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Abstract: Presented in this paper is a Dynamic Bayesian Network (DBN) approach to predict glycaemia levels in 
intensive care patients. The occurrence of hyperglycaemia is associated with increased morbidity and 
mortality in critically ill patients. Due to the large inter-patient and intra-patient variability, the sparse nature 
of observations, inaccuracies in the data and the large number of factors that influence glycaemia, the 
system being modelled contains several sources of uncertainty. In the context of this uncertainty, the DBN-
based system presented here performs extremely well. By using a DBN we integrate multiple strands of 
temporal evidence, arriving at varying time intervals, to determine the most probable underlying 
explanations. A key contribution of this work is that it presents a principled technique for recalibration of 
model parameters from general population-level values to patient-specific values, based entirely on standard 
real-time measurements from the patient. While in this paper we apply our approach to the glycaemia 
problem, this approach is equally applicable to other applications where unseen variables must be assessed 
and individualized in real time. 

1 INTRODUCTION 

Proper control of glycaemia (i.e., serum glucose 
levels) in critically ill patients in the intensive care 
unit (ICU) is a subject that is of great importance to 
physicians. Tight control of serum glucose levels has 
previously been demonstrated to improve outcome 
in a predominantly surgical population of critically 
ill patients (Van den Berghe et al. 2001). In contrast, 
the recent NICE-SUGAR study found that 
attempting to keep serum glucose levels within a 
tight range actually increases mortality rates (The 
NICE-SUGAR Study Investigators 2009). 
Therefore, the optimal target range for blood glucose 
and the optimal approach to controlling blood 
glucose levels in critically ill patients is still unclear.  

The goal of this work is to develop a system that 
accurately predicts the glycaemia levels of a patient 
receiving insulin and glucose infusions. This would 
provide physicians with more accurate real-time 

estimates of glycaemia levels, which in turn would 
be useful in determining the optimal dosage for a 
given patient, through modelling the most likely 
effects of planned dosages. 

To achieve this goal, we develop a Dynamic 
Bayesian Network (DBN) model that is derived 
from an existing differential equation model of 
glycaemia in ICU patients (see Section 2.1). By 
recasting it as a DBN, we provide a framework for 
computing solutions with continuous re-estimation 
of parameters, taking account of dependencies 
between variables and conditional distributions on 
them. In this way, it interprets the system as being a 
set of stochastic differential equations (SDEs). 
Unlike the original system of differential equations, 
in the DBN model all of the model terms are 
allowed to vary, and accordingly are automatically 
recalibrated to patient-specific values over time. 

At a more general level, this paper introduces a 
method for mapping a system of differential 
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equations directly to a DBN, so that they can be 
solved in a way that allows all model terms to vary, 
while directly incorporating both continuous and 
sporadic temporal evidence in the solutions. 

1.1 Hyperglycaemia in an ICU Patient 

Hyperglycaemia in non-diabetic patients is a 
common phenomenon in an ICU setting (Van den 
Berghe et al. 2001). The standard practice is to 
control a patient’s glucose levels using glucose and 
insulin infusions. Each patient reacts differently to 
these insulin infusions depending on the nature of 
their illness, their insulin sensitivity and other 
medication they may be receiving. As well as inter-
patient variability, there is intra-patient variability. A 
patient’s condition and medication intake vary 
considerably while in the ICU, and hence so does 
the response to insulin. 

To assess a patient’s response to insulin, glucose 
levels are typically measured at intervals of between 
one and four hours in an ICU ward. When one 
considers that the half-life of insulin is only a few 
minutes, a lot can happen in a four hour interval. 
However, this is the only quantitative evidence 
available to physicians. From this sparse data, a 
physician must prescribe an appropriate dosage 
regime.  

Another consideration is the quality of the data. 
There may be inaccuracies in the recorded dosage 
quantities and the time stamps on these records. 
Plasma glucose measurements are not always 
precise: depending on the method used error levels 
vary from 3% -12% (Chase et al. 2006). 

