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Abstract: Over the past decade, the number, size, and complexity of databases for health-related research have grown 
dramatically. Ontologies are being developed and used by many scientific communities to support sharing, 
integration, and management of the diverse information in these databases. As critical as ontologies have 
become, ontology language such as OWL typically provide minimal support for modeling the complex 
temporal relationships that are common in biomedical research data. As a result, ontologies often cannot 
fully express the temporal knowledge needed by many biomedical applications and thus users and 
developers must pursue ad hoc solutions to these challenges. In this paper, we present a methodology and 
set of tools for representing temporal information in biomedical ontologies. This approach uses a 
lightweight temporal model to encode the temporal dimension of biomedical data. It also uses the OWL-
based Semantic Web Rule Language (SWRL) and the SWRL-based OWL query language SQWRL to 
reason with and query the temporal information represented using this model.  

1 INTRODUCTION 

The past decade of research has seen a growing 
consensus regarding the critical nature of controlled 
terminologies and ontologies in the construction of 
biomedical systems. Ontologies are used to convey 
the biomedical meaning of experiments in a 
computer-accessible format, and they permit 
integration of data and knowledge from diverse 
sources by standardized labelling of concepts. The 
use of ontologies to represent biomedical knowledge 
will be particularly essential to the next generation 
of Web-enabled applications in healthcare and 
biomedical research. The Semantic effort (Berners-
Lee et al., 2001) aims to provide languages and tools 
to provide explicit semantic meaning for data and 
knowledge shared among these types of 
applications. In particular, the Ontology Web 
Language (OWL; McGuinness and Harmelen, 2004) 
and its associated Semantic Web Rule Language 
(SWRL; Horrocks et al., 2004) provide a powerful 
standardized approach for representing and 
reasoning with information. 

Despite the power of these technologies, they 
have very limited support for the modeling of 
temporal information. OWL, for example, provides 
no temporal support beyond allowing data values to 

be typed as basic XML Schema dates, times or 
durations (XML Schema, 2009). SWRL includes 
operators for manipulating these temporal values 
(SWRL, 2004) but, again, these operators work at a 
very low-level. There are no standard high-level 
mechanisms to consistently represent and reason 
with temporal information.  

Since the temporal dimension is central in 
practically all biomedical data, these representation 
shortcomings have significant system 
implementation consequences. Primarily, they 
restrict the complexity of the temporal information 
that can be represented in biomedical ontologies. In 
addition, they reduce the possibilities for automated 
validation of this information. Crucially, these 
restrictions also limit the temporal expressivity of 
the deductive rules and queries that can be 
formulated over ontology-encoded biomedical data. 
Formulating these rules and queries thus requires 
custom solutions using technologies that may not 
leverage the formal knowledge representation 
techniques provided by ontologies. There is a 
pressing need for solutions that provide robust 
knowledge-level mechanisms for representing and 
reasoning with temporal information in ontologies. 
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2 BACKGROUND 

Historically, the centrality of time in biomedical 
applications has driven the development of custom 
temporal management solutions. One of the first 
medical systems to address the temporal 
representation problem was the Time Oriented 
Database (TOD; Wiederhold, 1981). TOD had a 
three-dimensional view of clinical data, with time 
represented explicitly as one of the dimensions. Data 
relating to a particular patient visit, for example, 
were indexed by patient identifier, clinical parameter 
type, and visit time. TOD supported a set of basic 
temporal queries that allowed data values following 
certain temporal patterns to be extracted. The later 
Arden Syntax (Hripsack et al., 1994) also supports a 
basic instant-based temporal representation.  

Both TOD and the Arden Syntax model time by 
associating an instant timestamp with particular 
records. An instant timestamp permits a range of 
simple temporal questions about associated data, 
such as "Did the patient suffer from shortness of 
breath before the visit?" or "Did the patient receive 
Ibuprofen last week?" However, associating an 
interval timestamp with data enables more complex 
queries. Interval timestamps are composed of a start 
timestamp and a stop timestamp. Later systems used 
this interval-based representation of temporal data. 
These systems were typically built to operate with 
relational database systems and exploited the 
considerable amount of research on temporal 
database systems in the 1990s. 

