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Abstract: We computationally compare four procedures, namely, alpha-shapes, iso-surface extraction, gridfit andL1
splines for geometric reconstruction of 3D urban structures represented by irregular point clouds with abrupt
changes in density. For significant numbers of outliers,L1 splines produce the most accurate reconstructions
both visually and when measured analytically in the Hausdorff metric but are more computationally expensive
than the other three procedures.

1 INTRODUCTION

Obtaining textured surfaces from point clouds re-
trieved by passive sensors is a topic of increasing in-
terest in computer vision and its applications, such as
automatic navigation and surveillance. Point clouds
obtained by photogrammetric methods are commonly
irregular and have abrupt changes of density because
the regions with high density of points resulting from
patches of good local coverage and textured areas are
interspaced with large patches of poor coverage. The
abruptly changing density of the point clouds that
we consider here is in contrast to the roughly uni-
form density of the point clouds obtained, for ex-
ample, from local LIDAR scanning of objects, for
which theoretically established conditions that guar-
antee reconstruction of a topologically correct sur-
face with error bounds are known (Amenta et al.,
2000). In addition to the irregular density, point
clouds produced from light, inexpensive cameras, es-
pecially from cameras without internal navigation ca-
pabilities, have a high level of noise and a signifi-
cant number of outliers, i.e., points far from the sur-
face resulting, for example, from small moving ob-
jects, occlusions, or spurious matches in the areas
of roughly homogeneous intensity distribution which

are, in general, not easy to eliminate in the prepro-
cessing step. In some cases, it is possible to cope
with these negative properties using model assump-
tions, for example, the local 2.5D character of dig-
ital terrain maps (DTMs), which enables extraction
of roof planes (Haala N., 1998) and piecewise planar
structures in general (Mayer H., 2006), but, in gen-
eral, robust algorithms for reconstruction of 3D sur-
face for various topological types are not yet avail-
able and are therefore widely investigated. In this
context, numerous procedures have been considered
over the past two decades, including alpha shapes (α-
shapes) (Edelsbrunner and Mücke, 1994), TMSs (tri-
angular mesh surfaces, called in the 2.5D case trian-
gulated irregular networks or, for short, TINs) (Bois-
sonnat et al., 2006), iso-surface extraction (Kazhdan,
2005; Hoppe et al., 1992), polynomial splines (Eck
and Hoppe, 1996),L1 splines (Bulatov and Lavery,
2010; Lavery, 2001; Lin et al., 2006) and gridfit,
a widely used modeling tool available in MATLAB
(D’Errico, 2006).

In this paper, we will investigate the relative ac-
curacy of the surfaces produced byα-shapes, iso-
surface extraction, gridfit andL1 splines.

These comparisons follow on and extend previ-
ous work on comparison ofα-shapes with conven-
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tional splines andL1 splines (Bulatov and Lavery,
2009). While in (Bulatov and Lavery, 2009) the em-
phasis was on procedures that handled all steps of
the process from video as input to textured geomet-
ric models as output and merely visual comparison of
reconstruction results was the objective, the present
paper focuses on the geometric reconstruction por-
tion of this process and its quantitative evaluation.
This portion starts from a given cloud of points or
(oriented) patches and ends up with a 3D triangular
mesh. We choose an artificially constructed object
as the basis for comparison so that ground truth is
available. The standard deviation of Gaussian noise
and the outlier percentage is varied. Deviation of
the reconstructed surface from ground truth will be
measured not by orientation-dependent classical er-
ror measures such as root-mean-square, but rather by
the orientation-independent Hausdorff metric. We as-
sume here knowledge of a 2D(u,v)-parametrization
of a given point cloudS = {xm = (xm

,ym
,zm), m =

1,2, . . . ,M}, from which the object is to be recon-
structed.

In Section 2, we describe the Hausdorff metric in
which the comparisons will be carried out and the four
procedures that will be compared. Computational re-
sults are presented in Section 3. Concluding remarks
and discussion of future research are given in Section
4.

2 HAUSDORFF METRIC AND
RECONSTRUCTION
PROCEDURES

In this section, we outline and motivate our choice of
the Hausdorff metric in which the comparisons will
be carried out and give brief descriptions of the four
procedures that will be compared, namely,α-shapes,
iso-surface extraction, gridfit andL1 splines.

