
PNEPS FOR SHALLOW PARSING
NEPs Extended For Parsing Applied To Shallow Parsing

Emilio del Rosal, Alfonso Ortega de la Puente
Departamento de Ingenierı́a Informática de la Escuela Politécnica Superior de la Universidad Autónoma de Madrid, Spain

Diana Perez Marin
Departamento de Lenguajes y Sistemas I, Universidad Rey Juan Carlos, Madrid, Spain

Keywords: Natural computing, Natural language processing, Shallow parsing, Nets of evolutionary processors.

Abstract: PNEPs (Parsing Networks of Evolutionary Processors) extend NEPs with context free (instead of substituting)
rules, leftmost derivation, bad terminals check and indexes to rebuild the derivation tree. It is possible to
build a PNEP from any context free grammar without additional constraints, able to generate all the different
derivations for ambiguous grammars with a temporal performance bound by the depth of the derivation tree.
One of the main difficulties encountered by parsing techniques when building complete parsing trees for
natural languages is the spatial and temporal performance of the analysis. Shallow parsing tries to overcome
these difficulties. The goal of shallow parsing is to analyze the main components of the sentences (for example,
noun groups, verb groups, etc.) rather than complete sentences. The current paper is mainly focused on testing
the suitability of PNEPs to shallow parsing.

1 MOTIVATION

Syntactic analysis is one of the classical problems re-
lated to language processing, and applies both to arti-
ficial and to natural languages.

There is an ample range of parsing tools that com-
puter scientists and linguists can use.

The characteristics of the particular language de-
termine the suitability of the parsing technique. Two
of the main differences between natural and formal
languages are ambiguity and the size of the required
representation. Ambiguity introduces many difficul-
ties to parsing, therefore programming languages are
usually designed to be non ambiguous. On the other
hand, ambiguity is an almost implicit characteristic
of natural languages. To compare the size of dif-
ferent representations, the same formalism should be
used. Context-free grammars are widely used to de-
scribe the syntax of languages. It is possible to in-
formally compare the sizes of context free grammars
for some programming languages and for some natu-
ral languages. We conjecture that the representations
needed for parsing natural languages are frequently
greater than those we can use for high level impera-
tive programming languages.

Parsing techniques for programming languages
usually restrict the representation (grammar) used in
different ways: it must be unambiguous, recursion is
restricted, erasing rules must be removed, they must
be written in a normal form, etc. These conditions
mean extra work for the designer of the grammar,
difficult to understand for non-experts in the field of
formal languages. This may be one of the reasons
why formal representations such as grammars are lit-
tle used or even unpopular. Natural languages usually
do not fulfill these constraints.

The current paper is focused on formal representa-
tions (based on Chomsky grammars) that can be used
for syntactic analysis, specially those which do not
comply with these kinds of constraints. In this way,
our approach will be applicable at the same time for
natural and formal languages.

Formal parsing techniques for natural languages
are inefficient. The length of the sentences that these
techniques are able to parse is usually small (usually
less than a typical computer program).

This work is also focused on new models to in-
crease the efficiency of parsing for languages with
non-restricted context free grammars.

Conventional computers are based on the well

403
del Rosal E., Ortega de la Puente A. and Perez-Marin D. (2010).
PNEPS FOR SHALLOW PARSING - NEPs Extended For Parsing Applied To Shallow Parsing.
In Proceedings of the 2nd International Conference on Agents and Artificial Intelligence, pages 403-410
DOI: 10.5220/0002789004030410
Copyright c© SciTePress

known von Neumann architecture, which can be con-
sidered an implementation of the Turing machine.
One of the current topics of interest in Computer Sci-
ence is the design of new abstract computing devices
that can be considered alternative architectures for the
design of new families of computers and algorithms.
Some of them are inspired by the way in which Nature
efficiently solves difficult tasks; almost all of them
are intrinsically parallel. They are frequently called
natural or unconventional computers. Nets of Evolu-
tionary Processors (NEPs) are one of these massively
parallel new natural computers. Their structure will
be described later.

The authors have previously proposed PNEPs: an
extension to NEPs that makes them suitable for effi-
cient parsing of any kind of context free grammars,
specially applicable to those languages that share
characteristics with natural languages (inherent ambi-
guity, for example). The goal of the current paper is to
modify and use PNEPs for shallow parsing. Shallow
parsing will be described later. It is a parsing tech-
nique frequently used in natural language processing
to overcome the inefficiency of other approaches to
syntactic analysis.