This research aimed to address the shortcomings 
of relational databases for representing temporal 
information. While relational databases can readily 
store time values, the relational model provides poor 
support for storing complex temporal information. A 
simple instant timestamp is all that it provides, and 
there is no consistent mechanism for associating the 
timestamp with non-temporal data. For example, if a 
database row contains some temporal information, 
there is no indication as to the relationship between 
it and the non-temporal data in the row. Does the 
timestamp refer to the point at which the information 
was recorded, or the point at which it was known? 
Other shortcomings include no standard way to 
indicate a timestamp's granularity. As a result, the 
relational model provides very limited capabilities 
for temporal querying (Snodgrass et al., 1998).   

More than a dozen formal extensions to the 
relational data model were proposed. These multiple 
approaches ultimately led to efforts to develop a 
consensus language, called TSQL2 (Snodgrass, 
1995).  This language supports both temporal and 

non-temporal tables, and provides a temporal 
relational algebra that can undertake temporal 
selection of data, temporal joins based on temporal 
intersection, and temporal catenation of interval time 
stamps.  The TSQL2 query language is compatible 
with standard SQL, since it is a strict super set of it. 
No complete implementations of TSQL2 were 
produced, however, but several temporal query 
systems were written using its core features. The 
Chronus system (Das and Musen, 1994) and its later 
evolution, Chronus II (O’Connor et al., 2002) were 
both developed to perform temporal queries in 
clinical decision support systems. Like TSQL2, they 
used a SQL-based language for querying temporal 
data in relational databases. These systems were 
successfully used in several biomedical applications 
(Nguyen at al., 1999; Goldstein et al., 2004).  

Experience with these systems illustrated that the 
entire TSQL2 specification is not necessary for 
querying biomedical data. A few simple language 
extensions can provide a large increase in 
expressivity. The most important lesson learned is 
that a principled temporal model is key to 
developing these extensions. This model must 
enforce a consistent representation of all temporal 
information in a system. One of the important results 
of the TSQL2 standardization efforts was the 
convergence on the valid-time temporal model 
(Snodgrass, 1995). While numerous models were 
proposed to represent temporal information in both 
relational databases and other types of information 
systems, this model was selected because it coupled 
simplicity with considerable expressivity. 

In the valid-time model, a piece of information—
which is often referred to as a fact—can be 
associated with instants or intervals denoting the 
times that they are held to be true. Such facts have a 
value and one or more valid times. In other words, 
every temporal fact holds information denoting the 
facts's valid-time. Conceptually, this representation 
means that every temporal fact is held to be true or 
valid during the time or times associated with this 
fact. No conclusions can be made about the fact for 
time periods outside of its valid-time. The valid-time 
model effectively provides a mechanism to 
standardize the representation of time-stamped data. 
When this model is used in a relational system, 
temporal information is typically attached to all 
tuples in a temporal table. This approach effectively 
adds a third dimension to two-dimensional relational 
tables. The valid-time model is not restricted for use 
in relational systems, however, and can be used in 
any information system that requires a consistent 
representation of temporal information. 
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3 TEMPORAL MODEL 

The valid-time model has been used in ontology-
based systems. Shahar (1999), for example, has 
made extensive use of this model in clinical decision 
support systems using a Frame-based ontological 
representation.  Adding a temporal dimension to the 
OWL ontology language is not straightforward, 
however. OWL does not provide any constructs for 
modeling time. As with the relational model, a 
simple instant timestamp representation is all that it 
supports. More importantly, OWL’s logic-based 
formalism makes it difficult to model dynamically 
changing information.  Some formal temporal 
extensions have been developed (e.g., Sim et al., 
2008) but these proposals are fairly elaborate and 
none has resulted in practical and usable 
representations.  

Rather than extending OWL’s logical model, 
other researchers have attempted to support  
temporal representations on top of OWL. For 
example, OWL-Time (Hobbs and Pan, 2004) 
proposes an ontology that provides rich description 
of temporal instants, intervals, durations, and 
calendar terms. However, this representation is not 
all that lightweight and concerns itself with 
descriptions of individual data elements rather than 
building a temporal model to consistently describe 
all temporal information in a system. In recent work, 
researchers have described the development of a 
user-level valid-time model in OWL (O’Connor et 
al., 2009). This model was used to encode all 
clinical data collected during a clinical trial. A 
constraint language was developed using this model 
and was used to specify the temporal constraints 
contained in clinical trial documents. 

