
OPENHEALTH
The OpenHealth FLOSS Implementation of the ISO/IEEE 11073-20601 Standard

Santiago Carot-Nemesio, José Antonio Santos-Cadenas, Pedro de-las-Heras-Quirós and Jorge Bustos
GSyC/Libresoft, Rey Juan Carlos University, Tulipan S/N, Móstoles, Madrid, Spain

Keywords: FLOSS, ISO/IEEE 11073-20601, Personal health, Android, Bluetooth, MCAP, HDP, Continua health alliance.

Abstract: The OpenHealth project aims to provide the first complete Free/Libre Open Source Software (FLOSS) im-
plementation of the ISO/IEEE 11073-20601 personal health standards over Bluetooth transport. A manager
has been implemented in Java, tested both in Linux desktops and on the Android platform against thermome-
ter agents. The MCAP and HDP Bluetooth profiles have also been implemented in BlueZ, the offcial Linux
Bluetooth protocol stack. This implementation has been successfully tested with a Nonin Onyx II 9560 pulse
oximeter, the first medical device that implements the HDP Bluetooth profile and the ISO/IEEE 11073 data
protocol.

1 INTRODUCTION

The OpenHealth Assistant project (Andago Ingenierı́a
S.L., 2009) being developed by Andago Ingenierı́a
and the GSyC/LibreSoft research group at Rey Juan
Carlos University aims to deploy a full socio-sanitary
platform to fulfill the needs of current public health
assistance services. Figure 1 shows a diagram of the
architecture of that project.

The Manager (GSyC/Libresoft Research Group,
2009) described in this paper 1 is one of the compo-
nents of this project, aimed at managing and recollect-
ing vital measures sent from medical devices (agents)
connected through body area networks (BAN) such as
Bluetooth, and providing support for sending the re-
ceived measures from the manager application to the
hospital backoffice or to online personal health record
applications in an interoperable and standard way.

The ISO/IEEE 11073-20601 (Institute of Elec-
trical and Electronics Engineers Inc., 2008c) be-
longs to the ISO/IEEE 11073 family of standards
for device communication. It defines a common ab-
stract communication model based on agents and a
manager to transmit transport-independent personal
health data. The new standardized Bluetooth Health
Device Profile (Bluetooth Special Interest Group

1This work has been partially funded by the Catedra In-
ternet del Futuro Andago-URJC and by the Spanish Min-
istry of Industry’s Plan Avanza

Figure 1: OpenHealth Assistant Platform.

Inc., 2008a) (HDP) in combination with the IEEE
11073-20601 specification provides a robust, stan-
dards based framework to allow interoperability be-
tween Bluetooth Health Devices. Figure 2 represents
the protocol model used by this profile.

Advances in mobile computing bring us the possi-
bility to improve socio-sanitary assistance by running
the manager on smartphones, tablets, subnotebooks,

505
Carot-Nemesio S., Antonio Santos Cadenas J., de-las-Heras-Quiros P. and Bustos J. (2010).
OPENHEALTH - The OpenHealth FLOSS Implementation of the ISO/IEEE 11073-20601 Standard.
In Proceedings of the Third International Conference on Health Informatics, pages 505-511
DOI: 10.5220/0002766705050511
Copyright c© SciTePress



Figure 2: Protocol Model.

etc. These are adequate devices for hosting a man-
ager due to their diminishing prices, their widespread
usage, their small form factor and their multiple com-
munication channels.

The wireless communication model for the
ISO/IEEE 11073 family uses the new MCAP and
HDP Bluetooth specifications. HDP and MCAP pro-
files require new developments in lower layers of the
Bluetooth stack, specifically in L2CAP, that are not
available in current commercial Bluetooth stacks.

We decided to implement HDP/MCAP for the
Linux kernel, with the aim to facilitate the inclusion
of this code in multiple mobile platforms that use this
kernel, such as Nokia/Maemo, Android, Intel/Moblin.
The official Linux Bluetooth protocol stack (Bluez,
2009) was a good choice. Developments made by
other members of the BlueZ project in parallel with
our project made it possible to use the L2CAP special
transmission modes that HDP/MCAP requires.

This paper describes a Java based Free/Libre Open
Source (FLOSS) implementation of the ISO/IEEE
11073-20601, as well as a FLOSS implementation of
the HDP/MCAP Bluetooth profiles, that allows us to
run a manager on Android devices. Both of them are
available in the project’s website 2. We decided to tar-
get specifically the Android platform because it ful-
fills all our requirements: it is Open Source, based on
a Linux kernel, and it is a mobile platform available
in multiple devices.

