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Abstract: Genetic Algorithms (GAs) are a technique that has given good results to those problems that require a 
search through a complex space of possible solutions. A key point of GAs is the necessity of maintaining 
the diversity in the population. Without this diversity, the population converges and the search prematurely 
stops, not being able to reach the optimal solution. This is a very common situation in GAs. This paper 
proposes a modification in traditional GAs to overcome this problem, avoiding the loose of diversity in the 
population. This modification allows an exhaustive search that will provide more than one valid solution in 
the same execution of the algorithm. 

1  INTRODUCTION 

Based on natural evolution, Evolutionary 
Computation (EC) tools have shown to be very 
efficient techniques when solving different 
problems. One of these techniques, Genetic 
Algorithms (GAs), is used mainly for the 
optimization of a set of parameters (Fogel, 2006). 

All of the EC techniques are based on the same 
principles: an initial random population is made to 
evolve by means of genetic operators (crossover and 
mutation) inspired in Biology.  

This evolution is done until a stop criterion is 
fulfilled like maximum number of generations, a 
MSE threshold or the convergence of the population. 

 But, if the population has a low diversity, i.e. the 
population is very homogeneous, resulting in having 
many individuals very similar, or identical. This 
leads to having the crossover operator very 
inefficient, because it builds new solutions that 
explore areas of the search space that have already 
been explored by other solutions. Therefore, only the 
mutation operator can introduce new diversity in the 
population. This all leads to a big loss of efficiency 
in the whole algorithm, and it is a very common 
problem in GAs (Zaharie, 2003). 

Another problem due to the lack of diversity 
appears when problems with multiple valid solutions 
(or solutions with a very similar fitness) are trying to 
be solved (multimodal problems). In these cases a 
traditional GA will try to keep in the populations 

values corresponding only to one of these solutions.   

2  EVOLUTIONARY 
APPROACHES TO INCREASE 
DIVERSITY 

As already stated, the diversity lack leads to an 
efficiency and efficacy loss. Even this diversity lack 
is very common on later stages of the evolution, its 
appearance on the early generations is a very 
important problem that affects the whole search. To 
avoid this problem, different strategies have been 
proposed, most of them based on heuristics. 

First, some of the approaches try to solve this 
problem by means of the dynamic variation of 
crossover and mutation rates (Ursem, 2002). A 
diversity measure is needed to control this problem, 
which allows changing dynamically the mutation 
and crossover rates.  

New crossover algorithms have also been 
proposed to solve this problem. Some of them are 
BLX (Blend Crossover), SBX (Simulated Binary 
Crossover), PCS (Parent Centric Crossover), CIXL2 
(Confidence Interval Based Crossover using L2 
Norm), UNDX (Unimodal Normally Crossover) or 
fuzzy recombination (Lozano, Herrera and Cano, 
2008).  

Different approaches in replacement algorithms 
have also been proposed to avoid diversity loss. En 
example of this is Crowding algorithm. This 

635
Gestal M., Rivero D., Fernández E., Rabuñal J. and Dorado J. (2010).
TWO-POPULATION GENETIC ALGORITHM - An Approach to Improve the Population Diversity.
In Proceedings of the 2nd International Conference on Agents and Artificial Intelligence - Artificial Intelligence, pages 635-639
DOI: 10.5220/0002760306350639
Copyright c© SciTePress



algorithm began as a deterministic approach, but 
also a probabilistic version has been published, in 
which individuals compete in a probabilistic 
tournament (Mengshoel and Goldberg, 2008). 

Species-based are also used when the problem 
requires an in-depth search over the solution space. 
In this case, the solution to the lack of diversity is 
simulated adding new populations, but the problem 
remains within each of these populations (Nicholson 
and White, 2008). 

The main inconvenience of the techniques 
previously described (replacement and crossover 
operators) lies in the fact that they add new 
parameters that should be configured according the 
process of execution of GA. This process may be 
disturbed by the interactions among those 
parameters (Bäck, Eiben and van der Vaart, 2002). 

3  TWO-POPULATION GENETIC 
ALGORITHM 

In this work a novel approach is presented to 
preserve the genetic diversity. It tries to keep the 
diversity stable by means of the use of a new 
population that works as repository information. 
This repository will allow the GA to be able to 
create solutions all over the search space. In this 
way, the population diversity does not reduce over 
the time. 