1.2 Why use a DBN? 

The challenge when building a model to predict an 
ICU patient’s insulin/glucose dynamics reflects the 
challenge facing a physician trying to keep a 
patient’s glucose levels within safe limits. Given the 
large inter-patient and intra-patient variability, the 
large number of factors that influence glucose levels 
and very sparse evidence, creating an accurate 
model is difficult. 

 Our objective in this work is to build a model 
capable of reasoning in the context of this 
uncertainty. However, as well as dealing with 
uncertainty, the temporal nature of the problem must 
also be addressed. A patient’s glucose level depends 
not only on the current I.V. (intravenous) infusion 
rates but also past infusion rates and past glucose 
levels. Dynamic Bayesian Networks are an effective 
tool for modelling uncertainty in real time in a time-

varying environment as was shown by Aleks et al. 
(2008). That paper describes an early application of 
full DBNs to analysing ICU data, and demonstrated 
very accurate detection and removal of artefacts in 
the arterial-line blood pressure sensor data.   

Other DBN applications in the medical setting 
have used only discrete variables. The applications 
include a network to diagnose ventilator-associated 
pneumonia in ICU Patients (Charitos et al. 2009) 
and a prognostic model for carcinoid patients (van 
Gerven et al. 2008). In the separate, but related 
topic, of simulating human physiology, Abkai & 
Hesser (2009) recognised the need to use 
deterministic and probabilistic models. However 
unlike our approach, they separate ordinary 
differential equation solvers and DBN models. 

It is assumed that readers are already familiar 
with Dynamic Bayesian Networks. They are 
described in a number of Artificial Intelligence 
textbooks, for example Russell & Norvig (2002). 

2 A GLYCAEMIA MODEL 

2.1 A Basic Mathematical Model of the 
Glucose/Insulin Dynamics 

The first step in building the DBN model is to 
establish a relationship between the administered 
glucose and insulin and the resulting plasma levels. 
The ICU-Minimal Model (ICU-MM) developed by 
Van Herpe et al. (2007) is a mathematical model of 
this relationship. It is an adaptation of Bergman’s 
Minimal Model (Bergman et al. 1981) specifically 
for ICU patients.  The ICU-MM is described by a 
system of four differential equations: 

dG(t)/dt= (P1 − X(t))G(t) − P1Gb +  FG/VG (1a) 

dX(t)/dt=P2X(t) + P3(I1(t) − Ib) (1b) 

dI1(t)/dt= α max(0,I2(t)) − n(I1(t)−Ib)+FI/VI (1c) 

dI2(t)/dt= βγ(G(t) −h) − nI2(t) (1d) 

The terms are briefly explained in Appendix 1. 
However, for a detailed explanation of the model, 
please refer to Van Herpe et al. (2007). 

Other models exist for describing the 
glucose/insulin interaction in critically ill patients.  
Chase et al. (2006) reviewed three different 
metabolic models used in critical care glycaemia 
control. Since then, other models have been 
proposed (Lin et al. 2008) (Hovorka et al. 2008). 
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Figure 1: A Dynamic Bayesian Network for Glycaemia in ICU Patients. Grey nodes are conditionally Gaussian and vary 
over time. White nodes are deterministic and black nodes are observed. Grey arrows connect nodes within a time slice; 
black arrows connect nodes between time slices. 

Both these models are of interest. The ICU-MM 
however is based on Bergman’s Minimal Model. 
Bergman’s model is the most well-known and well-
understood model that exists of glucose metabolism. 
Indeed, Bergman’s Minimal Model has previously 
been re-worked into a Bayesian graphical model 
(Anderson and Højbjerre 2003). Their approach is, 
however, significantly different to ours. They first 
derive a system of SDEs from the Minimal Model 
and then specify the SDEs as a DBN. As will be 
explained in Section 2.2, our approach does not 
require such transformation of a system of 
differential equations prior to constructing the DBN. 
It should also be noted that the Minimal Model is 
less complex than the ICU-MM. It was developed to 
assist in the diagnoses of diabetes and not for use in 
the ICU setting.  

