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Abstract: Seizures in newborn babies are commonly caused by problems such as lack of oxygen, haemorrhage, 
meningitis, infection and strokes. The aim of an automated neonatal seizure detection system is to assist 
clinical staff in a neonatal intensive care unit to interpret the EEG. In this work, the automated neonatal 
seizure detection system is validated on a set of healthy patients and its performance is compared to the 
performance obtained on sick patients reported previously. The histogram-based energy normalization 
technique is designed and applied to EEG signals from healthy patients to cope with montage mismatch. 
The results on healthy babies compares favourably to those obtained on sick babies. Several useful 
observations are made which were not possible to obtain by testing on sick babies only such as a practically 
useful range of probabilistic thresholds, minimum detection duration restriction, and an influence of the 
database statistics on the system performance.  

1 INTRODUCTION 

The brain is the most complex organ of the human 
body and further understanding of its function 
represents a huge future challenge for medicine, 
biomedical engineering and informatics. Brainwaves 
are generated by neural sources within the brain, 
which propagate a measurable electromagnetic field 
onto the scalp. The resulting electroencephalogram 
(EEG) provides a non-invasive measurement of 
brain electrical activity, which can be recorded using 
surface electrodes and a recorder. The EEG shows 
apparently ‘random’ activity in the µ-volt range.  

Seizures or ‘fits’ in newborn babies are 
commonly caused by problems such as lack of 
oxygen, haemorrhage, meningitis, infection and 
strokes. The incidents of clinically apparent neonatal 
seizures is generally reported as around 3 per 1000 
and under certain circumstances, such as very 
preterm babies, 50 per 1000 (Rennie and Boylan, 
2007). In reality, these values are highly 
underestimated because only around 1/3 of all 
seizures are clinically visible and only around 1/10 
are actually documented (Murray et al., 2008). 

Failure to detect seizures and the resulting lack of 
treatment can result in brain damage and in severe 
cases, death.  

Seizures are missed because they are very 
difficult to detect which is mainly attributable to 
large intra- and inter-patient variability of the EEG. 
Unlike older children and adults, babies do not 
exhibit obvious clinical changes during seizures. The 
only available method to detect all seizures in babies 
is to use a dedicated monitor which records the 
electrical activity of the brain. These monitors are 
expensive and require special expertise to interpret 
the results. Most hospitals lack this expertise and 
seizures go undiagnosed. The hospitals which do 
have special expertise cannot provide monitoring on 
24/7 basis. Therefore the aim of an automated 
neonatal seizure detection system is to assist clinical 
staff in a neonatal intensive care unit to interpret the 
EEG. Although a number of methods and algorithms 
have been proposed that attempt to automatically 
detect neonatal seizures, to date their transition to 
clinical use has been limited due to unsatisfactory 
performance.  
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Figure 1: Architecture of the SVM-based seizure detection system.

Recently, a neonatal seizure detection system has 
been reported whose performance (seizure detection 
rate of ~82% with 0.5 false detections per hour) was 
good enough to meet the initial clinical requirements 
(Temko et al., 2009). Unlike existing systems, which 
are based on a set of heuristic rules and thresholds 
(Navakatikyan et al., 2006; Deburchgraeve et al., 
2008; Mitra et al., 2009), the developed system is 
based on rules, which are automatically derived 
using machine learning and pattern recognition 
techniques. A multi-channel patient-independent 
neonatal seizure detection system was designed 
based on a Support Vector Machine (SVM) 
classifier and a set of features extracted from time, 
frequency and information theory domains. The 
system was evaluated using several epoch-based and 
event-based metrics on a large clinical dataset of 267 
hours total duration comprising 17 seizure babies. 
By varying the level of confidence of the system 
decisions, the curves of performance were reported 
which allowed comparison of the system with 
existing alternatives. Additionally, as the probability 
of seizure was the output of the system, the designed 
SVM-based neonatal seizure detector allowed 
control of the final decision by choosing different 
confidence levels which made the proposed system 
flexible for clinical needs.  