3.1  General Structure 

The lack of diversity of the genetic population is the 
key feature which will lead to improving efficacy 
and efficiency. To do this, a new population is added 
to the traditional GA. This population is called 
genetic pool, and it forces a homogeneous search 
through the search space. 

This genetic pool divides the search space into 
sub-regions (see Fig. 1), because each individual has 
its own fenced range for gene variation, i.e., each 
gene of each individual can take values only inside a 
limited rank. Therefore, each individual of the 
genetic pool represents a sub-region of the search 
space, and the whole search space is divided into all 
of the individuals of this genetic pool.  

Depending on both type and complexity of the 
problem that it is intended to solve, the user has to 
set the number of sub-regions that require into the 
search space. It should be borne in mind that a 
traditional GA performs its search only one sub-
region (the whole of the search space). 

 
Figure 1: Sample of Genetic Pool configuration. 

The secondary population works as a classical 
population, i.e., no additional rank restrictions are 
introduced in this population (each individual’s 
genes can take values all over the search space). Its 
only variation refers to the application of crossover 
and mutation operators, which operate between both 
populations (explained below). 

This secondary population contains the solutions 
to the problem, whereas the genetic pool acts as a 
support, keeping the search space homogeneously 
explored and a diverse population. 

3.1.1 Genetic Pool 

The main objective of the genetic pool is to allow 
the GA to explore the whole search space with a 
homogeneous search. As each individual in the 
genetic pool represents a sub-region of the global 
search space, it has the same structure or gene 
sequence than when using a traditional GA. 

But these individuals need some extra information 
(see Fig. 2). First, in a traditional GA population 
these genes can take any valid values, but in the 
genetic pool the genes can take values only in a 
restricted range (different for each individual). The 
total range values are divided into the same number 
of parts than individuals in genetic pool, so that a 
sub-range of values is allowed to each individual. 
Those values that a given gene may have will remain 
within its range for the whole of the performance of 
the proposed GA. Therefore, if the genetic pool has 
a size of N individuals, the whole search space is 
partitioned into N parts of the same size, each of 
them represented by an individual of the genetic 
pool. 

In addition of this partition, every individual in 
the genetic pool knows which of its genes are part of 
the best solution found up to then, i.e., genes that 
belong to the best individual in the secondary 
population. This flag is used to avoid the 
modification of those genes that are the best solution 
to the problem. 

Also, each gene in each individual in the genetic 
pool has a value that indicates the relative increment 
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that would be applied to the gene during a mutation 
operation (the I value). This mutation operator is 
described below.  

 
Figure 2: Genetic Pool individual. 

 
Figure 3: Crossover operation. 

An important thing to bear in mind is that these 
individuals do not represent global solutions to the 
problem. Therefore, their fitness value is useless and 
no computational time is wasted in this task. 

3.1.2  Secondary Population  

The individuals in the secondary population are 
similar than those of a traditional GA population, 
i.e., they can adopt values throughout the whole of 
the solutions area. In this way, they offer global 
solutions to the problem, which is something that 
none of the individuals of the genetic pool is able to 
do due to the range restriction. Therefore, this 
population contains the solutions to the problem and 
performs an evolution similar to a classical GA 
population, with some differences in the genetic 
operators (crossover and mutation). 

3.2  Genetic Operators 

3.2.1  Crossover 

The crossover operator has been modified in order to  
operate between individuals in the secondary 
population (using complete solutions to the problem) 
and the genetic pool. This operator now recombines 
genetic material from two parents, each of them 
from each population. 

First, an individual is randomly chosen from the 
secondary population. Therefore, there is no need to 
have this population organized attending to the 
fitness value of its individuals. 

The Representative is also built from the genetic 
pool. This representative is assembled by randomly 
choosing the genes from the individuals of the 
genetic pool (see Fig. 3).  

These two individuals (the randomly chosen from 
the secondary population and the representative 
from the genetic pool) will be the parents in the 
crossover operation. A uniform crossover is 
performed between these two parents. As a result of 
this crossover, only one individual is generated after 
the random selection of every one of its genes from 
both ancestors. 