We have adopted the temporal valid-time model 
used in this system and simplified it so that it can 
more easily be integrated with existing ontologies. 
This enhanced model was designed to be 
lightweight, thus allowing it to be layered on 
existing ontologies without requiring significant 
redesign of these ontologies. This model concerns 
itself with time only and provides a simple approach 
to adding a temporal dimension to existing entities 
in domain ontologies. Typically, these entities will 
be in the information model part of these ontologies, 
though the temporal model can also be used to add 
temporal information to other entities. The temporal 
model conforms closely to the valid-time temporal 
model used by Chronus II (O’Connor et al., 2002), 
which was based on an earlier model by Shahar 
(1999).  

We developed an ontology in OWL to encode 
this valid-time temporal model. We henceforth use 
the prefix temporal for entities defined in this 
ontology. The core class modeling an entity that can 
extend over time is represented by an OWL class 
called temporal:Fact. This class is associated with 
a property called temporal:hasValidTimes that 
holds the time or times during which the associated 
information is held to be true. Values of this 
property are modeled by a class called 
temporal:ValidTime, which has subclasses 
temporal:ValidInstant and 
temporal:ValidInterval, which represent instants 
and intervals, respectively. The class 
temporal:ValidInstant is associated with the 
property temporal:hasTime, and the 
temporal:ValidInterval class, is associated with 
the properties temporal:hasBeginning and 
temporal:hasFinish. These three properties are of 
XML Schema type xsd:DateTime. Intervals and 
instances also have granularities associated with 
them. This association is modeled by the 
temporal:hasGranularity property with a range 
class called temporal:Granularity. Specific 
granularities, such as days and minutes, are 
represented as instances of this class. 

One possible use of the valid instant and interval 
classes is to take an existing OWL class and add a 
user-defined property with a range of one of these 
two classes to it. The choice of class depends on 
whether one wishes to model an activity that occurs 
at a single instant in time or one that takes place over 
an interval of time. Also, if the activity occurs only 
once the association will be represented as an OWL 
functional property, whereas an activity that may 
repeat can use a non-functional property.  For 
example, consider the case where an investigator 
wishes to add a temporal dimension to a blood 
pressure measurement that is described using a class 
called BloodPressureMeasurement, which has 
properties for both the systolic and diastolic values. 
Blood pressures are typically recorded as 
instantaneous measurements so the valid instant 
class would be the appropriate property range choice 
here. By using the valid instant class as the range of 
a user-defined property associated with the 
measurement class, all instances of 
BloodPressureMeasurement can now use the 
temporal:hasTime and temporal:hasGranularity 
properties associated with the instant, which will 
allow them to consistently record the temporal 
information associated with the measurement. 
Similarly, if the investigator wishes to work with 
prescriptions using an existing class called 

HEALTHINF 2010 - International Conference on Health Informatics

92



 

Prescriptions they might chose to use the valid 
interval class as the range of a user-defined property 
associated with the class. 

A more useful modeling approach is to directly 
use the temporal:Fact class to represent temporal 
entities. This class can be made the superclass of an 
existing OWL class that we wish to add a temporal 
dimension to, effectively asserting that instances of 
that class have a temporal extent.  For example, if an 
investigator wishes to take the earlier blood pressure 
measurements class and model it as a temporal fact 
they can simply take the class and make it a subclass 
of the temporal:Fact class. Instances of this class 
will now be able to use the 
temporal:hasValidTimes property to store their 
valid instants as instances of the 
temporal:ValidInstant class. Similarly, the earlier 
prescriptions class can be modeled as a temporal 
entity by making it a subclass of the temporal fact 
class and using the temporal:ValidInterval class 
to store the temporal intervals associated with it. The 
granularities of those instants or intervals can also be 
modeled with the temporal:hasGranularity 

property associated with the temporal:ValidTime 
superclass. 