Figure 3 shows a diagram of the architecture of
the stack we have implemented. Parts of it will be
described in sections 2, 3 and 4.

Section 2 describes the Java based ISO/IEEE
11073-20601 we have implemented. Then, section 3
details the Android Manager Service, which is a layer
on top of the manager designed for the Android OS,
implemented as an Android service that enables other
Android applications to control the behavior of the
agents connected to the manager. Finally, in section 4
we first introduce the HDP and MCAP Bluetooth
specifications which have been recently adopted by
Continua Health Alliance for the wireless transmis-

2http://openhealth.morfeo-project.org/lng/en

Figure 3: Android Manager Service + ISO/IEEE 11073-
20601 Manager + BlueZ (HDP/MCAP) architecure.

sion of standard data records in compliance with the
ISO/IEEE 11073 standard, and then we detail our par-
ticular implementation of HDP/MCAP for the BlueZ
Linux Bluetooth stack. The JNI/D-BUS interface is
the only component shown in figure 3 that has not yet
been finished. The bottommost 2 layers shown in the
figure, L2CAP and HCI, have not been implemented
by us.

Experimental tests and results are reviewed in sec-
tion 5. The paper concludes reviewing related work,
future work and conclusions.

2 MANAGER IMPLEMENTATION

The Manager is the main software component of the
architecture. It plays the sink role to collect the data
sent from one or more agent systems, and it manages
the communication process in order to ensure that the
personal data exchange occurs according with the op-
timized data exchange protocol.

All protocols defined under ISO/IEEE 11073-
20601 use abstract syntax to provide an specification
of the structure of data items without reference or re-
quirement for a specific implementation technology
for medical devices communication. ASN.1 (Inter-
national Telecommunication Union, 2002), together
with specific ASN.1 encoding rules, facilitates the ex-
change of structured data by describing data struc-
tures in a way that is independent of machine archi-
tecture and implementation language.

The ISO/IEEE 11073-20601 uses optimized en-
coding rules for ASN.1 known as Medical Devices
Encoding Rules (MDER). MDER was specified in
ISO/IEEE 11073-20101 (Institute of Electrical and

HEALTHINF 2010 - International Conference on Health Informatics

506



Figure 4: Manager architecture.

Electronics Engineers Inc., 2004) to minimize band-
width in transferences of dynamic personal health
data between agents and managers.

The lack of Open Source implementations of med-
ical encoding rules for ASN.1 motivated us to ex-
tend the GNU/LGPL BinaryNotes (Abdurakhmanov,
2008) ASN.1 framework for Java, implementing the
support for the new encoder and decoder rules for
medical devices on this framework. Although MDER
is mandatory by both the agent and manager, devices
can optionally establish other encoding rules beyond
MDER, such as PER and XER. BinaryNotes provides
native support for BER, PER and DER. The Manager
uses the BinaryNotes libraries to code the applications
protocol data unit (APDUs) using the above encod-
ing rules in addition to the MDER rules that we im-
plemented. Other closed source implementations of
ISO/IEEE 11073-20601 managers only provide sup-
port for medical devices encoding rules.

Figure 4 illustrates the main components in-
tegrated in the OpenHealth Manager implementa-
tion, corresponding with the main components of
ISO/IEEE 11073-20601.

The Domain Information Model (DIM) consti-
tutes the central core of the manager implementation.
It defines a set of classes for modeling agents like ob-
jects containing data sources as vital signs, events and
alert reports, etc. It defines their relationships and the
methods that a manager can use to control the behav-
ior of the agent system.

The personal health device service model defines
the mechanism for data exchange services. These ser-
vices are mapped to messages coded using ASN.1 that
are exchanged between agent and manager.

Finally, the communication model is implemented
through a finite state machine (FSM) to synchronize
the messages exchanged on Agent-Manager peer con-
nections over different conditions. Although current
implementation only provides support for the ther-

mometer agent specialization (Institute of Electrical
and Electronics Engineers Inc., 2008b) in the basic
FSM interaction, we expect to provide support to
pulse oximeters (Institute of Electrical and Electron-
ics Engineers Inc., 2008a) too in the near future.

To keep transport independence-media at the data
exchange protocol level, we have incorporated to the
current manager design an abstract communication
model based on virtual channels. A virtual channel
can manage simultaneous channels at the same time
with each Agent-Manager peer connection. Further-
more, a channel in a virtual channel can be either TCP,
RFCOMM or HDP, thus providing a common com-
munication interface to the manager application for
sending and receiving APDUs from/to the agent sys-
tem.

