
MAX/C ON SAKAI
A Web-based C-Programming Course

Souichirou Fujii, Kazunori Ohkubo
Graduate School of Science and Technology, Meiji University

1-1-1 Higashi-mita, Tama-ku, Kawasaki-shi, Kanagawa, Japan

Hisao Tamaki
School of Science and Technology, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki-shi, Kanagawa, Japan

Keywords: e-Learning, C programming, Algorithmic feedback.

Abstract: MAX/C is a web application for C programming education, which has been successfully used in class of a
computer science department for more than 4 years. It features algorithmically generated feedbacks both for
drill questions and for programming exercise submissions. For the latter, source programs submitted by the
students are statically analyzed as well as executed and tested against test cases. The execution is performed
by a C interpreter which is developed for this purpose and designed to facilitate the detection of potential run
time errors and the collection of useful information from the execution. We describe this system, together with
the ideas behind the system. We also describe the recent integration of MAX/C into Sakai, an open source
e-Learning environment.

1 INTRODUCTION

1.1 MAX: Project Overview

MAX (Massive Algorithmic eXerciser) is a project
being undertaken at the computer science department
of Meiji university, to which the authors belong. This
project is motivated by the belief that skills and work-
ing knowledge in science and technology can only be
achieved through a mass exercises. For those exer-
cises to be effective, they must be interactive: an im-
mediate and helpful feedback must be supplied for
each action of the students. To meet this require-
ment, within the limitation of realistic teaching re-
sources, an appropriate use of information technology
is mandatory. Our approach is to let those feedbacks
generated by algorithms that are designed individu-
ally for each problem domain or even for each exer-
cise question or task, rather than by a small set of gen-
eral principles or by artificial intelligence. Creating
course materials along this line for each subject do-
main is a task that is enormously laborious but also is
worthwhile, as successful outcomes can be used over
and over again and across academic institutions.

The goal of this paper is to describe MAX/C,
a web-based system for C programming education
which is a product of a subproject of this project, and
evaluate its effectiveness.

1.2 MAX/C: Overview

MAX/C is a web application for learning C program-
ming, intended to be used primarily in class. Along
the MAX philosophy stated in the previous subsec-
tion, it aims at letting each student learn through
working on their own, rather than through listening
or reading. Each of the two practice courses that use
MAX/C consists of 14 3-hour classes, one given in
each week. Accordingly, the contents of MAX/C is
divided into two parts, each consisting of 13 lessons;
an extra class is used for a confirmation test, which
tries to confirm that each student has submitted the
results of their own work. The first part introduces
basic components of the language such as variables,
assignments,if, while, andfor statements, arrays, and
functions. The second part focuses on more advanced
topics such as structures, pointers, and recursive calls.
A lecture-type course on the same subject runs in par-

196
Fujii S., Ohkubo K. and Tamaki H. (2010).
MAX/C ON SAKAI - A Web-based C-Programming Course.
In Proceedings of the 2nd International Conference on Computer Supported Education, pages 196-201
DOI: 10.5220/0002777501960201
Copyright c© SciTePress



Figure 1: A screen-shot of an exercise problem.

allel in a synchronized manner.
MAX/C provides both online questions, called

drills, and offline tasks, called exercise problems,
each lesson typically consisting of 10 to 20 drills and
around 10 exercise problems.

Drills are further classified into yes/no or multi-
ple choice questions and more interactive questions.
A typical example of the latter is a trace question: a
piece of C code, together with the current values of
variables, is given and the student is asked to type in
the changes of variable values that occur during the
execution of the code. The initial values of the vari-
ables are generated randomly, so that the checking of
the answers must be done algorithmically.

Most of the exercise problems are programming
tasks. The input/output specification of the code to be
written is described on the web page. Students use an
editor on the local machine to write a program to ful-
fill the requirement, debug it and, when they believe
it is correct, upload it through the same MAX/C page
where the exercise problem is posed. Figure 1 shows
a screen-shot of a page describing an exercise prob-
lem, which asks the student to write a program that
prints consecutive numbers between two given num-
bers using afor statement. How MAX/C deals with
the submissions to exercise problems is described in
Section2 in detail.

