
A NEW ALGORITHM FOR SELF-ADAPTING
WEB INTERFACES

Bogdan Vintila, Dragos Palaghita and Maria Dascalu
Economic Informatics Department, University of Economics Bucharest, Calea Dorobanti Street, Bucharest, Romania

Keywords: Self-adapting web interface, Software development, Interface design, Dynamic web interfaces, Statistical
analyses.

Abstract: The paper proposes a new improved algorithm for creating hierarchies of features and options for self-
adapting web interfaces against the common one used by many applications. The user interface concept is
presented. Types of user interfaces are described. Quality characteristics of the user interfaces are analyzed.
Ways of fulfilling these quality characteristics while keeping the costs low are discussed. Advantages and
disadvantages of self-adapting and static web interfaces are given. The most common algorithm for creating
hierarchies of features and options is described and analyzed. The advantages and disadvantages of the
proposed algorithm are discussed. New directions for the development of the self-adapting web interfaces
are highlighted.

1 INTRODUCTION

User interfaces are pieces of software that ensure the
interaction between the program’s logic and the
user. In order to be successfully utilized by users, a
software product needs not only to have flawless
functionality but also to expose its features in an
accessible way. Even if the program has rich
features that work perfectly, a deficient user
interface leads to the fail on market. This is
explained by the users’ lack of time for learning how
to use new software and thus they orient towards
easy to use software. User interfaces experienced a
great evolution from the beginnings of the
computing age. As user interfaces are used for the
communication between the user and the application
they must facilitate the selection of processing
options, data input and output. The user interfaces
started with the batch interface in 1945 (Wikipedia,
2009). In 1969 the batch interface was replaced by
the command-line user interface. The command-line
user interface has the advantage of giving the user
access to all commands and parameters. The main
disadvantage is that the user must know the syntax
of all options and commands he wants to access.
This led to the apparition of the Graphical User
Interface (GUI) in 1981. Nowadays the command-
line user interface addresses highly trained

professionals that need precise control and access
without the performance overhead of the graphical
interface.

There are many types of user interfaces
(Wikipedia, 2009):

- Graphical User Interfaces;
- Web User Interfaces; are used by web

applications; the user utilizes a Internet
browser to access the application; data input is
made through a form generated by the server;
results’ visualization is made also through web
pages generated by the server and loaded by
the users’ Internet browser (Hall Mary W.,
2008); nowadays these are widely used as web
applications have many advantages against
standalone ones;

‐ Command-line Interfaces;
‐ Touch User Interfaces;
‐ Gesture Interface;
‐ Multi-screen Interfaces;
‐ Motion Tracking Interfaces;
‐ Voice User Interfaces.
Standalone applications are difficult to update.

The process depends on the user, so compatibility to
earlier versions must be ensured. Web applications,
on the other side, are easy updateable as the
application resides on one or more physical servers.
Also, web applications can be accessed regardless of
the location or machine. Presently, web applications

57
Vintila B., Palaghita D. and Dascalu M.
A NEW ALGORITHM FOR SELF-ADAPTING WEB INTERFACES.
DOI: 10.5220/0002773400570062
In Proceedings of the 6th International Conference on Web Information Systems and Technology (WEBIST 2010), page
ISBN: 978-989-674-025-2
Copyright c© 2010 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

tend to replace standalone applications in more and
more domains. Given the importance of these
applications, their interfaces are of high importance
as they ensure the communication between the user
and the application’s logic.

In (Esko Juuso, 1997) the role of neural
networks, genetic algorithms and linguistic
equations in the development of user interfaces are
described. Many challenges in the development of
adaptive interfaces and also many research
directions are given in (Langley, 1999).

Adapting the interface to the needs of the user
reduces its complexity and improves efficiency.
Awareness is analyzed as an evaluation metric in
order to obtain the reduced visual complexity of
interfaces (Findlater & McGrenere, 2009).

The study presented in (Letsu-Dake & Ntuen,
2009) shows clearly that the adaptive interfaces are
better in terms of time to achieve the goal under
fault conditions, fault detection time, number of
system failures and fault detection rate.

In (Pietschmann et al., 2009) a study of the
business processes is made through the eye of user
interfaces. User interface services provide many
rich, reusable components for building user
interfaces.