2.2 The DBN Model 

A DBN is made up of a series of discrete time slices. 
In our model we use a one-minute time interval. 
Figure 1 shows one time slice of the DBN 
constructed based on the ICU-MM.  Grey arrows 
connect nodes within a time slice; black arrows 
connect nodes from the previous time slice to the 
current time slice.  

The DBN contains both observed and hidden 
variables. Given the history of observations up to the 
current time, the DBN can compute a probability 
distribution over the values of any or all of the 
hidden variables: past, present, or future. Observed 
nodes are coloured black in Figure 1. In our case, the 
prescribed insulin and glucose infusion rates and the 
measured weight of the patient are observed, and can 
be viewed as inputs to the DBN. The intermittent 
plasma glucose level measurements are also 

observed. These glucose observations ground the 
DBN in reality, so that the inferred values for the 
hidden variables are specific to the patient and take 
into account all of the measurements made. We are 
specifically interested in inferring current and future 
glucose levels, even when the most recent 
measurement may have been several hours in the 
past. By setting the values of nodes that correspond 
to hypothetical future actions and asking the DBN to 
predict future glucose levels for the patient, we can 
also evaluate and select among possible treatments.  

The quantitative aspect of the DBN model 
consists of a conditional distribution for each node 
conditioned on its parents’ values. In this system, a 
node is either deterministic (i.e. its value can be 
determined exactly from its parent values) or 
Gaussian (i.e. the conditional distribution is a 
Gaussian whose mean is a linear function of its 
parents’ values).   Gaussian nodes are shaded grey in 
Figure 1; deterministic nodes are clear with a black 
outline. 

The observed value for plasma glucose (Meas. 
Glucose in the DBN) is assumed to contain a certain 
amount of measurement error. It is therefore 
modelled with a Gaussian distribution whose mean 
is its parent node, the true plasma glucose level, G. 
Likewise, the data from the ICU reflects the 
prescribed I.V. infusion rates for insulin and 
glucose; the actual administered rates may be 
different. Therefore we model the actual rates with 
Gaussian distributions whose means are the 
prescribed rates. 

In many cases truncated Gaussian distributions 
are used, in order to constrain the DBN to postulate 
values that are not unrealistic for nodes. For 
example, the true I.V. infusion rate for insulin (Fi) 
cannot be a negative value, only positive values are 
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possible. The mean, standard deviation values and 
limits used for the Gaussian nodes are detailed in 
Appendix 2.  

Similar limits were also placed on some 
deterministic nodes. For example, it is not possible 
to have a negative quantity of glucose in plasma, so 
a limit is placed on node G to reflect this. 

In the DBN, all terms of the ICU-MM can vary 
over time as a patient’s insulin sensitivity changes. 
Even terms that are fixed parameters in the original 
ICU-MM model are allowed to vary in the DBN.  

The delta nodes capture changes in quantities 
over time. These changes are calculated using the 
differential equations of the ICU-MM. Each delta 
node has, as parent nodes, the various terms needed 
to solve the appropriate differential equation.  

To illustrate this, Figure 2 shows a section of the 
DBN that is related to Eq. (1a) of the ICU-MM. 
Here, the Delta G node determines the per-minute 
change in plasma glucose levels. The current plasma 
glucose level is determined based on the glucose 
level and Delta G calculated in the previous time 
slice. Each of the terms in the differential equation 
for G is represented as a parent node of Delta G.   

 
Figure 2: Section of DBN for predicting plasma glucose 
levels. 

We used in-house software for building the DBN 
and for performing inference using particle filtering. 
Particle filtering is the means by which we 
determine the most probable states of the DBN 
nodes. We performed preliminary sensitivity 
analyses to determine that, for this DBN, using 
50,000 particles gave an acceptable balance between 
execution time and accuracy. 