Presently, the authors of drills and exercise prob-
lems, except for simple yes/no or multiple choice
questions, have to provide, together with a text de-
scribing the questions, a Java code that checks the an-
swer and generates feedbacks. This is an essential
part of the MAX approach and therefore is inevitable.
Nonetheless, we strongly feel the need of reducing the
burden of the authors. We briefly touch on our current

effort in this direction in Section5.
The new features to support course managements

and communication among teachers, teaching assis-
tants, and students are described in Section3 in de-
tails.

1.3 Related Work

Programming is a challenging target for computer
supported education and there has naturally been a
great amount of work on developing so-called intel-
ligent programming tutors (Anderson and Skwarecki,
1986; Arnow and Barshay, 1999; Hong, 2004; Khu-
dobakhshov, 2009; Lehtonen, 2005; Odekirk-Hash
and Zachary, 2001; Pillay, 2003; Sykes and Franek,
2004; Xu and Chee, 2003; Truong et al., 2002). There
have also been reports on successful uses of such
systems in class (Pillay, 2003) and even some com-
mercial systems that have evolved out of these re-
search efforts, such as CodeLab (Turing’s Craft, 2002;
Arnow and Barshay, 1999). Yet most programming
courses in colleges and universities are still taught
solely by human instructors and the web is full of on-
line programming courses that can hardly be called
intelligent: besides explanatory texts, they only pro-
vide multiple choice quizzes. This is indeed a regret-
table situation in view of the successful cases includ-
ing the one reported in the present paper. Through the
research work so far, it may have become fairly clear
what is needed in such automated tutoring systems
and how to construct those systems in principle. It is,
however, far less understood how we can make such
systems widely available in forms that are adapted to
the needs of individual courses.

The most important function of programming tu-
tors, in our view, is to examine program codes written
by students and immediately give appropriate feed-
backs. This function is typically achieved either by

1. matching the submitted program with model
programs prepared by human teachers, possi-
bly through some transformations (Xu and Chee,
2003; Hong, 2004), or

2. running the submitted program against a few test
cases and matching the output with the correct
output (Arnow and Barshay, 1999; Odekirk-Hash
and Zachary, 2001).

The latter approach is also common in so-called on-
line judges for programming contest (see (The Asso-
ciation for Computing Machinery, 1977; Universidad
de Valladolid, 2002) for example). Carefully selected
test cases are usually sufficient for deciding if the sub-
mitted program is correct, which is the primary pur-
pose of on-line judges. However, for instructional

MAX/C ON SAKAI - A Web-based C-Programming Course

197



purposes, there are concerns besides correctness such
as styles and methods. Although the first approach
may be more appropriate to address these concerns, it
is more difficult to determine correctness in that ap-
proach.

In MAX/C we mainly use the latter approach but
enhance it by the use of a specially developed inter-
preter, which enables the collection of more useful in-
formation than by compiler-based executions, such as
potential errors that do not surface as incorrect out-
puts for test cases. In addition, we use pattern-driven
static code analysis of the source code. This differs
from matching with model programs: the exercise au-
thors describe what is desired and not desired of the
program using a pattern language.

2 PROGRAM TESTING
AND CODE ANALYSIS

As can be seen from the overview in the previous sec-
tion, testing and analysis of submitted programs are
major functions of MAX/C. In this section, we de-
scribe these functions in some detail.

2.1 Flow of Submission Processing

Each program submitted by a student is processed in
the steps listed below. Students are required to com-
pile and debug their programs prior to submission,
but MAX/C does not assume that this is always done
and is prepared for syntactic errors. Feedbacks take
two forms: error messages and warnings. When error
messages are generated, the processing terminates at
that point and the feedbacks are given to the students.
In case of warnings, the processing continues until the
submission passes the test or some error messages are
generated. Students have to resubmit a corrected pro-
gram when they receive error messages.

1. The submitted program is parsed using the source
code API. If this is unsuccessful, then error mes-
sages are generated.