2.1 Hausdorff Metric

A fundamental issue when making comparisons is
the metric (measure of similarity) in which the com-
parisons are made. Conventional metrics such as
rms (root mean square—the square root of the av-
erage error) and generalizations thereof, such as the
Lp norms (DiBenedetto, 2002), measure similarity
in ways inconsistent with human perception. For
many commonplace situations, including, for exam-
ple, thin walls in urban terrain, these metrics indi-
cate that two sets are nearly the same when observers
judge them to be dissimilar. In order to measure

completeness and correctness (Heipke et al., 1997)
of a geometric reconstruction (Seitz et al., 2006), it
is now common to use (generalizations of) the Haus-
dorff metric (Olson and Huttenlocher, 1997). The
Hausdorff metric is sensitive to outliers, a property
that makes it a suitable tool for evaluating surface re-
construction methods for practical applicability such
as automatic navigation. In our case, the outliers are
not input sample points but triangles of the result-
ing mesh that contain points far from the surface.
Some generalizations of the Hausdorff metric play
down the effect of outliers (Baddeley, 1992), but in
this paper we shall adopt the original Hausdorff met-
ric to perform the comparisons. We denote the dis-
tance from pointx to meshY and the distance from
meshX to meshY by d(x,Y ) = infy∈Y d(x,y) and
d(X ,Y ) = supx∈X d(x,Y ), respectively. For our pur-
poses,d(x,y) is the Euclidean distance betweenx and
y. The Hausdorff metric for the “distance” fromX to
Y is

dH(X ,Y ) = max{d(X ,Y ),d(Y ,X )} . (1)

If Y is the ground-truth mesh, then the first term
in (1) denotes correctness and the second term com-
pleteness of the reconstruction. Effective algorithms
are needed for estimatingd(X ,Y ) on the triangular
meshes considered here. We implemented the main
features of the method of (Guthe M., 2005), which
uses octrees for coarse identification for a given ver-
tex x of the meshX the partY ′ ⊆ Y to which com-
puting distance makes sense. Then we performed fast
computation of distance fromx to every vertex, edge
and face ofY ′. The minimum of these distances is an
estimate ofd(x,Y ).

2.2 Alpha Shapes

Alpha shapes is the well known method introduced in
(Edelsbrunner and M̈ucke, 1994). Given a point sam-
pleS, a triangle formed from a triple of points is added
to the list of triangles if no point ofS lies in one of two
open balls of radiusα around these points. Clearly,
for very smallα, theα-shape will beS itself and, for
α → ∞, the convex hull ofS will be obtained. Since
α-shapes are subsets of Delaunay triangulations, their
computation can be performed rather fast. Another
advantage ofα-shapes is that they provide 3D models
without needing parametrization. On the other hand,
the procedure is not robust against outliers.

2.3 Iso-surface Extraction

The iso-surface extraction procedure that we use in
this paper is that given in (Kazhdan, 2005). Given
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a closed surfaceF , the procedure first retrieves
the Fourier transform of the characteristic function
(χ(x) = 1 if x ∈ F andχ(x) = 0 if x 6∈ F ) from the
point setS and the set of oriented normal vectors us-
ing Stokes’s theorem (see (Kazhdan, 2005) for more
details). Then it obtains an implicit function that rep-
resents the surface by settingχ(x) = c where c is
suitable constant. Finally, it performs meshing us-
ing a marching cubes algorithm (Lorensen and Cline,
1987). This procedure has the advantages of not re-
quiring a parametrization and of being able to ob-
tain the normal vectors and their orientations from the
camera trajectory.

2.4 Gridfit

Gridfit in its standard implementation is an approxi-
mation procedure for fitting 2.5D surfaces (D’Errico,
2006). We use gridfit to generate 3D parametric sur-
faces of the form(x(u,v),y(u,v),z(u,v)), wherex, y
andz are 2.5D surfaces with respect to(u,v). Gridfit
solves a least-squares system of the type

(1−λ)||Ax−b||22 +λ||Bx||22, (2)

where the first term is the data fitting term and the sec-
ond term is the regularization term. The parameterλ
determines the balance between accurately fitting the
data (smallλ) and smoothing out the surface (largeλ).
The version of gridfit used in this paper constructs a
C0 surface that fits the data approximately linearly on
triangles and regularizes the surface by approximate
equalization of the partial derivatives at the vertices
of the triangles.