Some of the authors of this contribution have
previously developed IBERIA, a corpus of scientific
Spanish which is able to process the sentences at the
morphological level.

We are very interested in adding syntactic analy-
sis tools to IBERIA. The current contribution has this
goal.

In the following sections we will introduce all the
areas involved in this work (syntactic analysis, natural
languages, NEPs, PNEPs, jNEP and shallow parsing).
Then we will introduce FreeLing, a well-known free
platform that offers parsing tools such as a Spanish
grammar and shallow parsers for this grammar. Then
we will describe how PNEPs can be used for shal-
low parsing and describe a jNEP implementation. Fi-
nally some examples will be given, and conclusions
and further research lines are discussed.

2 INTRODUCTION

2.1 Introduction to NEPs

Networks of evolutionary processors (NEPs (Castel-
lanos et al., 2003)) are a new computing mechanism
directly inspired in the behaviour of cell populations.
Each cell contains its own genetic information (repre-
sented by a set of strings of symbols) that is changed
by some evolutive transformations (implemented as

elemental operations on strings). Cells are intercon-
nected and can exchange information (strings) with
other cells.

The Connection Machine (Hillis, 1985), the Logic
Flow paradigm (Errico and Jesshope, 1994) and
the biological background of DNA computing (Paun
et al., 1998), membrane computing (Paun, 2000), and
specially the theory of grammar systems (Csuhaj-
Varjú et al., 1993) can be considered precedents to
NEPs.

A NEP can be defined as a graph whose nodes are
processors which perform very simple operations on
strings and send the resulting strings to other nodes.
Every node has filters that block some strings from
being sent and/or received.

Parsing NEPs (PNEPs) were introduced in (Or-
tega et al., 2009) to handle context free grammars.

2.1.1 NEPs and PNEPs: Definitions and Key
Features

Following (Castellanos et al., 2003) we introduce the
basic definition of NEPs.

Definition. A Network of Evolutionary Processors of
size n is a construct:

Γ = (V,N1,N2, ...,Nn,G),

where:

• V is an alphabet and for each 1≤ i≤ n,

• Ni = (Mi,Ai,PIi,POi) is the i-th evolutionary
node processor of the network. The parameters
of every processor are:

– Mi is a finite set of evolution rules of just one
of the following forms:

i. a→ b, where a,b ∈V (substitution rules),
ii. a→ ε, where a ∈V (deletion rules),

iii. ε→ a, where a ∈V (insertion rules),
iv. r : A→ s, where s ∈V ∗ (context free rules ap-

plied to change a symbol by a string) PNEPs
replace substitution rules by this kind of rules.

v. r : A→l s, where s ∈ V ∗ (context free rules
applied to the leftmost non terminal) PNEPs
add this kind of rule to reduce the amount of
equivalent derivations.

– Ai is a finite set of strings over V . The set Ai is
the set of initial strings in the i-th node.

– PIi and POi are subsets of V ∗ respectively rep-
resenting the input and the output filters. These
filters are defined by the membership condition,
namely a string w ∈V ∗ can pass the input filter
(the output filter) if w ∈ PIi(w ∈ POi). In this
paper we will use two kind of filters:

ICAART 2010 - 2nd International Conference on Agents and Artificial Intelligence

404

∗ Those defined as two components (P,F) of
Permitting and Forbidding contexts (a word w
passes the filter if (alphabet of w⊆ P)∧ (F∩
alphabet of w = /0)).

∗ Those defined as regular expressions r (a word
w passes the filter if w ∈ L(r), where L(r)
stands for the language defined by the regular
expression r).

• G = ({N1,N2, . . . ,Nn},E) is an undirected graph
called the underlying graph of the network. The
edges of G, that is the elements of E, are given in
the form of sets of two nodes. The complete graph
with n vertices is denoted by Kn.

• The algorithm to build PNEPs from context free
grammars imposes a standard structure to PNEPs
(concerning the topology of the graph and the
types of nodes needed). Further details can be
found in (Ortega et al., 2009).

A configuration of a NEP is an n-tuple C =
(L1,L2, . . . ,Ln), with Li ⊆V ∗ for all 1≤ i≤ n. It rep-
resents the sets of strings which are present in any
node at a given moment.