2. The parsed program is analyzed statically based
on patterns provided by the author of the exer-
cise problem. If any deviations from the problem
requirement are detected then error messages or
warnings are generated, depending on how seri-
ous those deviations are. (This decision is made
by the problem author and indicated together with
the pattern description.)

3. The submitted program is executed against test
cases provided by the problem author. Execution
is done either by the interpreter developed in this

project or gcc, a Compiler in public domain. If er-
rors are detected, appropriate error messages are
generated.

2.2 Static Code Analysis

In a static code analysis, the system detects some de-
viations of the submitted program from the require-
ments or the purposes of the problem.

For example, the subject of an exercise problem
may be the use offor statements. In this case, the
description of the task clearly indicates thatfor state-
ments must be used in the code and the submissions
are checked against this requirement. Similarly, if the
purpose of an exercise is to learn the use of recursive
calls, the lack of recursion in a submitted program is
detected.

This analysis is driven by source code patterns
provided by the author of the exercise problems. Re-
call the MAX approach that does not depend on gen-
eral principles or artificial intelligence but rather on
the mass of accumulated efforts each of which is
small. To describe the patterns and associated actions,
a pattern language (Takeyama, 2008) designed for this
purpose is used.

2.3 Program Execution and Testing

Submitted programs are executed and tested on the
server. In this phase, a run-time error or violations of
the input/output specifications may be detected.

It is the responsibility of the author of the exercise
problem to write a code (in the form of a Java class)
to examine the outputs of the submitted program on
test inputs and to determine if they satisfy the specifi-
cation. This is again along the MAX approach of not
hesitating to put efforts on individual contents.

We mainly use a custom-made C interpreter to ex-
ecute submitted programs. The advantages of using
this interpreter, over the use of a compiler, is as fol-
lows.

1. Some potential run-time errors that may not sur-
face in a compile-and-run execution, such as an
accesses to an uninitialized variable or to an unal-
located memory location, can always be detected.

2. When run-time errors do occur, it is easier to col-
lect useful information to be included in the feed-
backs to the submitter.

3. It is more secure against attacks to the server em-
bedded in the submitted program. The interpreter
does not implement system calls that can be used
to thwart the system.

CSEDU 2010 - 2nd International Conference on Computer Supported Education

198



In addition, although not utilized in the current
version of MAX/C, the interpreter can be used to pro-
vide more sophisticated interactions with the submit-
ter of the program. For example, the system could
ask questions on the execution process of the submit-
ted program, in order to confirm the understanding of
the submitter, even if the submission is correct. Our
interpreter is designed to facilitate such uses. Exploit-
ing the full potential of the interpreter is part of our
future research.

As an auxiliary means, a compiler is used. This
is limited to the case where the execution time of the
program is expected to be huge.

3 INTEGRATION INTO SAKAI

3.1 Background of the Integration

In the version of MAX/C before integration into
Sakai, the following shortcomings were recognized.

1. The course contents and the system were rather
tightly coupled. For example, adding new con-
tents required the reconfiguration and redeploy-
ment of the system and there was no support for
adding contents online. It was also necessary for
the contents authors to have some detailed knowl-
edge of the system.

2. There was little support for managing the drill re-
sults and the exercise problem submissions. Logs
and submissions were stored in a file system and
the teachers relied on offline codes that process
the information stored in the file system, when
they examine students’ progress or read submis-
sions. Again, there was no online support for
those tasks.

3. There was no support for communication between
the students and the teaching staff, among the stu-
dents, or among the teaching staff members.

The first two issues are clearly serious. We also
felt strongly the need of addressing the third, because
of the following situation in class. The students en-
rolled in the course are grouped into two classes, each
consisting of 50 to 70 students. Each class is taught by
a teaching staff consisting of one faculty member and
3 teaching assistants. The role of the teaching staff
is primarily to answer questions, as there is a lecture-
type course taught in parallel, where the students learn
the concepts necessary to answer the questions and
solve the problems given in our course. The teaching
staff is generally busy and, at peak times, cannot serve
all requests of the students. To ease their burden and

create more time to be spent for students whose needs
are serious, there are several measures to be taken.

1. Improve the quality of the feedbacks provided by
the MAX/C contents. This will help the students
to resolve some of the questions for themselves,
which they may currently ask the teaching staff.