The importance of the adaptive interfaces for
special domains such as the automotive industry is
highlighted in (Amditis et al., 2006). A
methodological framework for optimizing the
human machine interfaces is presented and the
results of its implementation are discussed.

The concept of Universal Access is presented by
(Stephanidis, 2001) and also ways of building
systems that ensure interfaces capable of adapting
according to the context. Universal access is attained
through the adaptive interfaces.

The importance of the adaptive interfaces is
analyzed in (Savidis & Stephanidis, 2004) for a wide
range of devices. The unified user interfaces
described by the paper are capable to self-adapt at
run-time according to the needs and requirements of
the current user and device. The development
process of unified user interfaces is also described
by the authors.

A methodological approach for modeling
adaptation decisions and for solving the problem of
integrating existing as well as acquired knowledge in
the decision module of an adaptive interface is
proposed in (Zarikas, 2007). The model uses
influence diagrams and it provides a method of
encoding user and context information as well as
other factors that are involved in the decision
making process. The paper also presents an

illustrative example of the analyzed modeling
method.

The notions of user profile, interface profile and
the compound usability are discussed in (Nguyen &
Sobecki, 2003). Their role in the development of the
adaptive interfaces is also analyzed. Using
consensus-based methods, the authors build
interface profiles appropriate to classes of users.

2 QUALITY CHARACTERISTICS
OF USER INTERFACES

All interfaces must fulfill quality requirements in
order to give the users the maximum degree of
satisfaction. Some of the most important quality
characteristics are (Ivan et al., 2008):

‐ clarity;
‐ conciseness;
‐ familiarity;
‐ responsiveness;
‐ consistency;
‐ attractiveness;
‐ efficiency;
‐ forgiveness.

These characteristics, if fulfilled at the same
time, ensure the success of the user interface.
Anyway, by increasing one of the characteristics it is
possible to lower others so achieving a balance
between then is a complex and long process (Julio
Abascal, 2008). Considering the application’s target
group it is possible to satisfy some requirements
with lower levels of some characteristics leaving
additional time to increase the level of more
important ones.

The measurement of the quality characteristics is
usually a hard task as there are no clear procedures
of measurement for each of them. Let us consider
responsiveness. For this characteristic the obtained
value upon measurement depends on the user if no
measurement procedure is stated. If the application
is unresponsive for one second after the user gives a
command, the user might consider it lacks a good
response time or might even not notice the delay. If
a measurement procedure is defined there is no room
for subjective judgment. If the procedure states an
interface is responsive if it has delays less than 1
second, the considered case lacks responsiveness. If
the procedure states a time of more than 2 seconds,
the considered case is responsive.

WEBIST 2010 - 6th International Conference on Web Information Systems and Technologies

58

Table 1: Advantages and disadvantages of self-adapting and static web interfaces.

 Self-adapting web interfaces Level of the user Static web interfaces Level of the user
Advantages Clear

Light
Efficient
Attractive
Simple
Easy to use
Change depending on
context
Change in time
Low bandwidth usage
Suggest additional features

End-user
End-user
End-user
End-user
End-user
End-user
End-user

End-user
End-user
End-user

Efficient
Detailed
Doesn’t change in time or
according to context
Allow workflow
automation
Detailed control

Professional
Professional
Professional

Professional
Professional

Disadvantages Don’t allow detailed control
Force users to request
additional features

Professional

Professional and End-
user

Overcrowded
High complexity
Can’t be efficiently used
Unattractive
High bandwidth usage

End-user
End-user
End-user
End-user
End-user

3 STATIC VS. SELF-ADAPTING
WEB INTERFACES

The pass from static user interfaces to the self-
adapting ones was done in order to facilitate the use
of software by untrained users and also increase the
efficiency. Self-adapting interfaces also decrease the
operating time by displaying the right features in the
right spot and hiding the unnecessary ones (Ion Ivan,
2009). Self-adapting user interfaces are based on
studies regarding the users’ comportment in a certain
application or when trying to solve a certain
problem. These have a predictable comportment as
the frequency indicators don’t change during
application’s use or only in a small proportion.
There are also interfaces that study the user’s
comportment and are dynamically built based on the
indicators calculated using these data. E-Commerce
sites suggest products based on user’s comportment
or similarities with other users (Sharifi & all, 2004).
Menu options hide until the first use. Options are
showed in the order they are used most.

