
LSVF: LEAST SUGGESTED VALUE FIRST
A New Search Heuristic to Reduce the Amount of Backtracking Calls in CSP

Cleyton Mário de Oliveira Rodrigues, Eric Rommel Dantas Galvão, Ryan Ribeiro de Azevedo
Centro de Informática, Universidade Federal de Pernambuco

Av. Professor Luís Freire, 50740-540 Recife, Pernambuco, Brazil

Marcos Aurélio Almeida da Silva
Paris Unviversitas, LIP06, 104 Avenue du Président Kennedy 75016 Paris, France

Keywords: Constraint Satisfaction Problem, Heuristics, Constraint Logic Programming.

Abstract: Along the years, many researches in the Artificial Intelligence (AI) field seek for new algorithms to reduce
drastically the amount of memory and time consumed for general searches in the family of constraint
satisfaction problems. Normally, these improvements are reached with the use of some heuristics which
either prune useless tree search branches or even “indicate” the path to reach the solution (many times, the
optimal solution) more easily. Many heuristics were proposed in the literature, like Static/ Dynamic Highest
Degree heuristic (SHD/DHD), Most Constraint Variable (MCV), Least Constraining Value (LCV), and
while some can be used at the pre-processing time, others just at running time. In this paper we propose a
new pre-processing search heuristic to reduce the amount of backtracking calls, namely the Least Suggested
Value First (LSVF). LSVF emerges as a practical solution whenever the LCV can not distinguish how much
a value is constrained. We present a pedagogical example to introduce the heuristics, realized through the
general Constraint Logic Programming CHRv, as well as the preliminary results.

1 INTRODUCTION

Constraint Satisfaction Problems (CSP) remains as
one of the most prominents AI research fields.
Having a wide range of applicability, such as
planning, resource allocation, traffic air routing,
scheduling (Brailsford, 1999), CSP has been largely
used either for toys or even for real large complex
applications. Furthermore, in general, CSP are NP-
complete and they are combinatorial in nature.

Amongst the various methods developed to
handle this sort of problems, in this paper, our focus
concerns the search tree approach coupled with the
backtracking operation. In particular, we address
some of the several heuristics used so far to reduce
(without guaranties) the amount of time need to find
an solution, namely: Static/ Dynamic Highest
Degree heuristic (SHD/DHD), Most Constraint
Variable (MCV) and Least Constraining Value
(LCV) (Russel & Norvig, 2003).

Some problems, however, like the ones common
referred as instances of the Four Color Map

Theorem (Robertson et. al, 1997), present the same
domain for each entity, making the LCV heuristic
impossible to decide the best value to the asserted
first.

For these cases, we propose a new pre-
processing heuristic, namely Least Constraint Value
First (LCVF), which can bring significant gains by a
simple domain value sorting, respecting an order
made by the following question “Which is the least
used value to be suggested now?”. Additionally, we
enumerate some assumptions to improve the
ordering. Along the paper, we show some
preliminary results with remarkable reduce of
backtracking calls.

This paper is organized as follows: Section 2
explains briefly the formal definition of CSP and the
most common heuristics used in the class of CSP;
following, Section 3 details what is CHRv and why
we have chosen it to our examples; Section 4
introduces the LCVF heuristic with a pedagogical
example, highlighting some preliminary results, and
finally, Section 5 presents the final remakes’ and the
future works.

416
Mário de Oliveira Rodrigues C., Rommel Dantas Galvão E., Ribeiro de Azevedo R. and Aurélio Almeida da Silva M. (2010).
LSVF: LEAST SUGGESTED VALUE FIRST - A New Search Heuristic to Reduce the Amount of Backtracking Calls in CSP.
In Proceedings of the 2nd International Conference on Agents and Artificial Intelligence - Artificial Intelligence, pages 416-421
DOI: 10.5220/0002761504160421
Copyright c© SciTePress

2 CSP AND HEURISTICS

In this section, we introduce the basic concepts of
CSP and further, we detail the most common
heuristics used for this kind of problem.

2.1 Constraint Satisfaction Problems

Roughly speaking, CSP are problems defined by a
set of variables X = {X1, X2,…, Xn}, where each one
(Xi) ranges in a known Domain (D), and a set of
Constraints C = {C1, C2,…, Cn} which restricts
specifically one or a group of variables with the
values they can assume. A consistent complete
solution corresponds to a full variable valuation,
which is further in accordance with the constraints
imposed. Along the paper, we refer to the variables
as entities. Figure 1 depicts a pedagogical problem.