2. Provide communication tools such as Wiki and
FAQ, with which students may be able to resolve
some of the questions. A public forum for stu-
dents helping each other would also help pro-
moting healthy cooperation among students rather
than outright cheating.

3. Provide tools for the teaching staff to easily grasp
progress of each student and the class as a whole.
This would help the staff to appropriately allocate
their limited resource.

Through the integration of MAX/C into Sakai we
planned to take the second and the third measures, as
well as to address the first and the second issues listed
earlier.

3.2 Adding New Functions

Many of the functions to be added, described in the
previous subsection, are standard in typical course
management systems. Therefore, it is reasonable
to employ a course management system rather than
to newly develop those functions and add them to
MAX/C. The course management system we have
chosen is Sakai(Sakai Foundation, 2005).

Sakai is open source e-learning system that is used
by more than 150 educational institutions all over the
world. Each function of Sakai is embodied by what
is called atool in Sakai. Sakai has many tools for e-
learning which we can readily use. Our strategy of
integration is to port MAX/C as a Sakai tool, as well
as to develop a new independent tool for course man-
agement which satisfies our special needs that are not
satisfied by the general tools present in Sakai.

Most new features of the integrated system are im-
plemented in the independent management tool de-
scribed in the next section.

The main purpose of the newly developed man-
agement tool is to help the teaching staff to grasp the
progresses of the students in the classroom. Two vi-
sualization features are used for this purpose. The
classroom map is a map of the classroom where the
seats of the students are displayed with colors depend-
ing on their progress. See Figure 2. Students at blue
seats are the most advanced, light blue, green and yel-
low following in this order. Although not shown in
this figure, students at red seats have made almost no

MAX/C ON SAKAI - A Web-based C-Programming Course

199



Figure 2: Classroom map.

progress and would need special assistance if they re-
main in this state after a certain amount of time has
passed. These colors are consistent with the back-
ground colors of MAX/C pages for individual stu-
dents mentioned earlier. On the other hand, thepie
chart displays the progress of the entire class, using
the same color system. The teaching staff can also
share, through the management system, comments on
individual students that are helpful in adapting the
guidance.

4 EVALUATION

MAX/C has been used in class for more than 4 years,
by more than 100 students each year. There is no
doubt that the system has succeeded in immersing the
students with the mass of exercises we hope them to
be. To confirm the usefulness of the algorithmic feed-
backs, we have conducted a survey over the students.

In this survey, we have asked students whether the
drill questions and the exercise problems are helpful
for learning. We also have asked whether the system
is useful as a whole. 123 students have responded to
this survey.

Figure 3 shows the result of the survey on the use-
fulness of the three types of contents: yes/no or mul-
tiple choice drill questions, trace questions, and exer-
cise problems. To let the student focus on the merit of
the feedbacks for exercise problems, the third ques-
tion asks the students to evaluate the usefulness in
comparison to an imaginary situation where no imme-
diate feedbacks are given. Most of the students con-
sider all of the three types of contents useful. They
are particularly positive about the exercise problems,
for which about a half of the students answered “very
useful”.

However, a non-negligible number of students are
not satisfied with the quality of the feedbacks given to
the exercise problem submissions, as shown in Fig-

Figure 3: The survey on the usefulness of the drill questions
and the exercise problems.

Figure 4: The appropriateness of the automatic feedbacks.

ure 4. This shows that there is a large room of im-
provement here.

Figure 5 shows the result of the survey question
asking which factors in the course are useful, allowing
multiple answers. The features provided by MAX/C
slightly outnumber the human support. This is natu-
ral since some students are able to proceed for them-
selves and are seldom in need of a help from the
teaching staff. Although this is an evidence of the ef-
fectiveness of the system, we must not forget that the
human support factor is still important and the system
must help this support to work.