2.3 Data Selection 

In testing our model, we used data from real patients 
in the ICU of University Hospital Galway. 
Permission for extracting this data was given by the 
Galway Research Ethics Committee, UHG. All 

records were anonymised and stored on encrypted 
drives.  

For this research, data from patients with the 
following characteristics was selected: 

• Sepsis as a primary diagnosis 
• Non-diabetic 
• Not receiving steroids 
• No major organ failure 
In the next section, the results for one sample 

patient are presented. 

2.4 DBN Glycaemia Prediction for a 
Sample Patient 

Patient 23 was an ICU patient with acute pancreatitis 
who was administered N6 OliClinomel 900 E 
(glucose) and Actrapid (human soluble insulin) 
intravenously. As was explained in Section 2.2, the 
actual infusion rates are modelled as Gaussian 
distributions whose means are the prescribed 
infusion rates. The standard deviations on the nodes 
for the actual infusion rates, Fi and Fg, represent the 
expected error in the records. It was assumed that 
the records for the prescribed infusion rates were 
reasonably accurate therefore the standard deviations 
on the nodes Fi and Fg were set to relatively small 
values. The prescribed infusion rates are shown in 
Figure 3. 

In the ICU, plasma glucose levels are measured 
at frequencies of between one and four hours. The 
square markers (coloured red) in Figure 4 show 
these measured glucose levels. These values are 
used as observations by the DBN to ground it in 
reality. 

As can be seen in Figure 4, the observations for 
plasma glucose are intermittent; the DBN therefore 
makes internal predictions of plasma glucose levels 
in between observations. The accuracy of the 
predictions can be evaluated by comparing the 
predicted value at the time of a measurement to the 
actual value. In Figure 4, the dark blue lines are the 
mean values inferred by the DBN at each minute, 
and the lighter blue shaded areas show the standard 
deviations of inferred values, thereby giving a sense 
of the uncertainty associated with its predictions 
over time. 

One can observe that the mean value often jumps 
when a new observation becomes available. There 
are factors which are unknown to the model that 
influence plasma glucose levels. Because of these 
unknown factors, the mean values predicted by the 
model can drift from reality in between 
observations. Once a new observation is available, 
the model realigns itself with reality. Although the 
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figures do not show it, the DBN can compute the 
distribution over past glucose levels given all 
previous and subsequent measurements; this 
“smoothed” estimate does not have jumps in the 
estimated value. 

It is informative to consider the way that the 
standard deviations vary over time. Because the 
DBN always assumes some variability of values 
over time, and because actual observations of 
plasma glucose levels are available very 
intermittently (once every few hours), as the time 
from the last observation increases, so too does the 
range of possible values. Therefore the uncertainty 
of the predictions also increases. As uncertainty 
increases, the mean values also drift. This is why the 
standard deviations on the inferred plasma glucose 
grow between observations. Whenever an 
observation is provided, its plasma glucose 
prediction realigns to the actual level, and its 
uncertainty collapses. 

 
Figure 3: The prescribed infusion rates used as inputs to 
the DBN. 

 
Figure 4: Glucose Levels inferred from the DBN. 

It is interesting to observe the model terms to see 
how they vary over time. Take for example, the 
values inferred for h shown in Figure 5. Here, h 
represents the glucose threshold. When this 
threshold is reached, the body produces endogenous 

insulin. The model starts with a population average 
but quickly adjusts to a patient-specific value within 
the first 4 hours. Once the node adjusts to the 
patient-specific value, h does not vary to such a 
large degree.  

 
Figure 5: Values for h inferred by the DBN. 

In contrast with this, other terms vary considerably 
over time. P3 for example, shown in Figure 6, 
continues to rise over time. This variation reflects 
the changing condition of the patient and the 
possible effect of other medical interventions. 

 
Figure 6: Values for P3 inferred by the DBN. 