3 ANDROID MANAGER SERVICE

Android applications are written in Java, what makes
it easy to integrate the manager on a device run-
ning Android OS or other Java virtual machine. The
Android Manager Service provides an API that en-
ables programmers to develop new manager applica-
tions in Android by using the services specified in
the ISO/IEEE 11073-20601 standard in a highly ab-
stracted way.

The service mechanism provided by Android al-
lows to run applications in background for an indefi-
nite period of time, running in parallel with other ba-
sic system services. This feature brings us the possi-
bility to integrate the Java manager described in sec-
tion 2 in Android as an Android service, waiting in
background for agent connections. Furthermore, it’s
possible in Android to connect external applications
to a service, what facilitates the programming of ap-
plications that interact with agents.

Figure 5 shows the Android Manager Service
architecture. The Android Manager Service ex-
poses notifications about internal events received
from agents through transports such as Bluetooth, and
it provides an action service interface to manage the
state of current agents connected with the Manager.

Because the Android Manager Service is designed
for mobile devices, we try to minimize the energy
consumption by avoiding polling be made from ex-
ternal applications. All communications from/to the
Manager Service is done using a callback service.
The Manager API is defined using AIDL (Android
Interface Definition Language) to generate code that
enables two processes on an Android-powered device
to communicate by using inter-process communica-
tion (IPC). The AIDL IPC mechanism is interface-

OPENHEALTH - The OpenHealth FLOSS Implementation of the ISO/IEEE 11073-20601 Standard

507



Figure 5: Android Manager Service Architecture.

based, similar to COM or CORBA, but lighter. It uses
a proxy class to pass values between the client and the
implementation.

Applications use the Manager callback service to
get notifications about generic events in the manager
such as new agent connections and disconnections.
When applications want to know the detailed state
of a certain agent, they register with the agent call-
back service. Later, applications will get notifications
about the agent state changes and will receive notifi-
cations about measures sent from agents.

The Action Service provides an interface to the
application layer that enables applications to invoke
services specified in the Domain Information Model
defined in ISO/IEEE 11073-20601. Applications use
the Action Service to gain access to GET and SET
methods over PHD-DIM classes and to send events to
control the behavior of the agent system.

An Android service executes the code of the
manager in a thread running in background, wait-
ing for agent connections. The manager thread uses
the Component Event/Action Controller to exchange
events between agents and applications. Applica-
tions send events to control the finite state machine
of the agents (we call these external events). The
Event/Action Controller component is in charge of

Figure 6: BlueZ Architecture.

delivering the external events by redirecting invoca-
tions to the appropriate agent. On the other hand,
events triggered by agents (we call these internal
events) are delivered to the applications registered for
these particular events.

4 THE BLUETOOTH HEALTH
DEVICE PROFILE
IMPLEMENTATION

ISO/IEEE 11073 protocols can use several transports
to send and receive personal health data. In this
section we describe our implementation of the HDP,
MCAP and DI Bluetooth protocol profiles. Figure 6
shows a block diagram of the bluetooth stack archi-
tecture, including the new components implemented
by us that were not previously present in BlueZ.

The Bluetooth stack includes the Multichannel
Adaptation Protocol (MCAP) (Bluetooth Special In-
terest Group Inc., 2008b), the Health Device Pro-
file (HDP) and the Device Identification Profile
(DI) (Bluetooth Special Interest Group Inc., 2007).
None of them were implemented in BlueZ until to-
day.

MCAP is a versatile L2CAP-based protocol that
provides a simplified way to use and manage mul-
tiple data channels. The protocol supports different
channel configurations depending on the application
or transmission needs such as for example stream-
ming or reliable modes.

HDP is a profile that simplifies the use of MCAP
and announces to other devices the supported features
and profiles as well as the channels used for each pro-
file. For these announcements it uses the Service Dis-
covery Application Profile (SDP) (Bluetooth Special
Interest Group Inc., 2001). This way, the devices can
discover the manager in order to connect with it, or

HEALTHINF 2010 - International Conference on Health Informatics

508



alternatively the manager can initiate a connection to
a device, if it is needed, without having any previous
information about the device.

DI specifies a method by which Bluetooth devices
share information that may be used by another device
to find icons or associated software, such as for ex-
ample specific drivers. All this information is also
published in the SDP record.

4.1 MCAP Impementation

Our MCAP implementation is compliant with the
Bluetooth Special Interest Group specification, sup-
porting all the obligatory features and some of the op-
tional, such as channel reconnection. The only op-
tional feature not supported by current implementa-
tion is the clock synchronization protocol.

MCAP specification requires the enhanced re-
transmission and streamming modes from L2CAP.
None of them was supported by BlueZ when we be-
gan our MCAP implementation, but they have re-
cently been developed in parallel with our work by
BlueZ developers (Padovan, 2009), what has allowed
us to test test our MCAP+HDP implementation.