Representing temporal entities as subclasses of 
the temporal:Fact class can clarify the distinction 
between the temporal and non temporal entities in an 
ontology. This temporal representation can also 
coexist with any existing temporal representations in 
the ontology so does not necessitate modifications to 
the temporal component of existing entities. In most 
cases, existing temporal information will need to be 
mapped from the source entities to conform to the 
format encoded by valid-time instants or intervals. 
This mapping may be non trivial in some cases but 
will ensure a consistent representation of temporal 
information. 

4 TEMPORAL REASONING 
AND QUERYING 

Once all temporal information is represented 
consistently in an ontology, it can then be 
manipulated using reusable methods. While OWL 
itself has no temporal operators for manipulating 
time values, its associated rule language SWRL 
(Horrocks et al., 2004; SWRL, 2004) provides a 
small set. However, the operators in this set are very 
basic, providing simple instant-based comparisons 
only.  
 

4.1 Basic Rules and Queries 

Fortunately, SWRL provides a mechanism for 
creating user-defined libraries of custom methods—
called built-ins— and using them in rules. We have 
used this mechanism to define a library of methods 
that implement Allen’s (1983) interval-based 
temporal operators. About two dozen built-ins 
implementing the entire set of the Allen operators 
are provided by this library. The library also 
supports operations on basic XML Schema temporal 
types, such as xsd:date, xsd:dateTime, and 
xsd:duration. Operators to perform granularity 
conversion and duration calculations at varying 
granularities are also provided. This library also has 
a native understanding of the valid-time temporal 
model and supports an array of temporal operations 
on intervals defined using the classes in this model. 
It can thus be used in rules to directly reason about 
valid time instants and intervals.  

The following rule illustrates the use of a built-in 
defined by this library called temporal:before, 
which can be used to see if one valid time is before 
another. These valid times can any combination of 
instant or intervals. This rule classifies patients as 
trial-eligible if they have any completed DDI drug 
therapy before 1999. In this rule, a patient has a 
property called hasTreatment which has a range 
class that is a subclass of the temporal:Fact class 
and holds a list of valid-time intervals for each 
treatment. 
 
Patient(?p) ^ hasTreatment(?p, ?t) ^  
hasDrug(?t, DDI) ^  
temporal:hasValidTime(?t, ?tVT) ^ 
temporal:before(?tVT, “1999”)  
→ TrialEligible(?p) 

 
The temporal built-ins can take any combination of 
valid-time instants, valid-time intervals, or XSD date 
or datetime literal values. In this case, the 
temporal:before built-in is supplied with a valid-
time interval and a literal date value. 

In addition to being able to write temporal rules, 
the ability to write temporal queries on an ontology 
is also desirable. A SWRL-based query language 
called the Semantic Query-Enhanced Web Rule 
Language (SQWRL; O’Connor and Das, 2009) has 
been developed that provides such support. Using 
built-ins, SQWRL defines a set of SQL-like query 
operators that that can be used to construct retrieval 
specifications for information stored in an OWL 
ontology. These operators are used in the consequent 
of a SWRL rule to format the information matched 
by a rule antecedent. This antecedent is effectively 
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treated as a pattern specification for the query. The 
prefix sqwrl is conventionally used for SQWRL 
built-ins. The core built-in defined by SQWRL is 
sqwrl:select. This built-in takes one or more 
arguments, which are typically variables used in the 
antecedent of a rule, and builds an internal table 
using the arguments as the columns of the table. For 
example, the earlier rule to determine trial-eligible 
patients can be rewritten as a query as follows: 

 
Patient(?p) ^ hasTreatment(?p, ?t) ^  
hasDrug(?t, DDI) ^  
temporal:hasValidTime(?t, ?tVT) ^ 
temporal:before(?tVT, “1999”) 
→ sqwrl:select(?p) 
 
This query will return a table with one column 
listing all patients that have completed a DDI drug 
therapy before 1999. 