3 DISCUSSION 

One of the difficulties with the mathematical model, 
on which the DBN is based, is that not only do the 
model terms vary quite considerably between 
patients, there is also a large intra-patient variability 
over time. In Figure 7 we compare the results for the 
DBN with those obtained by using just the 
differential equation model (1a)-(1d). For the latter, 
shown in the lower dashed line (coloured green), 
computed solutions were obtained by using the 
standard Euler's method (e.g., Iserles 2009). The 
DBN and the differential equation solutions both use 
the same initial values. Both use the I.V. infusion 
rates for glucose and insulin as inputs. Only the 
DBN considers the actual measured plasma glucose 
values. As can be seen, the solution to the 
differential equations on their own does not succeed 
in tracking the plasma glucose levels over time, 
since it does not include a mechanism to recalibrate 
to the measured values. By contrast the DBN 
performs reasonably well, because the DBN 
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considers real-time observations of the true state and 
because the DBN allows the model terms adjust to 
patient-specific values in each time step, so that its 
predictions are much closer to the true state than 
those of the simple mathematical model. 

 
Figure 7: ICU-MM prediction using Euler's method vs. 
DBN prediction.  

It should be noted that in the original 
implementation of the ICU-MM by Van Herpe et al. 
(2007), they did not simply use fixed values as was 
done for the solution of the differential equations in 
Figure 7. Their strategy for dealing with the large 
inter-patient and intra-patient variability was to 
choose patient-specific terms to fit the data offline, 
after analysing 24 hours of data for each patient, and 
then re-estimating these parameters every hour or 
every 4 hours.  

Our DBN-based system uses quite a different 
approach for recalibration of model parameters from 
general values to patient-specific values. We select 
Gaussian distributions, suited to the cohort of 
patients in our dataset, as starting values for the 
model, and the DBN then adjusts these terms in each 
time-slice to find the best fit for the specific patient, 
given all the evidence up to that point.  Often the 
first 24 hours in the ICU are the most critical and 
also the most unstable. Having a model that is 
calibrated to the patient in the first 24 hours is of 
clinical value. 

Despite the large variance of the initial parameter 
estimates, the sparsity of the evidence, the 
prevalence of uncertainty in the model, and the 
omission of several factors from the model, the DBN 
performs remarkably well. For example, the 
predicted values for the hidden Plasma Insulin 
variable, shown in Figure 8, are strongly correlated 
with the prescribed insulin infusion rates as one 
would expect. 

 

 
Figure 8: Plasma insulin levels inferred by the DBN are 
strongly correlated with the prescribed insulin infusion 
rates. 

The underlying mathematical model is relatively 
simple. It does not fully describe the complexity of 
the system being modelled. The only inputs to the 
DBN model are the I.V. infusion rates and the 
patient’s weight. Plasma glucose levels are the only 
sources of evidence available to help align the DBN 
to reality. This evidence is both sparse and 
intermittent. The dynamics of the system being 
modelled are constantly changing as the patient’s 
insulin sensitivity changes. But by allowing the 
model terms to vary, the DBN can anticipate these 
changes, even though they are unobserved. The light 
blue shaded areas in Figure 4 show the range of 
possible values for plasma glucose predicted by the 
DBN. New observations are generally within this 
range. 

4 FUTURE DIRECTIONS AND 
CONCLUSIONS 

4.1 Future Directions 

The DBN model presented in this paper is a 
relatively basic model.  There are many factors that 
influence how a patient reacts to insulin and glucose 
infusions. These include the reason for which the 
patient was admitted to the ICU. For example, a 
patient with sepsis is more likely to have 
hyperglycaemia than a patient who was admitted 
following cardiac surgery (Chase et al. 2006). Then 
there are interactions with other medications. For 
example, steroids can reduce a patient’s insulin 
sensitivity. Future models will incorporate these 
important factors that influence a patient’s response 
to insulin. 

The current model assumes that all glucose is 
administered intravenously. Many ICU patients are 
fed enterally. Gut absorption of glucose must be 
included if this model is to be of use in a clinical 
setting. 
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With these factors in mind we hope to work on 
new systems of differential equations to model the 
physical phenomena and also novel techniques to 
solve these numerically. This work will enable a 
comprehensive comparison of this DBN approach to 
numerical simulations. 