The system architecture is designed to announce
to the upper layer all the events occurred during the
protocol execution using callbacks. This behaviour
allows the HDP layer to receive all the events in
real time, not needing to do polling or other CPU-
intensive operations, what renders the implementation
more efficient.

MCAP implementation is multithreaded. Once
the MCAP session is opened, a new thread is
launched, waiting for new connections. This thread
also controls all the actions which are part of the
protocol, such as the connection of new data chan-
nels, disconnections, reconnections, etc. The main
thread listens the sockets where new connections are
received and also serves control commands. This ar-
chitecture allows the system to continue working nor-
mally while MCAP is running.

4.2 HDP Impementation

The current HDP implementation simplifies the use of
MCAP by the user. It also registers all the necessary
information on the SDP record. It uses both, callbacks
and accept functions to notify the events to the user,
depending on the role of the current HDP execution
(source or sink).

The implementation completely hides the MCAP
control channels mechanism, providing an abstraction
model based on a notification service which notifies
new MCAP Communication Links (MCL) like new

available remote devices. Of course, the creation of
new MCL’s is made possible by providing the blue-
tooth address of the remote devices. This action will
create a new MCL that will allow applications to re-
quest new data channels.

The API provides mechanisms to start data chan-
nel connections to a previously connected device.
Connections can also be received from remote de-
vices. Depending on the HDP role of the device, it
waits for a new connection calling to an accept func-
tion (source role) or the new connections are automat-
icaly notified when they are received (sink role).

Our HDP implementation also manages the cre-
ation of new data channels and controls the correct
configuration of them before the connections are no-
tified to the user. A check is made to know if the data
channel uses reliable or streamming mode depending
on the configuration parameters that were previously
negotiated.

HDP also takes care of the correct registering in
the SDP record of all the necessary information, such
as the PSM where the MCAP profile is waiting for
connections, the supported devices and protocols, etc.

5 EXPERIMENTAL RESULTS

The implementation described in the previous sec-
tions has been tested in order to check its correct be-
havior and compliance with the standards.

A first test tried to determine if the manager imple-
mentation was Continua compilant. This test was run
by Andago Ingenierı́a personnel. The test consisted
on a communication between our ISO/IEEE 11073-
20601 manager and a simulated thermomether agent
provided by the Continua Enabling Software Library
(CESL), through a TCP connection. This test was
very satisfactory because the response of the man-
ager was completely correct including: the MDER
encondig library, the manager state machine transi-
tions and the APDUs exchanged between manager
and agent.

Once the integration of the manager in Android
was done, the work effort shifted to the wireless com-
munication. In this area we developed an emulation
of a thermomether agent running on Android, using
Bluetooth RFCOMM communications to exchange
data with our manager. We also developed an adap-
tation of our manager to Bluetooth RFCOMM. This
way we were able to run both, the manager and the
agent, in a couple of Android devices. The communi-
cation carried out correctly. Figure 7 shows the man-
ager and an agent running on Android devices.

In the latest devolopment stage the MCAP and

OPENHEALTH - The OpenHealth FLOSS Implementation of the ISO/IEEE 11073-20601 Standard

509



Figure 7: Communication through a RFCOMM connection.
Agent (right), manager application (left).

HDP implementation were implemented. The first
test of these modules intended to communicate two
Linux desktop computers using multiple MCAP data
channels. Then we tried the same communication
model but using HDP. Finally we tested the imple-
mentation between a computer and a Nonin Onyx
II 9560 Pulse oximeter (Nonin Medical Inc., 2009).
These tests were all satisfactory. We ensured that the
MCAP commands were correctly interpreted accord-
ing to the MCL state machine transitions. The HDP
implementation was also tested, comfirming that the
SDP record was correctly registered and that the com-
munication management done by HDP was also per-
forming the correct actions. Figure 8 shows the Nonin
Onyx II 9560 pulse oximeter communicating with the
computer.

6 RELATED WORK

As far as we know, this is the first Java FLOSS im-
plementation of ISO/IEEE 11073-20601 that will run
on and HDP enabled Bluetooth stack. Also, this is
the first FLOSS HDP/MCAP Bluetooth available im-
plementation. In private communications, members
of the Bluetooth community have told us that sev-
eral companies have said to be working on Open
Source implementations of either the manager or the
HDP/MCAP Bluetooth stack for Linux OS, but as far
as we know, no code providing both parts (manager
and HDP Bluetooth support) has been publicly re-
leased, nor papers describing it have been published.

