The a-waves are detected by comparing two 
moving averages. 

First moving-window integration: The fist moving 
average is., calculated as follows: 

y[n]).......2)]-(W-y[n1)]-(W-(y[n
W
1[n]MA 11

1
Peak +++=  

Where 40=1W  which is the window width of ab 
segment. The purpose of the first moving average, 
shown as the dotted line in Fig. 3(d), is to emphasize 
the a-wave.  

Second Moving-window Integration: the second 
moving average, shown as the solid line in Fig. 3(d), 
is used as a threshold for the output of the first 
moving-window integration.  

y[n]).......2)]-(W-y[n1)]-(W-(y[n
W
1[n]MA 22

2
MaxPeak +++=  

where 220=2W  is the window width of a complete 
heart beat.  
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Figure 3: Algorithm structure.(a) original SDPTG signal 
(b) filtered PTG signal with Butterworth bandpass filter 
(c) Second Derivative of PTG (d) generating blocks of 
interest using two moving averages to detect a-waves. 

When the amplitude of the first moving average 
filter (MAPeak) is greater than the amplitude of the 
second moving average filter (MAMaxPeak), that part 
of the signal is selected as a block of interest, as 
follows: 

 
Fig. 3(d) shows an example of applying the two 
moving averages.  

We show four consecutive aa intervals in Fig. 3 
(d) to demonstrate the idea of using two filters to 
generate blocks of interest. Sometimes, blocks are 
generated which do not represent potential a-waves. 
These blocks are caused by noise and need to be 
eliminated.  

3.3 Thresholding 

Blocks with a small width are considered as blocks 
caused by noise. Blocks which are smaller than half 
of the expected size for the ab interval are rejected.  

IF  [n]MAPeak > [n]MAMaxPeak   THEN 
 BLOCKS[n] =1 
ELSE 

BLOCKS[n] =0 
END 

(a) 

(b) 

(c) 

(d) 
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Table 1:a-wave detection performance on SDPTG Data. 

 Before Exercise After Exercise 1 After Exercise 2 After Exercise 3 

Record No of 
beats TP FP FN No of 

beats TP FP FN No of 
beats TP FP FN No of 

beats TP FP FN 

A1 26 26 0 0 45 45 0 0 43 41 2 0 32 32 0 0 
A2 24 24 0 0 44 44 0 0 47 47 0 0 46 46 0 0 
B1 17 17 0 0 36 36 0 0 44 43 1 0 32 32 0 0 
B2 26 26 0 0 43 43 0 0 38 38 0 0 30 30 0 0 
C2 20 20 0 0 33 33 0 0 37 37 0 0 40 40 0 0 
C3 20 20 0 0 30 30 0 0 23 23 0 0 Could not continue 
D2 22 22 0 0 33 33 0 0 39 39 0 0 42 42 0 0 
D3 19 19 0 0 23 23 0 0 27 27 0 0 30 30 0 0 
E1 22 22 0 0 25 25 0 0 30 30 0 0 31 31 0 0 
E2 22 22 0 0 25 25 0 0 30 30 0 0 31 31 0 0 
E3 19 19 0 0 34 34 0 0 38 38 0 0 39 38 1 0 
G2 30 30 0 0 48 48 0 0 48 48 0 0 49 49 0 0 
G3 19 19 0 0 33 33 0 0 42 42 0 0 45 45 0 0 
H3 23 23 0 0 31 31 0 0 32 32 0 0 32 32 0 0 
I1 22 22 0 0 30 30 0 0 35 35 0 0 41 41 0 0 
I2 17 17 0 0 28 28 0 0 31 31 0 0 31 31 0 0 
J2 23 23 0 0 36 36 0 0 41 41 0 0 38 38 0 0 
L2 24 24 0 0 36 36 0 0 37 37 0 0 30 30 0 0 
L3 24 24 0 0 35 35 0 0 39 39 0 0 41 41 0 0 
N2 18 18 0 0 23 23 0 0 24 24 0 0 33 33 0 0 
N3 20 20 0 0 29 29 0 0 31 31 0 0 37 37 0 0 
O1 24 24 0 0 29 29 0 0 33 33 0 0 38 38 0 0 
O2 17 17 0 0 32 32 0 0 34 34 0 0 40 40 0 0 
P1 26 26 0 0 35 35 0 0 34 34 0 0 36 36 0 0 
P2 20 20 0 0 29 29 0 0 34 34 0 0 39 38 1 0 
Q1 22 22 0 0 27 27 0 0 28 28 0 0 29 29 0 0 
Q2 18 18 0 0 33 33 0 0 36 36 0 0 34 34 0 0 

27 
volunteer

s 
584 584 0 0 885 885 0 0 955 952 3 0 946 944 2 0 

 

The expected size for the ab interval is based on 
the statistics for healthy adults, as described above. 