A given configuration of a NEP can change either
by an evolutionary step or by a communicating step.
When changing by an evolutionary step, each compo-
nent Li of the configuration is changed in accordance
with the evolutionary rules associated with the node
i. The change in the configuration by an evolutionary
step is written as C1⇒C2.

When changing by means of a communication
step, each node processor Ni sends all the copies of
the strings it has, able to pass its output filter, to all
the node processors connected to Ni, and receives all
the copies of the strings sent by any node processor
connected with Ni, if they can pass its input filter. The
change in the configuration by means of a communi-
cation step is written as C1 `C2.

2.2 Introduction to Analysis of Natural
Languages with NEPs and PNEPs

Computational Linguistics researches linguistic phe-
nomena that occur in digital data. Natural Language
Processing (NLP) is a subfield of Computational Lin-
guistics that focuses on building automatic systems
able to interpret or generate information written in
natural language (Volk, 2004). Machine Translation
was the first NLP application in the fifties (Weaver,
1955).

A typical NLP system has to cover several linguis-
tic levels:

phonological (sound processing), morphological
(extracting the part of speech and morphological char-

acteristics of words), semantic-pragmatic (both levels
related to the meaning of the sentences) and syntacti-
cal.

Our current work is focused on this last level in
which parsers are used to detect valid structures in the
sentences, usually in terms of a certain grammar.

Syntactical analysis for natural language requires
a big amount of computational resources. Parsers usu-
ally are able to completely analyze only short sen-
tences. Shallow parsing tries to overcome this diffi-
culty. Instead of a complete derivation tree for the
sentence, this parsing technique actually builds partial
derivation trees for its elemental components. This
paper is focused on this approach.

Typical NLP systems usually cover the linguistic
levels previously described in the following way:

OCR/Tokenization⇒Morphologycal analysis⇒
Syntax analysis⇒ Semantic interpretation⇒

Discourse text processing

A computational model that can be applied to NLP
tasks is PNEPs. PNEPs are an extension to NEPs.
NEP as a generating device was first introduced in
(Csuhaj-Varju and Salomaa, 1997; Csuhaj-Varjú and
Mitrana, 2000). The topic is further investigated in
(Castellanos et al., 2001), while further different vari-
ants of the generating machine are introduced and
analyzed in (Castellanos et al., 2005; Manea, 2004;
Manea and Mitrana, 2007; Margenstern et al., 2005;
Martin-Vide et al., 2003).

In (Bel Enguix et al., 2009), a first attempt was
made to apply NEPs for syntactic NLP parsing. In
(Ortega et al., 2009) context free (instead of substi-
tuting) rules, leftmost derivation, bad terminals check
and indexes to rebuild the derivation tree were added
to NEPs.

(Ortega et al., 2009) also proposes an algorithm to
build a PNEP from any context free grammar without
additional constraints, able to generate all the differ-
ent derivations for ambiguous grammars with a tem-
poral performance bound by the depth of the deriva-
tion tree.

Our current contribution focuses on the use of
PNEPs for shallow parsing. It is a mandatory step to
compare the performance of PNEPs with other stan-
dard tools for the syntactical analysis of natural lan-
guages.

2.3 Introduction to jNEP

The jNEP (del Rosal et al., 2008) Java program, freely
available at http://jnep.edelrosal.net, can simulate al-
most every type of NEP in the literature. The soft-
ware has been developed under three main principles:
1) it rigorously complies with the formal definitions

PNEPS FOR SHALLOW PARSING - NEPs Extended For Parsing Applied To Shallow Parsing

405

found in the literature; 2) it serves as a general tool,
by allowing the use of the different NEP variants and
can easily be adapted to possible future extensions
of the NEP concept; 3) it exploits the inherent par-
allel/distributed nature of NEPs.

jNEP consists of three main classes (NEP,
EvoluionaryProcessor and Word), and three Java in-
terfaces (StoppingCondition, Filter and Evolution-
aryRule) This design mimics the NEP model defi-
nition. In jNEP, a NEP is composed of evolution-
ary processors, stopping conditions and an underlying
graph (attribute edges), used to define the net topol-
ogy. Likewise, an evolutionary processor contains a
set of rules and filters.

Java interfaces are used for those components
which more frequently change between different NEP
variants. jNEP implements a wide set of these three
components and more can be easily added in the fu-
ture.