Figure 1: A pedagogical Constraint Satisfaction Problem.

In the above figure, the entities are {X1, X2, X3, X4,
X5, X6, X7} and each one can assume one of the
following value: D = {r,g,b}, referring to the
colours, red, green, and blue, respectively. The only
constraint imposed restricts the neighbouring places
(that is, each pair of nodes linked by an arc) to have
different colours. As usual, this problem can be
reformulated into a search tree problem, where the
branches represent all the possible paths to a
consistent solution. By definition, each branch not in
accordance with C, must be pruned. The
backtracking algorithm, a special case of depth-first,
is neither complete nor optimal, in case of infinite
branches (Vilain et. al, 1989). As we have not
established an optimal solution to the problem, our
worries rely only upon the completeness of the
algorithm. However, we only take into account
problems in which search does not lead to infinite
branches, and thus, the completeness of the problem
is ensured.

2.2 Search Heuristics

Basically, the backtracking search is used for this
sort of problems. Roughly, in a depth-first manner, a

value from the domain is assigned, and whenever an
inconsistency is detected, the algorithm backtracks
to choose another colour (another resource).
Although simple in conception, the search results are
far to be satisfactory. Further, this algorithm lacks
for not being intelligent, in the sense to re-compute
partial valuations already prove to be consistent. A
blind search, like the backtracking, is improved in
efficiency employing some heuristics. Regarding
CSP, general heuristics (that is, problem-
independent, opposite to domain-specific heuristics,
as the ones in A* search (Dechter & Pearl, 1985))
methods speed up the search while removing some
sources of random choice, as:

 Which next unassigned variable should be
taken?

 Which next value should be assigned?

The answer for the questions above arises by a
variable and value ordering. The most famous
heuristics are highlighted below. Note that the two
first methods concern the variable choice, and the
later refers to the value ordering:

 Most Constrained Variable avoids useless
computations when an assignment will
eventually lead the search to an inconsistent
valuation. The idea is to try first the variables
more prone to error;

 When the later method is useless, the Degree
Heuristic serves as a tie-breaker, once it
calculates the degree (number of conflicts) of
each entity;

 The Least Constraining-Value, in turn, sorts
decreasingly the values in a domain respecting
how much the value conflicts with the related
entities (that is, the values less shared are tried
first).

As said before, we have restricted our scope of

research to the class of problems similar to the
family of the four color theorem, where the domain
is the same for each variable. In this sense, the LCV
heuristic is pointless since the “level” of
constraining for each value is the same. This
drawback force us to search alternatives for sort the
values of CSP in similar situations, but also
improving the efficiency. However, before to
present the solution, it is worth to explain why we
have used the logic constraint programming CHRv
to carry out the tests.

LSVF: LEAST SUGGESTED VALUE FIRST - A New Search Heuristic to Reduce the Amount of Backtracking Calls in
CSP

417

3 CHRV

Constraint Handling Rules with Disjunction (CHRv)
(Abdennadher & Schütz, 1998) is a general
concurrent logic programming language, rule-based,
which have been adapted to a wide set of
applications as: constraint satisfaction (Wolf, 2005),
abduction (Gavanelli et. al, 2008), component-
development engineering (Fages et. al, 2008), and
son on. It is designed for creation of constraint
solvers.

CHRv is a fully accepted logic programming
language, since it subsumes the main types of
reasoning systems (Frühwirth, 2008): the production
system, the term rewriting system, besides Prolog
rules. Additionally, the language is syntactically and
semantically well-defined (Abdennadher & Schütz,
1998).

Concerning the syntax, a CHRv program is a set of
rules defined as:

Rule_name@ Hk \ Hr <=> G | B.

Rule_name is the non-compulsory name of the rule.
The head is defined by the predicates represented by
Hk and Hr, with which an engine tries to match with
the constraints in the store. Further, G stands for the
set of guard predicates, that is, a condition imposed
to be verified to fire any rule. Finally, B is the
disjunctive body, corresponding to a set of
constraints added within the store, whenever the rule
fires. The logical conjunction and disjunction of
predicates are syntactically expressed by the
symbols ‘,’ and ‘;’, respectively. Logically, the
interpretation of the rule is as follows:

∀VGH (G → ((Hk ∧ Hr) ↔ (∃VB\GH B ∧
Hk))), where VGH = vars(G) ∪
vars(Hk) ∪ vars(Hr), VB\GH = vars(B)
\ VGH

For the sake of space, we ask the reader to check the
bibliography for further reference to the declarative
semantics.