In this work, this automated neonatal seizure 
detection system is validated on a clinical set of 47 
healthy babies and its performance is compared to 
the performance obtained on the database of seizure 
patients reported previously (Temko et al., 2009).  

The histogram-based energy normalization 
technique is applied to EEG signals from healthy 
patients to cope with the montage mismatch between 
the sick and healthy patients. In fact, many features 
used in the detector (such as sub-band energies, 
curve length, etc) incorporate information based on 
the absolute energy of the EEG signals used in 
training, thus making the system sensitive to the 
changes in incoming signal energy levels. The 
proposed energy normalization technique overcomes 
this restriction and potentially enables the user to 
apply the seizure detector to signals derived by an 
arbitrary montage, acquired by different recording 
equipment,  or  to  compensate  any  other  possible  

energy-related adverse effects.  
This work is organized as follows: Section 2 

provides the brief overview of the SVM-based 
neonatal seizure detector. Section 3 reviews the 
datasets of sick and healthy babies used in the study. 
The description of the energy normalization 
technique is proposed in Section 4. Section 5 
provides experimental results and discussion. 
Section 6 concludes the study.  

2 NEONATAL SEIZURE 
DETECTOR OVERVIEW 

The outline of the system is shown in Figure 1. The 
signal from each EEG channel is down-sampled 
from 256Hz to 32Hz with an anti-aliasing filter set at 
16Hz. Then the EEG signal is segmented into 8s 
epochs with 50% overlap between epochs. A set of 
time-domain, frequency-domain, and information 
theory based features is extracted from each EEG 
epoch. The feature vectors are then fed to the SVM 
classifier where a probability of a seizure is obtained 
for each EEG epoch. These probabilities are 
smoothed with central moving average filter and 
transformed into binary {0, 1} decisions. The single 
channel binary decisions are then combined into a 
multi-channel binary decision. A final post-
processing step is the collar operation, which 
consists in expanding all seizure (positive decision 
in our case) events forward and backward in time. 

3 DATASETS 

The dataset of sick babies used in (Temko et al., 
2009) was composed of recordings from 17 
newborns obtained in the Neonatal Intensive Care 
Unit (NICU) of Cork University Maternity Hospital, 
Cork, Ireland. The dataset contains multi-channel 
continuous EEG recordings with a mean duration of 
15.76 hours, not edited to remove the large variety 
of artifacts and poorly conditioned signals 
commonly encountered in the real-world NICU 
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environment. Thus the dataset allowed the most 
robust estimate of the algorithm’s performance.  

The patients were full term babies ranging in 
gestational age from 39 to 42 weeks. A Viasys 
Healthcare NicoletOne video EEG machine was 
used to record multi-channel EEG at 256Hz using 
the 10-20 system of electrode placement (Figure 2) 
modified for neonates. The following 8 bipolar EEG 
channels were used in that study: F4-C4, C4-O2,  
F3-C3, C3-O1, T4-C4, C4-Cz, Cz-C3 and C3-T3. 
The combined length of the recordings totals 267.9h 
and contains 691 seizures which range from less 
than 1m to 10m in duration. All seizures were 
annotated independently by 2 neonatal 
electroencephalo-graphers. Further details regarding 
the dataset can be found in (Temko et al., 2009).  

The N-fold cross-validation was used to evaluate 
the system in a patient-independent way. Here N 
was the number of patients. In this way N-1 patients’ 
data is used for training and the data of the 
remaining patient is used for testing. This scheme is 
repeated N times and the results are averaged.  

The dataset of healthy babies used in this study 
to validate the seizure detection algorithm consists 
of 47 full-term newborn babies recruited from the 
postnatal wards in Cork University Maternity 
Hospital with around 1 hour per baby.  