The NEP class coordinates the main dynamics
of the computation and manages the processors (in-
stances of the EvolutionaryProcessor class), forcing
them to perform alternate evolutionary and communi-
cation steps. Furthermore, the computation is stopped
whenever it is needed.

jNEP reads the definition of the NEP from an
XML configuration file that contains special tags for
any relevant components in the NEP (alphabet, stop-
ping conditions, the complete graph, every edge, the
evolutionary processors with their respective rules,
filters and initial contents).

Although some fragments of these files will
be shown in this paper, all the configuration files
mentioned here can be found at (http://jnep.e-
delrosal.net). Despite the complexity of these XML
files, the interested reader can see that the tags and
their attributes have self-explaining names and values.

2.4 Introduction to FreeLing and
Shallow Parsing

We can summarize some of the main difficulties en-
countered by parsing techniques when building com-
plete parsing trees for natural languages:

• Spatial and temporal performance of the analysis.
The Early algorithm and its derivatives (Earley,
1970; Seifert and Fischer, 2004; Zollmann and
Venugopal, 2006) are one of the most efficient ap-
proaches. They, for example, provide parsing in
polynomial time, with respect to the length of the
input. Its time complexity for parsing context-free
languages is linear in the average case, while in
the worst case it is n2 and n3, respectively, for un-
ambiguous and ambiguous grammars.

• The size and complexity of the corresponding
grammar, which is, in addition, difficult to design.
Natural languages, for instance, usually are am-
biguous.

The goal of shallow parsing is to analyze the
main components of the sentences (for example, noun
groups, verb groups, etc.) rather than complete sen-
tences. It ignores the actual syntactic structure of the
sentences, which are considered just as sets of these
basic blocks. Shallow parsing tries to overcome, in
this way, the performance difficulties that arise when
building complete derivation trees.

Shallow parsing produces sequences of subtrees.
These subtrees are frequently shown as children of a
fictitious root node. This way of presenting the re-
sults of the analysis can confuse the inexperienced
reader, because the final tree is not a real derivation
tree: neither its root is the axiom of the grammar nor
its branches correspond to actual derivation rules.

Shallow parsing includes different particular algo-
rithms and tools (for instance FreeLing (TALP, 2009)
or cascades of finite-state automata (Harris, 1962))

FreeLing is An Open Source Suite of Language
Analyzers that provides the scientist with several dif-
ferent tools and techniques. FreeLing includes a
context-free grammar of Spanish, adapted for shal-
low parsing, that does not contain a real axiom. This
grammar has almost two hundred non-terminals and
approximately one thousand rules. The actual num-
ber of rules is even greater, because they use regular
expressions rather than terminal symbols. Each rule,
in this way, represents a set of rules, depending on the
terminal symbols that match the regular expressions.

The terminals of the grammar are part-of-speech
tags produced by the morphological analysis. So they
include labels like “plural adjective”, “third person
noun” etc.

Figure 4 shows the output of FreeLing for a very
simple sentence like “Él es ingeniero”1.

FreeLing built three subtrees: two noun phrases
and a verb. After that, FreeLing just joins them under
the fictitious axiom. Figure 1 shows a more complex
example.

3 PNEP EXTENSION FOR
SHALLOW PARSING

The main difficulty to adapt PNEPs to shallow parsing
is the fictitious axiom. PNEPs is designed to handle
context free grammars that must have an axiom.

1He is an engineer

ICAART 2010 - 2nd International Conference on Agents and Artificial Intelligence

406

Figure 1: FreeLing output for “Aquel chico es un gran in-
geniero” (That guy is a great engineer).

We have also found additional difficulties in the
way in which FreeLing reduces the number of needed
derivation rules of its grammar. As we have previ-
ously introduced, FreeLing uses regular expressions
rather than terminal symbols. This kind of rules ac-
tually represents a set of rules: those whose terminals
match the regular expressions. We have also added
this mechanism to PNEPs in the corresponding filters
that implement the matching.

In the following paragraphs we will explain both
problems with more detail.