Static user interfaces are used for applications
that have few features and options or for ones that
address highly trained professionals. Static
interfaces are difficult to use for end-users, but
professionals prefer them as they can automate
workflow. The self-adapting web interfaces have the
advantage of conserving precious bandwidth. By
determining the most used features of the
application, the graphical elements corresponding to
the other features don’t usually have to be loaded at
the start. If necessary, the user can request the load
of additional components as he uses the application.

The lower the used bandwidth is, the higher the
user’s experience gets.
Advantages and disadvantages of the self-adapting
and static web interfaces are given in (Table 1).
As seen in (Table 1) advantages and disadvantages
are taken into account considering the interface’s
target group.

Detailed control is a must be for the highly
trained professional, but for the end-user is not
important. Also the interface’s ability to change in
time is an advantage for the end-user but a
disadvantage for the professional that quickly learns
the features’ options and location. As users differ in
training level, the same interface has positive or
negative impact in use. The higher the training level,
the more interfaces the user can use and overcome
their disadvantages. Both types of interfaces have
advantages and disadvantages so the users must
choose the one that makes him more efficient.

4 COMMON ALGORITHM

Self-adaptive web interfaces must adapt their
behavior from an application’s run to another and
even during the work session (Savidis &
Stephanidis, 2004). By recording and analyzing
user’s comportment it is possible to obtain such
results. There are many algorithms to predict user’s
comportment based on past actions (Gena C., 2007).
The most common assumes the following:

Let F be a set of n features the user can access in
a given application A. An application’s feature is
defined by a succession of steps that, through the
processing of the input data, lead to wanted results.

A NEW ALGORITHM FOR SELF-ADAPTING WEB INTERFACES

59

For example, the print process that is present in
many software products, is a feature of them.

ܨ ൌ ሼ ଵ݂, ଶ݂, . . . , ݂ሽ (1)

Let Q be a set of n frequencies associated to the
set of features. Feature one, f1 is associated to q1, f2
to q2 and so on.

ܳ ൌ ሼݍଵ, ,ଶݍ … , ሽ (2)ݍ

On the base on Q set a hierarchy of the features
is built. The most accessed features rank the highest
(Ivan et al., 2009).

Let us consider the A application was never used and
all frequencies are 0. Considering this, all features
have the same priority. At the first use, feature ଵ݂ is
used two times, ଷ݂ is used once and ݂ିଵ is used
once.

At the second use, the Q set has the following
values:

ܳ ൌ ሼ2,0,1,0, … ,0,1,0ሽ (3)

These lead to the following hierarchy:

ܪ ൌ ሼ ଵ݂, ଷ݂, ݂ିଵ, ଶ݂, ସ݂, ହ݂, … , ݂ିଶ, ݂ሽ (4)

Considering H, at the second run ଵ݂ is the first
one in the selection list, ଷ݂ is the second, ݂ିଵ is the
third and the ones with 0 frequency follow. This
way, the user is more likely to have the feature he
wants to access at the top of the selection list. The
efficiency of the algorithm increases with every use
of the application.

The possibility of having individual interfaces
for each user, rather than the whole application, is
given by storing data for each user and building the
interface based on that data (Brusilovsky, 2001).

5 THE IMPROVED ALGORITHM

A new algorithm is proposed to improve user
experience. The algorithm is based on calculating
scores and ranking features on the bases of
dependencies between features.

Let ܦሺ ݂, ݂ሻ be the function that returns the
dependency value between features i and j. The
highest the value of ܦሺ ݂, ݂ሻ is, the higher is the
probability that the user selects feature j after
selecting feature i. A dependency table is obtained
by calculating the D function for all features. The

main diagonal elements are equal to 0 as the
selection of a feature can’t determine the repeated
selection leading to an infinite loop. When a feature
is accessed by the user, the score of the features that
depend by this one are updated accordingly to the
dependency’s strength. This leads to better scores
for features that were not selected, but have a very
high probability of being selected.