Mindtree (Mindtree, 2009) corporation an-
nounced and demonstrated on october 2009 a closed
source manager running on Android, on top of its
closed source HDP enhanced Bluetooth stack.

Figure 8: Communication between a Nonin Onyx II
9560 pulse oximeter and a Linux computer using our
HDP/MCAP implementation.

7 CONCLUSIONS AND FUTURE
WORK

The ISO/IEEE 11073-20601 Open Source manager
we have implemented has been tested with the ther-
mometer agents provided by the Continua Health Al-
liance CESL (Lamprey Networks, 2009) reference
implementation, and with our own implementation of
thermometer agents.

On the other hand, the MCAP/HDP implementa-
tion has already been tested with Nonin Onyx II 9560
pulse oximeters implementing HDP.

As work in progress we are integrating the
ISO/IEEE 11073-20601 code with the HDP/MCAP
BlueZ enabled stack, and testing it on Android de-
vices from which we manage the Nonin pulse oxime-
ters. We have begun developing a D-Bus (freedesk-
top.org, 2009) interface for HDP/MCAP in order to
ensure an easy interoperability with Linux desktop
applications using BlueZ. The D-Bus interface will
facilitate the interoperability between HDP/MCAP
and the ISO/IEEE 11073-20601 manager because D-
Bus is accessible directly using Java through a JNI
interface.

Alongside our partner Andago Ingenierı́a, mem-
ber of the Continua Health Alliance, we are exploring
both, the Continua Health Alliance Certification pro-
gram and the Bluetooth qualification tests.

As of today, stack vendors have not updated stacks
with HDP/MCAP profiles. No current mobile phone
Bluetooth stack (including the Windows stack) im-
plements it. Our work on HDP/MCAP, alongside
the work done in parallel by BlueZ developers im-
plementing enhanced retransmission and streamming

HEALTHINF 2010 - International Conference on Health Informatics

510



modes for L2CAP, could potentially have a positive
impact on the industry, as ours would be the first
Open Source reference implementation of ISO/IEEE
11073-20601 over HDP/MCAP bluetooth transport
that could be freely used to test new devices appearing
on the market.

The first medical device that implements the HDP
Bluetooth profile and the ISO/IEEE 11073 data pro-
tocol is the Nonin Onyx II 9560 pulse oximeter, an-
nounced in June 2009, and only recently available in
the market. This device is the one we are using for
testing our implementation. The rate of appearance
of new devices on the market is slow because there
are no ISO/IEEE 11073 / HDP stacks available. On
the other hand, developers of stacks are awaiting the
appearance on the market of new devices. We expect
to be contributing in part to solve this deadlock situa-
tion with our Open Source stack.

REFERENCES

Abdurakhmanov, A. G. (2008). Binary notes.
http://bnotes.sourceforge.net/.

Andago Ingenierı́a S.L. (2009). Open health assistant.
http://openhealthassistant.andago.com/inicio.

Bluetooth Special Interest Group Inc. (2001). Service dis-
covery application profile.

Bluetooth Special Interest Group Inc. (2007). Device iden-
tification profile (di) 1.3.

Bluetooth Special Interest Group Inc. (2008a). Health de-
vice profile.

Bluetooth Special Interest Group Inc. (2008b). Multi-
channel adaptation protocol.

Bluez (2009). Bluez project. http://www.bluez.org/.

freedesktop.org (2009). D-bus.
http://www.freedesktop.org/wiki/Software/dbus.

GSyC/Libresoft Research Group (2009). Openhealth
project. http://openhealth.morfeo-project.org.

Institute of Electrical and Electronics Engineers Inc. (2004).
Part 20101: Application profiles base standard.

Institute of Electrical and Electronics Engineers Inc.
(2008a). Part 10404: Device specialization pulse
oximeter.

Institute of Electrical and Electronics Engineers Inc.
(2008b). Part 10408: Device specialization ther-
mometer.

Institute of Electrical and Electronics Engineers Inc.
(2008c). Part 20601: Application profile optimized
exchange protocol.

International Telecommunication Union (2002). Itu-t rec-
ommendation x.680. http://www.itu.int.

Lamprey Networks (2009). Continua enabling software li-
brary. http://www.lampreynetworks.com/.

Mindtree (2009). Mindtree announcement.
http://tinyurl.com/yha2fhq.

Nonin Medical Inc. (2009). 9560 Onyx II.
http://www.nonin.com.

Padovan, G. F. (2009). Streaming and enhanced retransmis-
sion modes for bluez project. http://www.bluez.org/.

OPENHEALTH - The OpenHealth FLOSS Implementation of the ISO/IEEE 11073-20601 Standard

511