The virtual root node and the partial derivation
trees (for the different components of the sentence)
force some changes in the behavior of PNEPs. Firstly,
we have to derive many trees at once, one per each
constituent, instead of only one tree for the complete
sentence. Therefore, all the nodes that will apply
derivation rules for the nonterminals associated with
the components in which the shallow parser is focused
will contain their symbol in the initial step. In (Ortega
et al., 2009) the nodes of the axiom were the only non
empty nodes. In a more formal way:

• Initially, in the original PNEP (Ortega et al.,
2009), the only non empty node is associated with
the axiom and contains a copy of the axiom. For-
mally (NA and ΣN stand respectively for the node
associated with the axiom and the set of nontermi-
nal symbols of the grammar under consideration)
INA = A
∀Ni ∈ ΣN , i 6= A→ INi = /0

• The initial conditions of the PNEP for shallow
parsing are:
∀Ni, INi = i

In this way, the PNEP produces every possi-
ble derivation sub-tree beginning from each non-
terminal, as if they were axioms of a virtually inde-
pendent grammar. However, those sub-trees have to
be concatenated and, after that, joined to the same
parent node (virtual root node of the fictitious axiom).
We get this behavior with splicing rules (Choudhary

and Krithivasan, 2005), (Manea and Mitrana, 2007)
in the following way: (1) the PNEP marks the end
and the beginning of the sub-trees with the symbol %,
(2) splicing rules are applied to concatenate couples
of sub-trees, taking the beginning of the first one and
the end of the second as the splicing point.

To be more precise, a special node is responsible
of the first step. Its specification in jNEP is the fol-
lowing:

<NODE initCond="">

<EVOLUTIONARY_RULES>

<RULE ruleType="insertion" actionType="RIGHT"

symbol="%"/>

<RULE ruleType="insertion" actionType="LEFT"

symbol="%"/>

</EVOLUTIONARY_RULES>

<FILTERS>

<INPUT type="2" permittingContext=

"SET_OF_VALID_TERMINALS" forbiddingContext=""/>

<OUTPUT type="RegularLangMembershipFilter"

regularExpression="%%.*|%.*%|.*%%"/>

</FILTERS>

</NODE>

During the second step the splicing rules concate-
nate the sub-trees. We could choose a specialized
node (just one node) or a set of nodes depending on
the degree of parallelism we prefer. The needed splic-
ing rule could be defined as follows:

<RULE ruleType="splicingChoudhary" wordX="terminal1"

wordY="%" wordU="%" wordV="terminal2"/>

Where terminal2 follows terminal1 in the sentence
at any place. It should be remembered that % marks
the end and beginning of the derivation trees. If the
sentence has n words, there are n-1 rules/points for
concatenation. It is important to note that only splic-
ing rules that create a valid sub-sentence are actually
concatenated. 2

For example, if the sentence to parse is a b c d,
we would need the following rules:

<RULE ruleType="splicingChoudhary" wordX="a" wordY="%"

wordU="%" wordV="b"/>

<RULE ruleType="splicingChoudhary" wordX="b" wordY="%"

wordU="%" wordV="c"/>

<RULE ruleType="splicingChoudhary" wordX="c" wordY="%"

wordU="%" wordV="d"/>

They could concatenate two sub-sentences like
b c and d, resulting in b c d.

2In fact, we are using Choudhary splicing rules (Choud-
hary and Krithivasan, 2005) with a little modification to ig-
nore the symbols that belong to the trace of the derivation.

PNEPS FOR SHALLOW PARSING - NEPs Extended For Parsing Applied To Shallow Parsing

407

3.1 Our PNEP for the FreeLing’s
Spanish Grammar

The jNEP configuration file for our PNEP adapted to
the FreeLing’s grammar is large. It has almost 200
hundred nodes and some nodes have tens of rules. We
will show, however, some of its details. Let the sen-
tence to be parsed be “Él es ingeniero”. The output
node has the following definition:
<NODE initCond="">

<EVOLUTIONARY_RULES>

<RULE ruleType="deletion" actionType="RIGHT" symbol=""/>

</EVOLUTIONARY_RULES>

<FILTERS>

<INPUT type="RegularLangMembershipFilter"

regularExpression=

"%[0-9\-]*(PP3MS000|PP*)[0-9\-]*(VSIP3S0|VSI*)

[0-9\-]*(NCMS000|NCMS*|NCMS00*)%"/>

<OUTPUT type="1" permittingContext=""

forbiddingContext="PP*_PP3MS000_VSI*_VSIP3S0

_NCMS*_NCMS00*_NCMS000"/>

</FILTERS>

</NODE>

We have previously explained that the input sen-
tence includes part-of-speech tags instead of actual
Spanish words. This sequence of tags together with
the indexes of the rules that will be used to build the
derivation tree, are in the input filter for the output
node. We can also see some tags written as regular
expressions. We have added this kind of tags because
FreeLing uses also regular expressions to reduce the
size of the grammar.