4.2 More Advanced Queries 

Operators to construct and manipulate sets are 
provided by SQWRL to provide more advanced 
querying functionality. A built-in called 
sqwrl:makeSet is provided to construct a set. Its 
basic form is: 
swqrl:makeSet(<set>, <element>) 

The first argument of this set construction operator 
specifies the set to be constructed and the second 
specifies the element to be added to the set. This 
built-in will construct a single set for a particular 
query and will place all supplied elements into the 
set. Operators like sqwrl:isEmpty, sqwrl:size, 
sqwrl:union, and sqwrl:difference can then be 
applied to the resulting sets. SQWRL provides an 
additional clause to contain these set construction 
and manipulation operators. This clause comes at the 
end of the standard pattern specification and is 
separated from it using the ° character. For example, 
a query to list the number of patient in an ontology 
can be written: 
 
Patient(?p) °  
sqwrl:makeSet(?s, ?p) ^ sqwrl:size(?n, ?s)  
→ sqwrl:select(?n) 
 
Additional query features such as negation and 
disjunction can then be provided by set operators. 
For example, a query to list the number of non DDI 
drugs in an ontology can be written: 

 
Drug(?d) °  
sqwrl:makeSet(?sd, ?d) ^ 
sqwrl:makeSet(?sddi, DDI) ^ 
sqwrl:difference(?snonddi, ?sd, ?sddi) ^ 
sqwrl:size(?n, ?snonddi) → sqwrl:select(?n) 

These types of set operators support some fairly 
basic functionality. Additional set construction 
operators are required to allow more complex 
queries that support grouping of related sets of 
entities. This additional expressivity is supplied in 
SQWRL by grouped sets. These sets are partitioned 
by a group of arguments. This group is specified in a 
set grouping operator. The form of this grouping is: 

 
sqwrl:makeSet(<set> , <element>) ^ 
sqwrl:groupBy(<set>, <group>) 
 
This group can contain one or more entities. This 
grouping mechanism is analogous to GROUP BY 
clause in SQL.  

For example, the construction of a set of 
treatments for each patient can be written: 
 
Patient(?p) ^ hasTreatment(?p, ?t) ° 
sqwrl:makeSet(?s, ?t) ^ 
sqwrl:groupBy(?s, ?p)  
 
Here, sets will be constructed for each patient and all 
treatments for a patient will be added to that 
patient’s set. 

More complex groupings will have multiple 
grouping entities. For example, to make a set of the 
start times of each patient’s treatment the set 
construction operator must be supplied with both 
patient and treatment grouping arguments: 

 
Patient(?p) ^ hasTreatment(?p, ?t) ^ 
temporal:hasValidTime(?t, ?vt) ^ 
temporal:hasStartTime(?bt, ?start) °  
sqwrl:makeSet(?s, ?start) 
sqwrl:groupBy(?s, ?p, ?t) 
 
Here, a set will be constructed for each patient and 
treatment combination and all the start times for that 
combination will be added to the set. 

Ordinal selection or aggregation operators can 
then be applied to a set if its elements are numeric or 
have a natural ordering. These operators include 
sqwrl:min, sqwrl:max, sqwrl:avg, and so on. For 
example, a query to return the time of the first 
treatment for each patient can be written: 

 
Patient(?p) ^ hasTreatment(?p, ?t) ^ 
temporal:hasValidTime(?d, ?vt) ^ 
temporal:hasStartTime(?vt, ?start) °  
sqwrl:makeSet(?s, ?start) ^ 
sqwrl:groupBy(?s, ?p, ?t) ^ 
sqwrl:min(?first, ?s) ^ 
temporal:equals(?first, ?start) 
→ sqwrl:select(?p, ?start) 

The result will be a list of patients together with the 
time of the first treatment for each patient.  
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These set operations can be used with the 
temporal valid-time model to construct complex 
temporal queries. Consider, for example, the 
following query from the HIV domain: 

List the average viral loads of all patients over 
two 4-day windows starting 12 and 24 days after 
initiation of a new treatment. Order those results by 
the maximum average viral load of the first window. 
Assume each patient has treatment and laboratory 
properties modeled as facts using the valid-time 
model, with laboratory value timestamps stored as 
valid instants and treatment intervals stores as valid 
intervals. The query can then be expressed as:  
 