The problem depicted in figure 1 is represented
by the logical conjunction of the following rules:

f@ facts==> m, d(x1,C1), d(x7,C7),
d(x4,C4), d(x3,C3), d(x2,C2),
d(x5,C5), d(x6,C6).

d1@ d(x1,C) ==>
C=red;C=green;C=blue.
d7@ d(x7,C) ==>
C=red;C=green;C=blue.
d4@ d(x4,C) ==>
C=red;C=green;C=blue.

d3@ d(x3,C) ==>
C=red;C=green;C=blue.
d2@ d(x2,C) ==>
C=red;C=green;C=blue.
d5@ d(x5,C) ==>
C=red;C=green;C=blue.
d6@ d(x6,C) ==>
C=red;C=green;C=blue.

m@ m <=> n(x1,x2), n(x1,x3),
n(x1,x4), n(x1,x7), n(x2,x6),
n(x3,x7), n(x4,x7), n(x4,x5),
n(x5,x7), n(x5,x6).

n1@ n(Ri,Rj), d(Ri,Ci), d(Rj,Cj)<=>
Ci=Cj | fail.

The first rule ‘f’ introduces the constraints into

the store, which is a set of predicates with functor d
and two arguments: the entity and a variable to store
the valuation of the entity. The seven following rules
relate the entity with the respective domain.
Additionally, rule ‘m’ adds all the conceptual
constraints, in the following sense: n(Ri,Rj) means
there is an arc linking Ri to Rj, thus, both entities
could not share the same color. Finally, the last rule
is a sort of integrity constraint. It fires whenever the
constraints imposed is violated. Logically, it says
that if two linked entities n(Ri,Rj) shares the same
color (condition ensured by the guard), then the
engine needs to backtrack to a new (consistent)
valuation.

In the literature, many operational semantics was
proposed, as (Abdennadher et. al, 1999). However,
the ones most used in CHRv implementations are
based on the refined semantics (Duck et. al, 2004)
(as the SWI-Prolog version 5.6.52 (SWI-Prolog,
2008) used in the examples carried out along this
paper). According the refined operational semantics,
when more than one rule is possible to fire, it takes
into account the order in which the rules were
written in a program. Hence, as SHD heuristic
orders the entities to be valued in accordance with
the level of constraining, this pre-analysis help us to
write the rules based on this sort. Thus, we could
concentrate our effort on the order of the values in
the domain.

4 LEAST SUGGESTED VALUE
FIRST - LSVF

The last section has introduces the rule-based
constraint language, CHRv. Many aspects of the

ICAART 2010 - 2nd International Conference on Agents and Artificial Intelligence

418

operational semantics were left unexplained, and we
encourage the reader to check the references for
additional information. However, some points need
be discussed to clarify the technique developed to
improve the search, decreasing the amount of
backtracking calls. The first point, “which rule will
trigger”, was discussed before. The second
important subject of discussion is the order of which
the values are taken from the domain in the search.
We have already said that the logical disjunction is
denoted in the body of a CHRv rule, syntactically
expressed by ‘;’. In order to maintain consistency
with the declarative semantics, CHRv engine tries all
the alternatives since the user tell the engine to do
so. A disjunctive body is always evaluated from left-
to-right.

d1@ d(x1,C) ==>
C=red;C=green;C=blue.

 Taking a rule from the example (as stated

above), the engine tries the following order of
valuation for X1: (1) red, (2) green and, (3) blue. All
the rules were created respecting the same valuation
order.

At first glance, we can note a relevant problem:
if all the entities try first the same colour, and we
know that these entities are related, a second
evaluated entity always needs to backtrack.
Furthermore, since the entities shares the same
domain, LCV is pointless: each value has the same
level of constraining. In order to make our idea
clear, we introduce a second example.

Figure 2: An example regarding the order of the colours.

The Figure 2 shows the motivation problem for the
new heuristics discussed. There are 3 entities
{X1,X3,X7}, each one sharing the same domain. Let
us respect the order of valuation from left to right,
and the order of variable chosen based on the
numerical order. Thus, the engine works as follows:

I. X1 is chosen, and the colour red is taken;
II. X3 is chosen, and the colour red is taken;

III. Inconsistency found: backtracking;
IV. X3 is chosen, and the colour blue is taken;

V. X7 is chosen, and the colour red is taken;
VI. Inconsistency found: backtracking;

VII. X7 is chosen, and the colour blue is taken;
VIII. Inconsistency found: backtracking;
IX. X7 is chosen, and the green is taken.