As an example, we show the specification of one
of the deriving nodes. We can see below that the non-
terminal grup-verb has many rules, the one with trace
ID 70-7 is actually needed to parse our example.
<NODE initCond="grup-verb" id="70">

<EVOLUTIONARY_RULES>

<RULE ruleType="leftMostParsing" symbol="grup-verb"

string="70-0_grup-ve[...]

<RULE ruleType="leftMostParsing" symbol="grup-verb"

string="70-1_grup-ve[...]

<RULE ruleType="leftMostParsing" symbol="grup-verb"

string="70-7_verb" [...]

[...]

</EVOLUTIONARY_RULES>

<FILTERS>

<INPUT type="1" permittingContext="grup-verb"

forbiddingContext=""/>

</FILTERS>

</NODE>

The output of jNEP is also large. However, we
can show at least the main dynamic of the process.
Figures 2 and 3 show it. Comments between brackets
help to understand it.

As jNEP shows, the output node contains more
than one derivation tree. We design the PNEP in this

***************NEP INITIAL CONFIGURATION***************

--- Evolutionary Processor 0 ---

[THE INITIAL WORD OF EVERY DERIVATION NODE IS ITS

CORRESPONDING NON-TERMINAL IN THE GRAMMAR]

[...]

--- Evolutionary Processor 70 ---

grup-verb

[...]

--- Evolutionary Processor 112 ---

sn

[...]

--- Evolutionary Processor 190 ---

[THE OUTPUT NODE IS EMPTY]

*************** NEP CONFIGURATION - EVOLUTIONARY STEP -

TOTAL STEPS: 1 ***************

[FIRST EXPANSION OF THE TREES]

[...]

--- Evolutionary Processor 70 ---

70-6_verb-pass 70-7_verb

70-0_grup-verb_patons_patons_patons[...]

[...]

--- Evolutionary Processor 112 ---

112-104_grup-nom 112-103_grup-nom-ms 112-97_pron-mp

112-95_pron-ns[...]

[...]

*************** NEP CONFIGURATION - COMMUNICATION STEP -

TOTAL STEPS: 2 ***************

--- Evolutionary Processor 0 ---

[THE FIRST TREES WITH ONLY TERMINALS APPEAR AT THE

BEGINNING OF SPLICING SUB-NET]

--- Evolutionary Processor 178 ---

57-3_NCMS00* 151-35_VSI* 1-2_PP3MS000 99-0_NCMS* 121-2_VSI*

[...]

[THE REST GO TO THE PRUNING NODE]

--- Evolutionary Processor 189 ---

112-87_psubj-mp_indef-mp 8-3_s-a-ms 44-6_prep_s-a-fp [...]

Figure 2: jNEP output for “Él es ingeniero”. 1 of 2.

way, because ambiguous grammars have more than
one possible derivation tree for the same sentence.
In that case, our PNEP will produce all the possible
derivation trees, while FreeLing is only able to show
the most likely.

It is easy to realize that figure 4 corresponds also
to the output of jNEP running our PNEP for shallow
parsing.

4 CONCLUSIONS AND FURTHER
RESEARCH LINES

Formal syntactical analysis techniques for natural lan-
guages (LL, LR, Early families, for example) suf-
fer from inefficiency when they try to build deriva-
tion trees for complete sentences. Shallow parsing is
an approach focused on the basic components of the
sentence instead on its complete structure. It is ex-
tensively used to overcome performance difficulties.

ICAART 2010 - 2nd International Conference on Agents and Artificial Intelligence

408

*************** NEP CONFIGURATION - COMMUNICATION STEP - TOTAL STEPS: 4 ***************

[THE PROCESS OF MARKING THE END AND THE BEGINNING STARTS]

[...]

--- Evolutionary Processor 178 ---

1-2_PP3MS000_% %_151-35_VSI* 57-3_NCMS00*_% %_1-2_PP3MS000 %_99-0_NCMS* 99-0_NCMS*_% 151-35_VSI*_% 121-2_VSI*_%

%_121-2_VSI* %_57-3_NCMS00*

[...]