Future work will also include additional 
validation of the model. We would like to validate 
the model on a larger number of patients and 
compare our methodology to other approaches. 

4.2 Concluding Remarks 

The system that has been presented in this paper, 
which uses a Dynamic Bayesian Network approach 
to modelling glycaemia in critically ill patients, 
shows great promise. The system performs 
extremely well in the context of great uncertainty, 
sparse observations and limited system knowledge. 

Our approach demonstrates a principled 
technique for using standard real-time measurements 
from ICU patients, to recalibrate model parameters 
from general values to patient-specific values. This 
model has the potential to be used by physicians to 
individualise insulin dosage or to be incorporated 
into a control system to automate insulin delivery. 

The approach demonstrated here is applicable to 
other applications where unseen variables must be 
assessed and individualized in real-time.  

Finally, the methodology introduced in this 
paper, for mapping a system of differential equations 
directly to a DBN, can be applied to other systems of 
differential equations where all model terms vary, 
and both continuous and sporadic temporal evidence 
must be incorporated for an accurate solution.  
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APPENDIX 1: THE ICU-MM 

Van Herpe et al. (2007) define the model terms as: 

G:  Glucose concentration in blood plasma. 
I1:  The insulin concentration in blood 

plasma. 
X:  The effect of insulin on net glucose 

disappearance. X is proportional to the 
insulin in the remote compartment.  

I2:  The remote insulin. This variable does not 
have a strictly defined clinical 
interpretation but can be approached by 
the fraction of insulin concentration 
derived from the endogenous insulin 
secretion.  

Gb:  The basal value of plasma glucose. 
Ib:  The basal value of plasma insulin.  
FI and FG: The intravenous rate of insulin and 

glucose are the two input variable to the 
model. 

VG:  The glucose distribution space. 
VI:  The insulin distribution volume.  
P1:  The glucose effectiveness (i.e. the 

fractional clearance of glucose) when 
insulin remains at basal level. 

P2:  The fractional rate of net remote insulin 
disappearance.  

P3:  The fractional rate of insulin-dependent 
increase. 

γ:   The proportion by which endogenous 
insulin is released when glycaemia 
exceeds a threshold. 

h:  The glucose threshold. When this 
threshold is reached the endogenous 
insulin is produced.  

n:  The time constant for insulin 
disappearance. 

β:  An additional model coefficient to keep 
units correct. β = 1 min. 

α:  A scaling factor for the second insulin 
variable I2.  

APPENDIX 2: NODE VALUES AS 
USED IN THE DBN 

Table 1 below specifies the values set in the DBN 
for the Gaussian nodes. Initially values were taken 
from Haverbeke et al. (2008), subsequently Gb,  P1, 
and P3 were modified. 

Table 1: The means, standard deviations and limits for the 
Gaussian nodes. 

Node Mean Standard Deviation Range 
  Sensor 

Model 
Transition 
Model 

 

Gb 135 mg/dl 5 1 0+
Ib 10.7 μU/ml 1 0.1 0+
P1 -0.0371  

per min 
0.005 0.005 -1:0

P2 -0.0224  
per min 

0.002 0.002 -1:0

P3 2.5E-5 
ml/(min2μU) 

2.0E-7 1.0E-6 0:1 

h 107.4  mg/dl 30 10 0:360 
N 0.2623  

per min 
0.1 0.001 0:1 

Alpha 0.35 0.1 0.01 0+ 
Gamma 1.4001E-4  

per min 
1.0E-5 1.0E-5 0:1 

Fi Prescribed I 1  0+ 
Fg Prescribed G 1  0+ 
Meas G G 5   
Meas 
Weight 

Weight 0.1   

 
The nodes Vg and Vi are modelled as 

deterministic nodes. Their values are calculated as 
1.6*Weight and 120*Weight respectively.  
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