Patient(?p) ^ hasTreatment(?p, ?t) ^ 
hasValidTime(?t,?tvt) ^ 
temporal:start(?tvt, ?b) ^ 
temporal:add(?w1Start, ?b, 12, days) ^ 
temporal:add(?w1End, ?b, 14, days) ^ 
temporal:add(?w2Start, ?b, 24, days) ^ 
temporal:add(?w2End, ?b, 28, days) ^ 
hasLab(?p, ?l1) ^ hasViralLoad(?l1, ?vl1) ^  
temporal:hasValidTime (?l1, ?lvt1) ^ 
temporal:hasTime(?lvt1, ?l1t) ^ 
hasLab(?p, ?l2) ^ hasViralLoad(?l2, ?vl2) ^ 
temporal:hasValidTime (?l2, ?lvt2) ^ 
temporal:hasTime(?lvt2, ?l2t) ^ 
temporal:contains(?w1Start ,?w1End, ?l1t) ^ 
temporal:contains(?w2Start, ?w2End, ?l2t) ° 
sqwrl:makeSet(?sw1, ?vl1) ^ 
sqwrl:groupBy(?sw1, ?p, ?t) ^ 
sqwrl:makeSet(?sw2,?vl2) ^ 
sqwrl:groupBy(?sw2, ?p, ?t) ^ 
sqwrl:avg(?avl1, ?sw1) ^  
sqwrl:avg(?avl2, ?sw2) →  
sqwrl:select(?p, ?t, ?avl1, ?avl2) ^ 
sqwrl:orderBy(?avl1) 
 
This query first extracts each treatment's baseline 
time and then calculates the two windows after that 
baseline, finds the viral loads that occur during those 
two windows, inserts each of them into distinct sets, 
and then calculates the average viral load values for 
each of those sets. It then orders the results by the 
average viral load of the first temporal window. The 
result will be a list of patients and their treatments 
together with the average viral loads during the two 
windows after the start of each treatment. 

As can be seen, these queries can quickly become 
complex. In most cases, however, a combination of 
rules and queries can be combined to incrementally 
generate intermediate results as successively higher 
levels of abstraction so that the final query can be 
considerably shorter. These intermediate results can 
also be reused by other rules and queries. 

4.3 Set-based Temporal Queries 

Even more  advanced temporal querying capabilities 

are typically required by many systems. In addition 
to support for basic interval manipulations, many 
queries will need more complex selection of results. 
For example, queries such as “List the first three 
doses of the drug DDI” or “Return the most recent 
dose of the drug DDI” are common. An additional 
approach to simplifying these types of temporal 
queries is to directly support the manipulation of 
temporal facts in set operations. Instead of just 
supporting standard OWL entities such as classes, 
properties, individuals, and data values, these sets 
can natively understand the interval-based valid-time 
model underlying the facts placed in the set. They 
can thus support more powerful selection operators 
on temporal results, providing operations such as 
earliest, latest and so on.  

We have extended the temporal built-in library to 
support these types of sets. The temporal library now 
supports the same set of construction and 
manipulation operators as the SQWRL library but 
allows only temporal facts to be placed in these sets. 
Additional temporal set operators, such as 
temporal:first, temporal:firstN, 

temporal:last, temporal:lastN, temporal:nth, 
and so on, are also provided. Operators applied to 
these temporal sets consider the interval-based 
semantics of the entities contained in the sets. So, if 
two sets are merged, for example, intervals 
belonging to value-equivalent entities are merged, a 
process known as coalescing (Bohlen et al., 1996). 
The standard Allen temporal operators can also be 
applied to sets, thus facilitating queries such as 
“Were all DDI prescriptions before all AZT 
prescriptions?”  