*************** NEP CONFIGURATION - EVOLUTIONARY STEP - TOTAL STEPS: 7 ***************

[THE SPLICING SUB-NET STARTS TO CONCATENATE THE SUB-TREES]

[...]

--- Evolutionary Processor 178 ---

156-3_1-2_PP3MS000_% 77-13_57-3_NCMS00*_% %_70-7_151-35_VSI* 34-11_99-0_NCMS*_% %_111-4_1-2_PP3MS000

111-4_1-2_PP3MS000_% 70-7_151-35_VSI*_% %_77-13_57-3_NCMS00* %_34-11_99-0_NCMS* %_156-3_1-2_PP3MS000

[...]

--- Evolutionary Processor 187 ---

%_121-2_VSI*_99-0_NCMS*_% %_% %_151-35_VSI*_% %_99-0_NCMS*_% %_121-2_VSI*_% %_151-35_VSI*_99-0_NCMS*_%

--- Evolutionary Processor 188 ---

%_121-2_VSI*_57-3_NCMS00*_% %_151-35_VSI*_57-3_NCMS00*_% %_% %_151-35_VSI*_% %_121-2_VSI*_% %_57-3_NCMS00*_%

[...]

*************** NEP CONFIGURATION - COMMUNICATION STEP - TOTAL STEPS: 18 ***************

[THE OUTPUT NODE RECEIVES THE RIGHT DERIVATION TREE. IT IS THE SAME AS THE ONE OUTPUT BY FREELING]

--- Evolutionary Processor 190 ---

[THE FIRST ONE IS THE OUTPUT DESIRED]

%_112-99_111-4_1-2_PP3MS000_70-7_151-35_VSI*_112-103_77-13_57-3_NCMS00*_% %_1-2_PP3MS000_151-35_VSI*_57-3_NCMS00*_%

[...]

Figure 3: jNEP output for “Él es ingeniero”. 2 of 2.

FreeLing is one of the most popular free packages and
it includes grammars for different natural languages
and shallow parsers for them. Some of the main char-
acteristics of shallow parsing are summarized below:

• It actually builds a set of derivation trees that are
shown to the user as if they were sons of a fic-
titious pseudo axiom that does not belong to the
grammar

• It is not a pure formal technique, so several tricks
are frequently used to save resources. One of them
is the use of regular expressions instead of termi-
nal symbols. Each rule, in this case, represents the
set of rules whose terminals match the regular ex-
pressions. The morphological analyzers have also
to take into account this kind of matching.

We have added to PNEPs (an extensions to NEPs
for parsing any kind of context free grammars) some
features to deal with these characteristics.

We have also added them to jNEP (a NEP simu-
lator written in Java and able to run on parallel plat-
forms). We have also used the FreeLing grammar for
Spanish to shallow parse some very simple examples.

We have shown, in this way, that it is possible to
use variants of NEPs for shallow parsing.

In the future we plan to test our proposal with
more realistic examples, to improve the accuracy and
performance of the basic PNEP model and to incorpo-
rate syntactical analysis (both, complete and shallow)

Figure 4: Shallow parsing tree for “Él es ingeniero”.

to IBERIA corpus for Scientific Spanish by means of
PNEPs.

Further on, we plan to extend PNEPs with formal
representations able to handle semantics (attribute
grammars, for example) We also plan to use this new
model as a tool for compiler design and as a new ap-
proach to tackle some tasks in the semantic level of
natural language processing.

PNEPS FOR SHALLOW PARSING - NEPs Extended For Parsing Applied To Shallow Parsing

409

ACKNOWLEDGEMENTS

This work was partially supported by MEC, project
TIN2008-02081/TIN and by DGUI CAM/UAM,
project CCG08-UAM/TIC-4425. The authors thank
Dr. Manuel Alfonseca for his help while preparing
this document.

REFERENCES

Bel Enguix, G., Jimenez-Lopez, M. D., Mercaş, R., and
Perekrestenko, A. (2009). Networks of evolutionary
processors as natural language parsers. In Proceed-
ings ICAART 2009.

Castellanos, J., Leupold, P., and Mitrana, V. (2005). On
the size complexity of hybrid networks of evolution-
ary processors. THEORETICAL COMPUTER SCI-
ENCE, 330(2):205–220.