Let ܦሺ ଵ݂, ଶ݂ሻ ൌ ሺܦ ,0.6 ଶ݂, ସ݂ሻ ൌ 0.2 and all the
other dependencies be 0.

Taking into consideration this system of ranking,
the above dependencies and the number of feature
access above, the resulting Q set is

ܳଵ ൌ ሼ2,1.2,1,0.24,0, … ,0,1,0ሽ (5)

leading to the following ܪଵ hierarchy

ଵܪ ൌ ሼ ଵ݂, ଶ݂, ଷ݂, ݂ିଵ, ସ݂, ହ݂, … , ݂ିଶ, ݂ሽ (6)

Comparing H to H1 we see that the order of
features is different, ଶ݂ being the second feature in
the list before ଷ݂ and ݂ିଵ. The interface updates
according to this hierarchy either at set moments,
either when the changes that arise between the old
arrangement and the new one grows above a set
value. Using the dependencies system better
forecasts of the user’s comportment can be made,
but only if the dependencies are determined using
very large datasets for analyses. The use of incorrect
dependencies between features results in incorrect
selection lists. These cause poor user experience as
instead of quickly solve its problem, the user tries to
find the desired feature. As the user utilizes more
and more the application, the frequency set Q gets to
be more and more significant for the user’s
comportment and the application will make better
forecasts regarding future user’s actions.

A very important issue is choosing the D
function that returns the dependencies between
values. A very simple, yet effective, way of
establishing dependencies is by analyzing users’
behavior in existing applications. Let us consider an
e-commerce application is to be built. For this we
can analyze the data on users’ behavior that other e-
commerce applications already have. After filtering
and clustering the data, dependencies of the clusters
are determined and these are used for the
dependencies set of features (Lau & Horvitz, 1999).
Even if the e-commerce is borderless, the percentage
of local users is greater than the percentage of global
users. This can lead to good predictions on new
users’ behavior only for local ones. This can be

WEBIST 2010 - 6th International Conference on Web Information Systems and Technologies

60

avoided by studying data from many applications
worldwide.

Compared to the basic algorithm, this one
improves the success rate of having a desired feature
closer to the user.

6 ALGORITHM VALIDATION

A sample application is being currently developed to
exemplify the self-adapting web interface using the
dependency enabled rank computing algorithm.

As the algorithm states, the ranking system is
based on the addition to the base frequency of the
dependency score. The dependencies used are not
bidirectional thus ܦሺ ݂, ݂ሻ ് ሺܦ ݂, ݂ሻ. This is
normal because action a determines action b, but
action b can’t determine action a. The application is
to implement real functionality and is to be released
to the public to test the algorithm’s validity. The
time needed by users to select options is to be
recorded and the obtained data is to be analyzed
leading to the algorithm’s validity or invalidity.
Short times between the selections of features
indicate a good prediction of the user’s
comportment. Long times for feature selection
indicate the algorithm’s failure in providing
qualitative forecasts. Collected data must be
preprocessed as to include in the analysis only data
obtained by users after several use of the application
when they understand the application’s adaptive
comportment.

7 CONCLUSIONS

With time many types of interfaces were developed.
The diversity is given by advantages of each type of
interface for a certain type of application or process.
Self-adapting web interfaces are of great future as
more and more users have low training. These
interfaces allow the untrained users to use the
informational systems at a basic and advanced level
without training. The common algorithm for creating
hierarchies can be improved by taking into account
dependencies between the collectivity’s elements.
The self-adaptive interfaces are of great importance
in domains such as: e-learning, e-governance, office
suites, operating systems, mobile applications.

Future research includes color coding the
features so that the color best perceived by the
human eye is associated with the feature most
probable the user will access, the second color in the

perception hierarchy is associated to the second most
probable feature and so on. Future research also
aims at the use of cameras to keep the user’s eyes
under observation and detect the screen zones the
user focuses most and thus placing there the most
accessed features and options. By detecting the
direction of human gaze, the navigation within the
interface is possible. The user focuses the desired
option and based on his position, distance from the
camera and previous configuring, the application
detects the selected area and activates the feature.