To the question on the whole system’s effective-
ness (Figure 6), most students responded positively.
The integration of MAX/C into Sakai has success-
fully been completed and the new system is currently
in use. With the new management tools, it has be-
come easier for the teaching staff to grasp the progress
of the students in class. The newly added support
for communication has made the interactions between
students and the teaching staff easier. However, the
use of newly introduced communication tools are not
so widespread yet, due partly to the short time since
introduction and partly to the lack of publicising ef-
forts. It will take more time for the users to become
familiar with these new features and for their benefits
to be fairly evaluated.

CSEDU 2010 - 2nd International Conference on Computer Supported Education

200



Figure 5: Useful factors for learning.

Figure 6: The overall effectiveness of the system.

5 WORK IN PROGRESS
AND FUTURE WORK

The first issue raised Subsection 3.1, the lack of sup-
port for content authors, isn’t resolved yet, although
the integration into Sakai is a first step. This issue is
being addressed in an ongoing work, where we isolate
the contents of MAX/C from the system and make it
into an independent repository of exercise problems,
called WASABI. We have implemented WASABI as
a service in Sakai and the new version of MAX/C that
works with WASABI is starting to operate. We plan to
develop tools for authoring on top of this repository.

We have also started a more ambitious project
called MILES (Model-based Interactive LEarning
Support), where not only the feedbacks to submis-
sions but also the choice of the next exercise problem
to be presented to the student is algorithmic. To do
so, a proper model of each student must be built and
updated during the learning process. The idea is old
but there seems to be no working system along this
approach available for programming education. Our
approach again is to rely on the accumulation of ef-
forts put into small parts, rather than a small number
of general principles. A prototype system is being
built by other members of our group and we hope to
report the outcome in the near future.

ACKNOWLEDGEMENTS

We thank all of those who have contributed to this
project in one way or another, especially Takateru
Kojima, Tomokazu Hayakawa, Fuminobu Takeyama,
and Yuta Takasugi.

REFERENCES

Anderson, J. R. and Skwarecki, E. (1986). The auto-
mated tutoring of introductory computer program-
ming. Communications of the ACM, 29(9):842–849.

Arnow, D. and Barshay, O. (1999). WebToTeach: An In-
teractive Focused Programming Exercise System. In
Proceedings of 29th ASEE/IEEE Frontiers in Educa-
tion Conference, pages 39–44. Session 12a9.

Hong, J. (2004). Guided programming and automated error
analysis in an intelligent Prolog tutor.International
Journal of Human-Computer Studies, 61(4):505–534.

Khudobakhshov, V. (2009). Domain-specific tools for com-
puter science. 10th Sakai Conference.

Lehtonen, T. (2005). Javala - Addictive E-Learning of
the Java Programming Language. InProceedings of
Kolin Kolistelut/Koli Calling-Fifth Annual Baltic Con-
ference on Computer Science Education, pages 41–
48.

Odekirk-Hash, E. and Zachary, J. L. (2001). Automated
feedback on programs means students need less help
from teachers. InProccedings of the 32nd Technical
Symposium on Computer Science Education, pages
55–59.

Pillay, N. (2003). Developing intelligent programming tu-
tors for novice programmers.ACM SIGCSE Bulletin,
35(2):78–82.

Sakai Foundation (2005). Sakai project.
http://sakaiproject.org/.

Sykes, E. R. and Franek, F. (2004). A prototype for an intel-
ligent tutoring system for students learning to program
in Java.Advanced Technology for Learning, 1(1).

Takeyama, F. (2008). Static code analysis for MAX/C.
Graduation project, Department of Computer Science,
Meiji University.

The Association for Computing Machinery (1977). The
ACM International Collegiate Programming Contest.
http://cm.baylor.edu/.

Truong, N., Bancroft, P., and Roe, P. (2002). ELP - A Web
Environment for Learning to Program. Inthe 19th
Annual Conference of ASCILITE, pages 661–670.

Turing’s Craft (2002). CodeLab.
http://turingscraft.com/exers.php.

Universidad de Valladolid (2002). the UVa Online Judge.
http://uva.onlinejudge.org/.

Xu, S. and Chee, Y. S. (2003). Transformation-based di-
agnosis of student programs for programming tutor-
ing systems.IEEE Transansactions on Software En-
gineering, 29(4):360–384.

MAX/C ON SAKAI - A Web-based C-Programming Course

201