We reject blocks that are smaller than 50% of the 
width that is expected for the ab interval. This 
corresponds to: 

20KS)width(BLOC <  

The rejected blocks are considered as noisy blocks 
and the accepted blocks are considered to be 
containing a-wave. 

The maximum absolute value within each 
accepted block is considered to be the a peak. For 
this research the algorithm was tested using 
annotated a peaks. 

The proposed algorithm was tested on 27 SDPTG 
records. The volunteers exercised three times. The 
photoplethysmogram was recorded before starting 
exercise and after each exercise period. Volunteer 

C3 discontinued in the third exercise period. No 
episodes have been excluded from our analysis 

The exercise SDPTG data contains records of 
normal SDPTG signals as well as records of SDPTG 
signals that are affected by non-stationary effects, 
low signal-to-noise ratio, and high heart rate. This 
provides the opportunity to test the robustness of the 
algorithm in detecting a-waves in SDPTG signals. a-
wave detection may be affected by the quality of the 
SDPTG recordings and the irrigular heart rhythms in 
the SDPTG signals. 

The following statistical parameters were used to 
evaluate the algorithm:  

FPTP
TP

FNTP
TP

+
=+

+
=

P

Se
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True Positive (TP): a-wave has been classified as a-
wave. 
False Negative (FN): a-wave has been missed. 
False Positive (FP): Non a-wave classified as a-
wave. 

The sensitivity Se is the percentage of true a-
waves that were correctly detected by the algorithm. 
The positive predictivity +P is the percentage of 
detected a-waves which are real a-waves.  

Table I shows the result of a-waves detection in 
27 different records of collected SDPTG before 
exercise and after each of the three exercise periods, 
containing a total of 3332 heart beats. 

As shown in Table 1, records which have 
relatively irregular fast heart beats signals like A1-
after exercise 2 , irregular fast heart beats with low 
amplitudes like B1-after exercise 2, and non-
stationary SDPTG with irregular fast heart beats and 
low amplitudes like E3-after exercise 3 contain a 
few false positives (FP). 

The number of false negatives (FN) was zero. The 
overall average sensitivity for a-waves detection was 
100% and the positive predictivity was 99.88%. 

4 DISCUSSION 

The major reason for the interest in measuring heart 
rate variability stems from its ability to predict 
survival after a heart attack. In ECG signals analysis, 
the interval between adjacent QRS complexes is 
termed as the normal to normal (NN) or the R to R 
(RR) interval. Heart rate variability (HRV) refers to 
the beat-to-beat alterations in heart rate. The results 
of a HRV analysis portray the physiological 
condition of the patient and are an important 
indicator of cardiac disease. Many studies have 
shown that reduced HRV predicts sudden death in 
patients.  

The detection of R peak is the main step to 
measure HRV. Precise R-R interval calculations are 
necessary to accurately depict the physiological 
state. (John, 2000) found that more than 26 different 
types of arithmetic manipulations of R-R intervals 
have been described in the literature to represent 
HRV.  

The Task Force of the European Society of 
Cardiology and the North American Society of 
Pacing and Electrophysiology (Task Force of the 
European Society of Cardiology and the North 
American Society of Pacing and Electrophysiology, 
1996) suggest a number of simple time domain 
measures to estimation HRV. It has been discussed 

in their paper that the HRV is calculated using the 
mean the standard deviation of the length of the 
cardiac cycle. This can be determined using either 
the R-R intervals of a short ECG segment or the. a-a 
intervals With these methods either the heart rate or 
the a-a intervals a and SDPTG signal. Table 2 shows 
some simple time–domain HRV variables: MAX-
MIN, SDNN, RMSSD, and SDSD that can be 
calculated based on SDPTG signals. 

Table 2: HRV Statistical Variables. 

variable Statistical measurement 

MAX-MIN 
Difference between shortest and longest a-a 
interval 

SDNN Standard deviation of all a-a intervals  

RMSSD 
Root mean square of the difference of 
successive a-a intervals  

SDSD 
Standard deviation of of differences between 
adjacent a-a intervals  

5 CONCLUSIONS 

The second derivative of the photoplethysmogram 
(SDPTG) can be used to calculate heart rate 
variability provided the a-waves can be detected 
accurately. Therefore, we propose an algorithm to 
detect a-waves in SDPTG signals with a high 
frequency noise, low amplitude, non-stationary 
effects, irregular heart beat and after exercise. It 
achieved an overall average sensitivity for a-waves 
detection 100% and a positive predictivity was 
99.88%. over 27 records, containing a total of 3370 
heart beats. 

The accurate detection of a-waves in the SDPTG 
offers a non-invasive method of evaluating cardiac 
functioning. The usage of SDPTG can be useful for 
HRV analysis and identification of individuals at 
risk. 
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