Following, in the Figure 3, the values order is
changed to avoid, as much as possible, the conflicts.

Figure 3: The same example with values re-ordered.

The engine now works as stated below:
I. X1 is chosen, and the colour red is taken;

II. X3 is chosen, and the colour blue is taken;
III. X7 is chosen, and the colour green is taken.

The above modification prevented the backtracking
calls, and the solution was reached just with three
steps, unlike the last example, which did the same,
in 9 steps. Evidently, in practice, we can not avoid
all backtracking calls, but each reduction is well-
suited for the overall search time-consumption.

4.1 How the Heuristic Works?

Our propose is to enjoy the operational semantics
addressed by the CHRv implementation to sort the
order in which the values from the domain is
asserted, removing the amount of backtracking calls.
We believe this reduction can be well appreciated in
large and complex problems, where the time is a
relevant factor.

The approach does not yield only the first colour,
but the entire domain. In our case, the focus is in
problems with three or four colours. In this context,
the members of the set of entities are categorized in
accordance with the level of corresponding
restriction:

 Soft Entities, that is, less constrained;
 Middle Entities, that is, half constrained;
 Hard Entities, that is, more constrained.

Hence, instead of proposing a solution of

random sorting, we have taken the following
assumptions:

 Usually, the entities less constrained are likely
linked to others more constrained, and, further,
the entities less restricted are not connected to

LSVF: LEAST SUGGESTED VALUE FIRST - A New Search Heuristic to Reduce the Amount of Backtracking Calls in
CSP

419

each other (if this were the case, the entities
owned other restrictions than those that connect
them, and they would be deemed more
constrained). Thus, the domain of these entities
are sorted in the same manner;

 Normally, hard entities are linked to middle
ones, and thus the order of valuation must be in
conformance to this fact, example, if a hard
entities domain is ordered like (1)red, (2)green,
(3)blue, the middle should be sorted like
(1)blue, (2) green (3)red, that is, the less
suggested values first.

 The first value assumed by the hard entities
should be the last for the soft and middle
entities, since potentially both are linked to the
former (this is why they were classified as
hard).

In order to exemplify this approach, we are

going to show the reformulation of the example used
along this paper, illustrating gradually the gains
obtained.

With respect the problem, we divided the set of
entities as follows: (i) soft entities: {X2,X3,X6}, (ii)
middle entities: {X4,X5}, and (iii) hard entities
{X1,X7}, with 6, 9 and 12 conflicts, respectively.
What was considered for division was precisely the
amount of conflict in relation to other variables,
done according the Static Highest Degree (SHD)
heuristic.

Table 1 summarizes the amount of inferences
made and the number of backtracking calls. The
time is a relevant aspect only when evaluated to
large problems.

Table 1: First Results with the LSVF Heuristic.

Sorting Level Inferences Backtracking Calls
I 4,897 8
II 4,694 7
III 4,415 6
IV 4,208 5

Not accidentally, the table was populated according
to the level of values sorted in respect to the
assumptions raised earlier. Each level corresponds to
a different CHRv program.The Sorting Levels are
the following:

Table 2: Domain Used for the Entities.

Level Soft Middle Hard

I red, green blue red, green blue red, green blue

II red, green blue blue, red, green red, green blue

III green, red blue blue, red, green red, green blue

IV green, blue, red blue, green, red red, green blue

In the Level I, the heuristic was not used. It is

worth to keep their results in the table to compare
with the other levels, where the assumptions (which
define the LSVF) were gradually applied. Level II
has changed the first suggested colour of the Middle
entities with respect the hard. Following, the level
III has changed the first colour of domain of soft
entities with respect the others (middle and hard).
There has been a reduction of 25% of backtrack calls
in accordance with the level I. Finally, the level IV
has used all assumptions talked, and both measures
were visibly reduced. In this latter case, the engine
backtracks 5 times, three calls less than the original
program. Note that level IV obeys all the
assumptions discussed, and the results obtained were
remarkable.