2.5 L1-splines

Reconstruction withL1 splines was described in (Bu-
latov and Lavery, 2010). Let(um

,vm) be the paramet-
ric postion of(xm

,ym
,zm). The key idea is to minimize

a functional that consists of

(1−λ)
M

∑
m=1

|z(um
,vm)− zm|+ (3)

λ
∫

D
(|zuu|+2|zuv|+ |zvv|)dudv+ε ∑

nodes

(|zu|+ |zv|)

and 12 analogous expressions involvingx, y and z
over the manifold of cubicL1 splines, that is,C1-
smooth piecewise cubic functionsx, y andz on a given
(u,v)-grid. Similar to (2), the first term in (3) ex-
presses how closely the data points are fitted, the sec-
ond term expresses, by minimizing absolute values of
second partial derivatives, how close the surface is to

Figure 1: Model “house with overhanging roof” and point
cloud with no outliers. Left: view from side, right: view
from top, middle at top: parametrization in(u,v)-domain
(points on the ground, on the walls, on the horizontal, upper
and lower overhanging parts of the roof are marked in black,
red, green, cyan and yellow, respectively).

Figure 2: Surfaces extracted byα-shapes. Noise level 0.05
everywhere. Left and center: no outliers. Left:α = 5·104σ,
center: α = 2 · 104σ. Right: outlier percentage 0.01,α =
5·104σ.

a piecewise planar surface and the last term prevents it
from having a non-unique minimum. Just as was the
case for gridfit, the balance parameterλ determines
the trade-off between fitting the data and smoothing
the surface. The third term prevents the functional
from having a non-unique minimum, and so any suf-
ficiently small, positive number can be taken forε. As
in gridfit, the resulting mesh is formed by connecting
the neighboring spline knots.

3 COMPUTATIONAL RESULTS

The test object represented by the point cloudS must
be simple enough that it can be correctly evaluated
with the Hausdorff metric. On the other hand,S must
possess all properties of a point cloud obtained by
photogrammetric methods in urban terrain: gradient
discontinuities (characteristic for manmade objects),
high Gaussian noise, several outliers and varying den-
sity of points. In this paper, the point cloudS to be
used in the comparisons represents a house with an
overhanging roof (see Figure 1). The experiments
were carried out for levels 0.01 and 0.15 of Gaussian

Figure 3: Surfaces produced by iso-surface extraction. Left:
outlier percentage 0.0, right: outlier percentage 0.01.
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Figure 4: Gridfit surfaces. Outlier percentage is 0.01 every-
where. Equally spaced grid. Left:λ = 0.2, right: λ = 0.33.

Figure 5:L1 splines. Outlier percentage is 0.01 everywhere.
Equally spaced grid. Left:λ = 0.3, right: λ = 0.5.

noise and for percentages 0%, 1% and 10% of outliers
(i. e. points randomly chosen in the bounding box of
the object ) forx,y,z coordinates of the point (in the
case of iso-surface extraction also for normal vectors).
The density of points remained unchanged in all ex-
periments but was variable in different regions of the
data set. For each level of noise and outliers, we car-
ried out data-set generation, reconstruction and eval-
uation 10–15 times and computed the average of the
Hausdorff distances according to (1).

In the α-shapes procedure, we usedα = 2 ·104σ
and 5· 104σ, values that produce the best results for
the point clouds of interest here. Here,σ is the stan-
dard deviation of the data-set coordinates. The results
are shown in Figure 2. Here and in what follows, the

Table 1: Hausdorff-metric errors for the surfaces of Figures
2–5. Explanation about choice of parameters is given in
Sec. 2 and Sec. 3. The computing times are approximate,
since the algorithms were implemented in different pro-
gramming languages and average correction factors were
applied.

method noise outl. (%) parameters Hausdorff comp.
-distance time

0.01 0.26030
0.05

0.00 α = 2·104σ
0.27441

0.01 0.22844α-shapes

0.05
0.00 α = 5·104σ

0.30783

≈ 2.0 sec.