Babies were enrolled as healthy babies if they 
met the following criteria: 

• Gestation > 37 weeks  
• No requirement for resuscitation following 

delivery 
• Apgar scores of  > 8 at 5 mins    
• Normal cord pH (>7.1) 

Exclusion criteria were: 
• Maternal epilepsy or diabetes 
• Birth weight < 2.5kg 
• Congenital anomalies 
• Admission to the neonatal unit for special 

or intensive care. 
Following parental consent, babies were 

examined using the Amiel-Tison assessment, a 
standardised neurological examination (Amiel-
Tison, 2002). Only babies with a normal 
neurological examination were then recruited for the 
study. The study had full approval from the Clinical 
Ethics Committee of the Cork Teaching Hospitals 
and written informed parental consent was obtained 
for all infants studied.  

Continuous video-EEG data was recorded using 
the same NicoletOne EEG system. All the infants 
were in the supine position in their cots at the 
mother’s bedside during each recording. All 
recordings commenced as soon as possible after 
birth. EEG was recorded from 7 scalp electrodes 

positioned using the 10-20 system of electrode 
placement, modified for neonates (F4, F3, Cz, T4, 
T3, P4, P3) and the following 4 bipolar EEG 
channels are used: F3-P3, F4-P4, T4-Cz, and Cz-T3. 
The data was sampled at 256 Hz.  

Figure 2: The 10-20 electrode placement with sick baby 
montage shown. 

As can be seen from the description of the 
datasets, there is a difference between electrodes 
used to capture signals for sick and healthy babies 
which results in the montage mismatch. The 
montage mismatch results in different levels of 
energy of incoming signals which are mainly 
attributable to the distance between channels used in 
the montage (Quigg and Leiner, 2009). In our case, 
the montage difference arises from the fact that for 
healthy babies a simpler montage was used in order 
to minimize the time of interference. However, there 
can be other reasons that a limited number of 
channels can be captured such as the size of the 
baby’s head. To cope with such situations a 
histogram-based energy normalization technique is 
developed. 

4 HISTOGRAM-BASED ENERGY 
NORMALIZATION 

On the transition of the developed seizure detection 
algorithm to day-by-day clinical usage it has been 
identified that the system is sensitive to the 
mismatch in energy levels of EEG signals used in 
training and testing. This sensitivity comes from the 
fact that many features used are based on the 
absolute energy of the signal which is discriminative 
by itself but also carries the information of the 
recording environment. In turn, the mismatch may 
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arise from a difference in montages, acquisition 
hardware, etc. In practice, however, the desired EEG 
montage cannot be always granted. Likewise the 
seizure detector should not be linked to the specific 
hardware equipment. Thus, in an ideal situation, it 
should be possible to apply the detector to the EEG 
signal acquired by any device for arbitrarily chosen 
channels. It is worth noting that the mentioned 
mismatch can only be seen when tested on a 
database for which recording conditions differ from 
those used in training, i.e. facing a real-world 
clinical application. Thus, to the best of our 
knowledge, there are no papers that discuss the need 
for a normalization of the EEG signal, or the effect 
of such normalization. 

The normalization algorithm works as follows. 
Firstly, the histogram of the logarithm of energy of 
EEG signals from training database is computed, 
where the energy is calculated for each epoch. The 
peak of the distribution indicates the energy of the 
background EEG as it is the most frequent event in 
any recording if the recording is long enough. The 
idea is to normalize the energy of the background 
EEG of any incoming (testing) signals to match the 
energy of the background EEG used in training. For 
this, the histogram of energy of all available signals 
is computed for a particular channel in a chosen 
montage and a normalization coefficient is given 
using the formula:  

testtr EEcoef −= 10  (1)

where Etr , Etest  are the coordinates of the peaks of 
the distributions of log-energy of EEG signals used 
in training and testing, respectively. 10 is the chosen 
logarithm base. The power of 10 and a square root 
are used to return from the log scale back to the 
initial signal amplitude scale. The incoming test 
signal is multiplied by the coefficient computed in 
Eq. 1.  