5 FINAL REMAKES’ AND
FUTURE WORK

The preliminary results obtained were very
satisfactory. We might see that, as we organize the
values of the domain of the entities, gradually the
search has been getting more efficient with respect
to the number of inferences necessary to reach a
solution. A small comparison between the level I
and level IV, the program without the heuristic and
the program totally in accordance with LSVF,
respectively, shows a significant reduction in the
amount of backtrackings and inferences realized.

It was important to mention that we are neither
worried with optimal solutions nor with all the
solutions for the problem. We only focus on our
overall effort to reach a solution, and nothing else.

In order to validate completely the LSVF
heuristics, our next step is to analyse the approach
with more complex problems. Additionally, our aim
is to check the time resource allocated for this kind
of problem, since this was not possible due to the
size of the example discussed (all instances executed
in less than one second).

ICAART 2010 - 2nd International Conference on Agents and Artificial Intelligence

420

ACKNOWLEDGEMENTS

We acknowledge REUNI for financial support and
the Center of Informatics of Federal University of
Pernambuco – CIn/UFPE – Brazil for support in this
research.

REFERENCES

Abdennadher, S., and Schütz, H., 1998. CHRv: A Flexible
Query Language, In Proceedings of the Third
International Conference on Flexible Query
Answering Systems, p.1-14, May 13-15.

Abdennadher, S., Frühwirth, T., and Meuss, H. 1999.
Confluence and Semantics of Constraint Simplification
Rules.Constraints 4, 2 (May. 1999), 133-165.

Brailsford, S., Potts, C., and Smith, B. 1999. Constraint
satisfaction problems: Algorithms and applications.
European J. Operat. Res. 119, 557--581.

Dechter, R. and Pearl, J. 1985. Generalized best-first
search strategies and the optimality of A*. J. ACM 32,
3 (Jul. 1985), 505-536.

Duck, G. J., Stuckey, P. J., De la Banda, M. G. and
Holzbaur, C. 2004. The Refined Operational
Semantics of Constraint Handling Rules. In
Proceedings of the 20th International Conference on
Logic Programming, B. Demoen and V. Lifschitz,
Eds., 90-104.

Fages, F., Rodrigues, C. M. O., and Martinez, T.
2008. Modular CHR with ask and tell. In T.
Schrijvers, F. Raiser, and T. Frühwirth, editors, CHR
'08: Proc. 5th Workshop on Constraint Handling
Rules, Hagenberg, Austria, pages 95-110, 2008. RISC
Report Series 08-10, University of Linz, Austria.

Frühwirth, T. 2008. Welcome to Constraint Handling
Rules. In Constraint Handling Rules: Current
Research Topics, T. Schrijvers and T. Frühwirth, Eds.
Lecture Notes In Artificial Intelligence, vol. 5388.
Springer-Verlag, Berlin, Heidelberg, 1--15.

Gavanelli, M., Alberti, M., and Lamma, E. 2008.
Integrating Abduction and Constraint Optimization in
Constraint Handling Rules. In Proceeding of the 2008
Conference on ECAI 2008: 18th European Conference
on Artificial intelligence. M. Ghallab, C. D.
Spyropoulos, N. Fakotakis, and N. Avouris, Eds.
Frontiers in Artificial Intelligence and Applications,
vol. 178. IOS Press, Amsterdam, The Netherlands,
903-904.

Robertson, N., Sanders, D. P., Seymour, P. D., and
Thomas, R., 1997. The four colour theorem, J.
Combin. Theory Ser. B., 2--44.

Russel, S., Norvig, P., 2003 The book, Artificial
Intelligence: A Modern Approach. New Jersey:
Prentice-Hall, 2nd edition, 143--144.

SWI-Prolog. 2008. Reference Manual. Avaliable in
http://gollem.science.uva.nl/SWI-Prolog/Manual/
Contents.html. Last access in 15th September 2009.

Vilain, M., Kautz, H. and Beek, P. van. 1989. Constraint
propagation algorithms for temporal reasoning: A
revised report. In D. S. Weld and J. de Kleer,
editors, Readings in Qualitative Reasoning about
Physical Systems, pages 373-381. Morgan Kaufmann.

Wolf, A. 2005. Intelligent search strategies based on
adaptive Constraint Handling Rules. Theory Pract.
Log. Program. 5, 4-5 (Jul. 2005), 567-594.

LSVF: LEAST SUGGESTED VALUE FIRST - A New Search Heuristic to Reduce the Amount of Backtracking Calls in
CSP

421