0.00 0.17134
iso-surface 0.05

0.01 0.85048
≈ 4.5 sec.

0.00 0.20819
0.01 λ = 0.2 0.38543

gridfit 0.1 0.66349
eq. spaced 0.00 0.26813

0.01 λ = 0.33 0.35752

0.05

0.1 0.53354

≈ 1 sec.

0.00 0.19457
0.01 λ = 0.3 0.19387
0.1 0.45619
0.00 0.26196
0.01 λ = 0.5 0.24133

L1-splines 0.05

0.1 0.30898

≈ 240 sec.

point x on the approximating surface that yields the
value of the Hausdorff metric (the maximum distance
from the approximating surface to the ground-truth
mesh) is at the center of a red circle and a green line is
drawn fromx to the closest point on the house model.

For iso-surface extraction, we consider the fact
that the result must be a closed surface and exclude
from consideration all triangles that lie outside of the
bounding box of the object. The bandwidth of the re-
construction (given by the voxel-grid for calculating
forward and inverse FFT) was chosen to be 64. The
orientation of the normals on points for the data set
described were computed according the position of
each point (on the ground, at the walls, on the roof,
on the underside of the overhang). The computational
results are presented in Fig 3.

For gridfit and L1 splines, we generated
surfaces x(u,v),y(u,v),z(u,v) on the (u,v) do-
main [−1.15,2.15] × [−2.15,2.15]. The (u,v)-
parametrization is depicted on the right in Figure 1.
Although a robust iterative procedure of generating
parametrized data sets from similar point clouds
is given in (Bulatov and Lavery, 2010), for the
present paper, we chose manually suitable spatial
homographies for points on the ground, at the walls
and on the roof and under the overhang that transform
the points from different parts of the house into
the (u,v)-plane and preserve topological relations
between these points. Both surfaces were computed
for 50× 50 equally spaced rectangular(u,v)-grids
and reasonable balance parametersλ = 0.2 and 0.33
for gridfit andλ = 0.3 and 0.5 forL1 splines. Figure 4
shows the gridfit reconstruction with different balance
parameters. The reconstructions withL1 splines are
given in Figure 5. In Table 1, we present the average
Hausdorff-metric errors between the reconstructions
in Figures 2–5 and the ground truth. As Figures 2–5
and Table 1 indicate, theα-shapes and iso-surface
extraction are not robust enough for high percentages
of outliers. In the current implementation of gridfit,
the lowest Hausdorff distances (the ones stated in
Table 1) for data sets with outliers were obtained
for equally spaced grids. For further reduction of
the Hausdorff distance, it is recommended to useL1
splines, which perform significantly better for data
sets with quite high percentages of outliers.

The time needed to calculateL1 splines in their
current implementation is high because one must
solve a linear program, rather than a single linear
least-squares system. However, the computing time
of L1 splines can be reduced by orders of magnitude
by applying a domain decomposition procedure intro-
duced in (Lin et al., 2006) as well as by using adaptive
triangular grids.
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4 CONCLUSIONS

There is an urgent need for accurate approximation of
irregular, 3D data in urban terrain as well as in geo-
metric modeling of irregular objects in general. The
Hausdorff metric is a widely recognized, orientation-
independent tool for measuring the accuracy of 3D re-
construction. The figures in Sec. 3 illustrate the cor-
relation between lower Hausdorff distance and bet-
ter reconstruction in the view of the user interested in
practical applications.

The four procedures described in this paper all
produced acceptable reconstructions for data sets
without outliers. However, once there is a significant
number of outliers in the data,L1 splines yield the best
results. Once implemented in a computationally effi-
cient domain-decomposition framework and on more
flexible triangular grids,L1 splines will be computa-
tionally competitive with the other methods.

In the future, we will compare the procedures in-
vestigated in this paper with a wider class of recon-
struction procedures and will integrate these proce-
dures into complete reconstruction and texturing pro-
cedures that go all the way from the camera or other
sensors to the textured model.
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