An example of energy normalization is shown in 
Figure 3, where histograms of the log-energy are 
calculated for each channel of the healthy patients 
and for all channels in the sick patients. As can be 
seen, the most frequent level of energy of the 
channels used in testing is around 3 in log scale, 
while the energy of signals in channels used in 
training is around 2 in log scale. Thus the 
normalization coefficient will be around 

3.010 32 ≈− , i.e. the test input signal has to be 
divided roughly by 3.  

It was observed that the energy normalization 
used in this work is patient-independent as the 
difference among coefficients calculated for each 
patient is by orders smaller than the difference 

among coefficients calculated for each channel. 
Additionally, the whole process of normalization is 
based on a mild assumption that there are EEG 
signals available for a chosen montage for the used 
acquisition hardware. These signals can be used to 
calculate the normalization coefficients in advance. 
In real-world applications, the hard-coded 
coefficients calculated for all possible montages and 
all possible recording devices could be retrieved 
using a simple lookup table. On the other hand, the 
algorithm can be easily modified to estimate 
histograms adaptively online if the system is to be 
applied to EEG signals from unknown recording 
hardware.  

1 2 3 4 5
Channel F4-P4

1 2 3 4 5
Channel F3-P3

1 2 3 4 5
Channel T4-Cz

1 2 3 4 5
Channel Cz-T3

1 2 3 4 5
All channels from the training DB  

Figure 3: Histograms of the log-energy calculated over the 
testing database (except for a testing patient) for a 
particular channel. The bottom plot shows the log-energy 
of all the channels in the training database.  

A version of the above-described normalization 
has been previously applied in (Temko et al, 2008) 
for detection of acoustic events in meeting room 
environments to compensate for the effects of 
various recording environments and equipments to 
audio and speech signal energy.  

5 EXPERIMENTAL RESULTS  

One measure of performance used in our work is the 
number of false positive detections per hour (FD/h). 
This measure represents an important indicator of 
the practical usability of the algorithm, because each 
FD implies that somebody in the NICU will have to 
check the patient and the raw EEG recording 
unnecessarily. Additionally, we report the mean 
false detection duration introduced in (Temko et al., 
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2009). It is assessed by averaging the durations of all 
false detections produced by the system at a single 
operating point (with a chosen threshold). In a real 
application, FD/h indicates the number of times a 
clinician has to check the results of an automatic 
detector in vain; however, not only the number of 
times but also the total amount of time should be 
reported. For instance, if both systems can give 90% 
of good seizure detection rate, the first one with a 
cost of 1 FD/h of 20m duration and the other with a 
cost of 2 FD/h each of 1m duration, the second 
system may be preferred as the results of the first 
system imply that ~33% of time a clinician has to 
check the EEG recording in vain, with only ~ 3% of 
time in the second case.  

The curve of performance is obtained for healthy 
babies and is compared to the one obtained on sick 
babies reported in (Temko et al., 2009) for FD/h 
metric varying the threshold on a probability of a 
seizure. The results are reported in Figure 4. To be 
able to compare the results on sick and on healthy 
babies the same N-fold cross validation is used here 
(N=17). That is, each of 47 healthy babies is tested 
N times using N models trained on N-1 sick patients 
with a normalization coefficient for each channel in 
the montage calculated on the remaining 46 healthy 
patients. This way, the performances on healthy and 
sick babies are completely comparable as the same 
model is used to test the remaining sick baby and all 
healthy babies (which are not used in training at all).  

As can be seen from Figure 4, the performance 
of the seizure detection system before normalization 
is much worse than the performance of the system 
on sick babies. However, after normalization, the 
curve of the FD/h for healthy babies is consistently 
better than that for sick babies. Additionally, the 
duration of false detection on healthy babies is 
significantly lower than that for sick babies. It is 
worth noting that as the normalization coefficients 
are calculated to normalize to the background energy 
in the training database, the actual performance in 
term of good seizure detection rate on sick babies is 
not changed because the resulting coefficient is 
equal to one (i.e. no change is applied to the sick 
baby signals).  