Consider, for example, a query to return the very 
first treatment for each patient in an ontology 
together with drug and dosage information.  
Assuming that each patient has a treatment property 
that holds a treatment class containing drug and 
dosage information and that is modeled as a 
temporal fact using the temporal ontology, the query 
can then be expressed: 

 
Patient(?p) ^ hasTreatment(?p, ?tr) ^  
hasDrug(?tr, ?drug) ^  
hasDose(?tr, ?dose) ° 
temporal:makeSet(?trs, ?tr) ^ 
temporal:groupBy(?trs, ?p) ^ 
temporal:first(?ftr, ?trs) ^ 
temporal:equals(?ftr, ?tr) → 
sqwrl:select(?p, ?tr, ?drug, ?dose) 
 
A query to return the first three DDI treatments for 
each patient together with dosage information for 
those treatments can be written: 
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Patient(?p) ^ hasTreatment(?p, ?tr) ^  
hasDrug(?tr, DDI) ^  
hasDose(?tr, ?dose) ° 
temporal:makeSet(?trs, ?tr) ^ 
temporal:groupBy(?trs, ?p) ^ 
temporal:firstN(?f3tr, ?trs, 3) ^ 
temporal:equals(?f3tr, ?tr) → 
sqwrl:select(?p, DDI, ?dose) 
 

Here, the temporal:firstN  built-in is used to select 
the first three treatments from a each patient’s 
treatment set. 

A query to return the most recent DDI treatment 
for each patient together with dosage information 
can be written: 

 
Patient(?p) ^ hasTreatment(?p, ?tr) ^  
hasDrug(?tr, DDI) ^  
hasDose(?tr, ?dose) ° 
temporal:makeSet(?trs, ?tr) ^ 
temporal:groupBy(?trs, ?p) ^ 
temporal:last(?ltr, ?trs) ^ 
temporal:equals(?ltr, ?tr) → 
sqwrl:select(?p, DDI, ?dose) 
 

Here, the temporal:last  built-in is used to select 
the most recent treatment from each patient’s 
treatment set. 

As can be seen from these examples, natively 
supporting the valid time-model in sets can permit 
expressive yet relatively concise temporal queries.  

5 CONCLUSIONS 

We described a lightweight yet expressive temporal 
model that can be used to encode the temporal 
dimension of biomedical data in OWL ontologies. 
This model is designed to be integrated with existing 
ontologies without requiring redesign of those 
ontologies. It facilitates the consistent representation 
of temporal information in those ontologies, thus 
allowing standardized approaches to performing 
temporal reasoning and temporal queries on these 
ontologies.  Using the rule language SWRL and the 
SWRL-based OWL query language SQWRL we 
show how knowledge-level temporal rules and 
queries can be constructed on the information 
contained in these ontologies. In particular, we show 
that extending SQWRL with set operators that can 
be directly applied to data described using the 
temporal model provides a high degree of 
expressivity. 

We used an initial version of the temporal valid-
time model described here to encode the temporal 
information collected during a national clinical trials 
project (O’Connor et al., 2009). As mentioned, we 
developed a temporal constraint language on top of 

this model. Other researchers have reported using 
our model in a hypertension management 
application to identify patients who satisfy a set of 
evidence-based criteria for quality improvement 
potential (Mabotuwana et al., 2009). We are 
currently using the updated model with the recent 
set-based SQWRL extensions to reason with breast 
cancer image annotation for tumor assessment (Levy 
et al., 2009). 

A possible shortcoming of our approach is that 
all temporal information in a source ontology must 
be transformed to conform to the valid-time model. 
This mapping process can be time consuming and 
typically requires considerable domain expertise. 
However, if principled temporal reasoning 
mechanisms are to be applied to temporal 
information, some sort of mapping process to 
regularize the information is nearly always required, 
irrespective of the final reasoning processes. An 
additional possible shortcoming is that complex 
temporal rules and queries can become difficult to 
maintain and extend as the number of them 
increases. We are developing rule management tools 
to tackle this problem (Hassanpour at al., 2009). 

The methodologies and tools described in this 
paper aim to enhance the ability of software 
developers and investigators to encode critical forms 
of deductive biomedical knowledge in their 
applications. This knowledge can be represented 
directly in domain ontologies thus facilitating much 
higher level analyses than would be possible with 
lower level techniques. Ultimately, working at the 
knowledge level will enable investigators to make 
better sense of the large numbers of complex 
temporal patterns that characterize dynamic and 
causal phenomena in medicine and biology. 

The ontologies and tools mentioned in this paper 
are freely available as an open-source plug-ins to the 
Protégé-OWL ontology development environment 
(Knublauch et al., 2004). 
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