ACKNOWLEDGEMENTS

This article is a result of the project „Doctoral
Program and PhD Students in the education research
and innovation triangle”. This project is co funded
by European Social Fund through The Sectorial
Operational Programme for Human Resources
Development 2007-2013, coordinated by The
Bucharest Academy of Economic Studies.

REFERENCES

Amditis, A., Polychronopoulos, A. & Andreone, L., 2006.
Communication and interaction strategies in
automotive adaptive interfaces. Cognition, Technology
and Work, 8(3), pp.193-99.

Brusilovsky, P., 2001. Adaptive Hypermedia. User
Modeling and User-Adapted Interaction, pp.87-110.

Esko Juuso, K.L., 1997. Adaptive Interfaces and Soft
Computing. Studies in Informatics and Control.

Findlater, L. & McGrenere, J., 2009. Beyond
performance: Feature awareness in personalized
interfaces. International Journal of Human-Computer
Studies, 68(3), pp.121-37.

Gena C., W.S., 2007. Usability Engineering for the
Adaptive Web. In The Adaptive Web. Springer Berlin /
Heidelberg. pp.720-62.

HALL Mary W., G.Y.L.R., 2008. Self-Configuring
Applications for Heterogeneous Systems: Program
Composition Using Cognitive Techniques.
Proceedings of the IEEE, 96(5), pp.849-62.

Ion IVAN, B.V.C.C.M.D., 2009. The Modern
Development Cycle of Citizen Oriented Applications.
Studies in Informatics and Control, 18(3).

Ivan, I., Vintila, B. & Palaghita, D., 2008. Quality metrics
of citizen oriented informatics applciations. In Forth
International Conference on Applied Statistics.
Bucharest, Romania, 2008.

Ivan, I. et al., 2009. Collectivity's elements ranking. In
16th International Economic COnference IECS 2009.
Sibiu, Romania, 2009.

A NEW ALGORITHM FOR SELF-ADAPTING WEB INTERFACES

61

Julio Abascal, I.F.d.C.A.L.J.M.C., 2008. Adaptive
Interfaces for Supportive Ambient Intelligent
Environments. In ICCHP 2008., 2008. Springer Berlin
/ Heidelberg.

Langley, P., 1999. User modeling in adaptive interfaces.
In Proceedings of the seventh international conference
on User modeling. Banff, Canada, 1999. Springer-
Verlag New York, Inc. Secaucus, NJ, USA.

Lau, T. & Horvitz, E., 1999. Patterns of search: analyzing
and modeling Web query refinement. In Proceedings
of the seventh international conference on User
modeling. Banff, Canada, 1999. Springer-Verlag New
York, Inc. Secaucus, NJ, USA.

Letsu-Dake, E. & Ntuen, C.A., 2009. A case study of
experimental evaluation of adaptive interfaces.
International Journal of Industrial Ergonomics, 40(1),
pp.34-40.

Nguyen, N.T. & Sobecki, J., 2003. Using consensus
methods to construct adaptive interfaces in multimodal
web-based systems. Universal Access in the
Information Society, 2(4), pp.342-58.

Pietschmann, S., Voigt, M. & Meibner, K., 2009.
Adaptive rich user interfaces for human interaction in
business processes. In Lecture Notes in Computer
Science., 2009.

Savidis, A. & Stephanidis, C., 2004. Unified user interface
development: the software engineering of universally
accessible interactions. Universal Access in the
Information Society, 3(3-4), pp.165-93.

Sharifi, G. & all, 2004. Location-Aware Adaptive
Interfaces for Information Access with Handheld
Computers. In Adaptive Hypermedia and Adaptive
Web-Based Systems. Springer Berlin / Heidelberg.
pp.328-31.

Stephanidis, C., 2001. Adaptive Techniques for Universal
Access. User Modeling and User-Adapted Interaction,
11(1-2), pp.159-79.

Wikipedia, 2009. User Interface. [Online] Available at:
http://en.wikipedia.org/wiki/User_interface [Accessed
16 October 2009].

Zarikas, V., 2007. Modeling decisions under uncertainty
in adaptive user interfaces. Universal Access in the
Information Society, 6(1), pp.87-101.

WEBIST 2010 - 6th International Conference on Web Information Systems and Technologies

62