Castellanos, J., Martin-Vide, C., Mitrana, V., and Sempere,
J. M. (2003). Networks of evolutionary processors.
Acta Informatica, 39(6-7):517–529.

Castellanos, J., Martn-Vide, C., Mitrana, V., and Sempere,
J. M. (2001). Solving np-complete problems with net-
works of evolutionary processors. In Connectionist
Models of Neurons, Learning Processes and Artificial
Intelligence : 6th International Work-Conference on
Artificial and Natural Neural Networks, IWANN 2001
Granada, Spain, June 13-15, 2001, Proceedings, Part
I, pages 621–.

Choudhary, A. and Krithivasan, K. (2005). Network of
evolutionary processors with splicing rules. MECH-
ANISMS, SYMBOLS AND MODELS UNDERLYING
COGNITION, PT 1, PROCEEDINGS, 3561:290–299.

Csuhaj-Varjú, E., Dassow, J., Kelemen, J., and Paun, G.
(1993). Grammar Systems. London, Gordon and
Breach.

Csuhaj-Varjú, E. and Mitrana, V. (2000). Evolutionary sys-
tems: A language generating device inspired by evolv-
ing communities of cells. Acta Informatica, 36:913–
926.

Csuhaj-Varju, E. and Salomaa, A. (1997). Lecture Notes on
Computer Science 1218, chapter Networks of parallel
language processors.

del Rosal, E., Nuez, R., Castaeda, C., and Ortega, A. (2008).
Simulating neps in a cluster with jnep. In Proceedings
of International Conference on Computers, Commu-
nications and Control, ICCCC 2008,.

Earley, J. (1970). An efficient context-free parsing algo-
rithm. Communications of the ACM, 13(2):94–102.

Errico, L. and Jesshope, C. (1994). Towards a new architec-
ture for symbolic processing. In Plander, I., editor, Ar-
tificial Intelligence and Information-Control Systems
of Robots ’94. Singapore, World Sci. Publ.

Harris, Z. S. (1962). String Analysis of Sentence Structure.
Mouton, The Hague.

Hillis, W. (1985). The Connection Machine. Cambridge,
MIT Press.

Manea, F. (2004). Using ahneps in the recognition of
context-free languages. In In Proceedings of the Work-
shop on Symbolic Networks ECAI.

Manea, F. and Mitrana, V. (2007). All np-problems can
be solved in polynomial time by accepting hybrid net-
works of evolutionary processors of constant size. In-
formation Processing Letters, 103(3):112–118.

Margenstern, M., Mitrana, V., and Perez-Jimenez, M. J.
(2005). Accepting hybrid networks of evolutionary
processors. DNA COMPUTING, 3384:235–246.

Martin-Vide, C., Mitrana, V., Perez-Jimenez, M. J., and
Sancho-Caparrini, F. (2003). Hybrid networks of
evolutionary processors. Genetic and Evolution-
ary Computation. GECCO 2003, PT I, Proceedings,
2723:401–412.

Ortega, A., del Rosal, E., Prez, D., Merca, R.,
Perekrestenko, A., and Alfonseca, M. (2009). PNEPs,
NEPs for Context Free Parsing: Application to Nat-
ural Language Processing, chapter Bio-Inspired Sys-
tems: Computational and Ambient Intelligence, pages
472–479. LNCS.

Paun, G. (2000). Computing with membranes. Journal of
Computer and System Sciences, 61:108–143.

Paun, G., Rozenberg, G., and Salomaa, A. (1998). DNA
Computing. New Computing Paradigms. Berlin,
Springer.

Seifert, S. and Fischer, I. (2004). Parsing String Generating
Hypergraph Grammars. Springer.

TALP (2009). http://www.lsi.upc.edu/ nlp/freeling/.

Volk, M. (2004). Introduction to Natural Language Pro-
cessing,. Course CMSC 723 / LING 645 in the Stock-
holm University, Sweden.

Weaver, W. (1955). Translation, Machine Translation of
Languages: Fourteen Essays.

Zollmann, A. and Venugopal, A. (2006). Syntax augmented
machine translation via chart parsing. In Procced-
ings of the Workshop on Statistic Machine Transla-
tion. HLT/NAACL.

ICAART 2010 - 2nd International Conference on Agents and Artificial Intelligence

410