A non destructive replacement algorithm has been 
used in order to insert this new individual into the 
secondary population. This insertion is performed 
when the fitness of the offspring is better that the 
fitness of the selected parent from the secondary 
population. Therefore, if the new individual 
represents the new best solution, the genes of the 
representative individual in the genetic pool 
(Boolean values Bij at Fig. 2) are consequently 
marked in the corresponding individuals of the 
genetic pool. 

3.2.2  Mutation 

The mutation operator only modifies individuals in 
the genetic pool. First of all, a random individual is 
chosen from the genetic pool. A gene is chosen from 
that individual and the specified increment value 
associated to that gene is applied to it (the value I in 
Fig. 2). The selected gene must not have the mark of 
belonging to the best solution in the secondary 
population, i.e., it should not have the Bi value 
marked. 

When the addition of current gene value plus the 
increment exceeds the upper end of the sub-range in 
which the gene may vary, this gene becomes the 
lower value of the sub-range. Furthermore, if this 
happens, the incremental value that is going to be 
applied to subsequent mutations of that gene is also 
reduced. This is done in order to perform a more 
exhaustive search in all of the values that a gene 
may adopt as the evolution process goes on. 

4  EXPERIMENTS 

In this section different experiments will show the 
performance of the proposed system. A comparison 
with traditional GAs is done in order to measure the 
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goodness of applying this modification to the GA. 
Different problems have been solved with this 

system. First of all, some synthetic problems will be 
used to assess the approach functioning. They will 
allow to test whether the system proposed is able to 
provide several valid solutions in the same run, and, 
therefore if the population does not converge to a 
single individual. The performance of the algorithm 
proposed and the ability of finding different 
solutions is studied with these problems, in 
comparison with results obtained with traditional 
GAs.  

The preliminary tests tried to establish the level of 
convergence and exhaustive search of the new 
algorithm compared to the classic GA.  

 Among different test trials, the discrete function 
represented in Fig. 4 was used to prove the proposed 
system. This function takes values within the 
interval [0..2] where several narrow local minimums 
with value 0 have been added. 

 

x f(x) 
0.07 0.08 
0.5 0.01 
0.7 0.001 
1.2 0.05 
1.6 0.08 
1.7 0.02 
1.85 0.005 

Figure 4: Test function. 

Parallel executions of classical GA and the 
proposed GA will be done until one of them reach a 
threshold error, in this concrete case establish when 
mse<0.05. Once the algorithm reach the threshold 
the number of solutions kept in the solution is 
annotated.  

The main objective of this synthetic function is 
to find out how the search space is explored in-
depth. 

Each individual will codify five times the same 
function, so five simultaneous runs will be 
performed. It will allow to graphically checking the 
minimum achieved and increase the complexity of 
the individuals. To avoid possible constructive 
blocks that make simpler the resolution of the 
problem the fitness function will be the following 
one: 

Fitness = f(G1) + f(2-G2) + f(G3) + f(2-G4) + f(G5) 

5 RESULTS 

The Fig. 5 presents the results with the test function 
represented in Fig 4. This graph shows the average 
number of solutions kept inside the population 
respect to the population size (number of 
individuals). Different genetic pool sizes were taken, 
from 1 to 50 individuals, and the secondary 
population size also changed between 2 and 50 
individuals. The population size in the classical GA 
has also been changed with sizes between 2 and 50. 
For each configuration 50 runs were performed and 
the mean values annotated. 

 This figure shows that the behaviour of the two-
population GA is better to the traditional GA. Even 
the efficiency of the classical GA improves with 
bigger populations, it does not reach the results 
achieved by the two-population GA. More precisely, 
the average number of solutions in the population of 
the two-population GA was 5.5048 (over 7 possible 
different solutions), while the average number in the 
traditional GA was only 0.5216 (with a maximum in 
0.92).  

 
Figure 5: Population sizes and solutions found. 

6 CONCLUSIONS  

Several conclusions can be drawn from the results 
obtained with the use of the system proposal. The 
most important one is that it was able to keep the 
population diversity over the execution of the 
algorithm, the start point of this work. In the 
problems presented, this behaviour allowed to keep 
a number of solutions in the population greater than 
the classical GA. So, the approach seems a 
promising line where interesting results can be 
finding. 

In the proposed system the number of regions on 
the genetic pool is fixed in advance.  It would be 
good to investigate different ways to allow it to 
change dynamically. So, new operators (like region 
gathering, division) would be interesting to explore. 
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