It is interesting that after a certain point (~0.65 in 
our case), the FD/h for healthy babies becomes 
larger than that for sick babies. It actually shows that 
the performance on sick and healthy babies cannot 
be compared on the full scale of FD/h. For instance, 
statistics of the database of sick babies say that there 
are in average ~2.6 seizures every hour. It naturally 
restricts the maximum number of false detections 
obtainable for this dataset by a given algorithm. On 
the healthy babies however, there are no upper limit  
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Figure 4: The curves of performance for sick and healthy 
babies for FD/h metric. 

on false detections, so after a certain threshold the 
algorithm will stop producing the false detections on 
sick patients due the presence of actual seizures 
while still producing false detections on healthy 
babies.  

This interesting phenomenon firstly reveals the 
range of thresholds which are practically useful for 
the designed algorithm which could not have been 
seen while testing on sick babies only. In our case, 
the threshold on the probability of the seizure should 
be set higher than 0.35 to guarantee the reported 
performance for all possible testing patients.  

Apart from the practically useful range of 
thresholds, testing on healthy patients shows how 
the statistics of the dataset can affect the metrics 
which measure the performance of the system. In 
other words, the same algorithm tested on different 
datasets can obtain different metric values 
depending on the density of seizures in the datasets. 
For instance, in (Mitra et al., 2009), the average 
number of seizures per hour was ~4.9, in 
(Navakatikyan et al., 2006) there were ~4 seizures 
per hour, and in (Deburchgraeve et al., 2008) ~3.3 
seizures per hour. Comparing the statistics of the 
datasets in the mentioned studies, the results 
obtained on our dataset with ~2.6 seizures per hour 
can be seen as an over-pessimistic performance 
assessment.  

In fact, the large difference between the FD/h 
obtained on healthy babies and on sick babies 
suggests that the results on sick and on healthy 
babies should be reported separately as it has been 
done in (Mitra et al., 2009). In a certain sense, these 
values indicate the average upper and lower bounds 
on FD/h achievable in practice. If reported together 
the final FD/h score will be skewed by the amount 
of healthy baby data which can differ from study to 
study (Navakatikyan et al., 2006; Deburchgraeve et 
al., 2008). For example, in our study, the developed 
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seizure detection system can detect ~82% of seizures 
with ~0.5 FD/h on sick babies and ~0.12 FD/h on 
healthy babies. Combining both values will result in 
an over-optimistic assessment and will neither show 
the actual system performance nor indicate its 
lower/upper bounds. 

Another outcome of the testing on healthy babies 
is the influence of the restriction on minimum 
seizure duration on the FD/h metric. The effect can 
be seen on Figure 5. The restriction eliminates all 
produced seizures which are shorter than 3 epochs 
(~12 seconds). Actually, this new rule was tested on 
sick babies before but no significant difference was 
obtained. While testing on healthy babies, the 
sensitivity of the algorithm is higher which allows 
observing the effect of the introduced system 
modification.  
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Figure 5: The curves of performance for healthy babies for 
FD/h metric with and without Minimum Duration 
Restriction. 

6 CONCLUSIONS 

The seizure detection algorithm is validated on a 
clinical set of 47 healthy babies. The curves of 
performance are obtained for sick and healthy babies 
for false detections per hour metric varying the 
threshold on probability of seizure. The results on 
healthy babies compares favourably to those 
obtained on sick babies. The energy normalization 
technique contributes to channel and montage 
independence. Several useful observations are made 
which were not possible to do by testing on sick 
babies only, such as a practically useful range of 
probabilistic thresholds, minimum duration 
restriction, and an influence of the database statistics 
on the system performance.  
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