
APPLYING QUERY BY EXAMPLE IN OCL
FOR PLATFORM-INDEPENDENT PROGRAMMING

Grzegorz Fałda, Wiktor Filipowicz, Piotr Habela, Krzysztof Stencel, Kazimierz Subieta
Polish-Japanese Institute of Information Technology, Warsaw, Poland

Krzysztof Kaczmarski
Warsaw University of Technology, Warsaw, Poland

Keywords: Database, Object-oriented, Query language, Visual, Query by example, Model driven architecture, UML,
OCL.

Abstract: Precise modelling of behaviour is an area where programming meets modelling, and textual syntax
competes with a visual one. By developing a UML based platform-independent framework, we aimed to
find a visual syntax aid to make the language more approachable to stakeholders, while taking advantage of
existing UML syntax intuitions and offering a truly higher level of abstraction. Our solution consists of
seamlessly integrated UML Actions and the Object Constraint Language (OCL) as a database query
language, featuring both a textual and a visual syntax. In this paper we describe a declarative, Query by
Example (QBE)-based approach to visualizing OCL expressions over a UML object-oriented model
instance, to be used inside of textual or visual imperative statements. Such visual OCL expressions can also
be used as ad-hoc queries. The paper presents a choice of visual syntax and describes its underlying
semantics.

1 INTRODUCTION

In the VIDE project (Falda et al. 2007, Falda et al.
2008, VIDE 2008) we aimed at investigating the
capability of executable modelling in the spirit of
Model Driven Architecture (MDA), basing on
standardized, general-purpose modelling languages
and applied to the area of enterprise applications
involving persistent data sources. This led us to
selecting OMG UML 2.1 as the basis of the research
and supporting it with more powerful querying
capability offered by OCL 2.0. The state of these
specifications leaves many questions open.
Particularly, no concrete notation for the finer level
UML model elements (like Actions and Structured
Activities) has been standardized. Furthermore, the
use of OCL as a query language inside imperative
constructs of UML has not been extensively
investigated yet, hence research was needed to
provide an answer whether OCL is suitable in this
new role. Joining UML and OCL as a database

programming language required resolving some
ambiguities and shortcomings of those standards.

When extending a modelling language towards
the ability to specify detailed behaviour, we enter the
area that is usually covered by traditional, textual
programming languages. Indeed, introducing
diagrammatic notation may turn out to be an overkill
for typical programming tasks, where textual code
may be sufficiently readable for professionals and -
especially – faster do develop (Ambler 2007). On
the other hand, the characteristics of the VIDE
project required a careful reconsideration of this
attitude. The assumed role of the language – that is
UML-based platform-independent modelling – puts
it halfway between typical programming and
traditional UML modelling. Hence, we had a strong
incentive to look for visualisations that would
correspond to traditional, broadly understood UML
diagrams, more so than in the case of traditional
programming language development.

In the course of the VIDE project at first we have
developed a textual version of the language,
incorporating OCL (Habela 2007, Habela 2008) for

179
FaÅĆda G., Filipowicz W., Habela P., Stencel K., Subieta K. and Kaczmarski K.
APPLYING QUERY BY EXAMPLE IN OCL FOR PLATFORM-INDEPENDENT PROGRAMMING.
DOI: 10.5220/0002791601790182
In Proceedings of the 6th International Conference on Web Information Systems and Technology (WEBIST 2010), page
ISBN: 978-989-674-025-2
Copyright c© 2010 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

its expression part. It became clear that the main
source of code complexity is mainly the expressions,
which motivated the search for useful visualisations
for them. The concept of an object-oriented version
of the Query By Example (QBE) approach was
chosen due to its intuitiveness and successful
adoption of its relational variant, as well as because
of the possibility of fitting it gracefully with UML
by reusing the instance diagram notation. The visual
expressions are intended to be used as ad-hoc
queries, and for embedding them into the imperative
constructs of the language.

The VIDE software has been implemented on
top of ODRA (Adamus 2008), an object-oriented
database management system for rapid application
development. In this project OCL has been
implemented on top of SBQL, an object query and
programming language based on the Stack-Based
Architecture (SBA). For this reason OCL
implemented in VIDE inherits some of the
advantages of SBQL, including strong static type
checking and powerful query optimization methods.

In this paper we describe a declarative, object-
oriented, QBE-based approach to visualizing OCL
expressions over a UML model instance, to be used
inside of textual or visual imperative statements.

2 VISUAL EXPRESSIONS IN
OBJECT QUERY BY EXAMPLE

To improve the approachability and expressiveness
of the language and at the same time to exploit the
concepts of the well-known UML syntax, we have
chosen to follow the QBE paradigm and adopt it to
the object-oriented data model of OCL. The
language design, called Object Query By Example
(OQBE) went beyond the UML/OCL metamodel,
providing instead some new, dedicated constructs
based on the notion of example of an object
(accompanied by link example and attribute
example). The actual OCL expression is produced
through the transformation of such an expression
model. For representing the examples, the UML
instance diagram syntax has been adopted.

The graph of an object, link or attribute example
makes it possible to declaratively specify an
expression that includes a graphical representation
for essential query operators: joins, selections and
projections. In this sense the intuitions from the
traditional QBE solutions are maintained. However,
as will be explained, OQBE introduces a number of
new important solutions specific to the object-

oriented data model and to OCL. These features
include:
• Support for both object identity and value

comparisons.
• Specifying expressions that return complex

results of nested structures (tuples in the OCL
terminology).

• A dedicated construct for representing the general
quantifier (->forAll iterator operation in OCL).

• Object retrieval from class extents or from
variables / attributes visible in the environment of
query evaluation.

To illustrate the OQBE constructs, we use a sample
model consisting of 7 classes. It represents a simple
auction site, including the notions of a User,
Auction, Bid, Purchase, Comment and Category.
The AuctionSite class with the «module» stereotype
represents the application’s global data store and
functionality. The ad-hoc queries shown in the
subsequent part of this section are to be evaluated in
that global environment.

Object examples connected with link examples
can represent respective data structure examples. If
more than one mutually unconnected part of the
example diagram exists, they are considered to
represent a Cartesian product of their results. An
attribute example may play different roles:
• Predicate – if the attribute itself or the result of

an operation applied to it (including various kinds
of comparisons) provides a Boolean value and no
specific flag is attached to the attribute example.

• Output Element – if an attribute example has the
output flag attached.

• Sorting Criterion – if the sort flag with
necessary properties (priority, order) is attached
(see the figure below for example of its usage).

Figure 1: OQBE expression involving selection,
navigation, sorting and projection (“get non-cancelled bids
for ‘VIDE Cookbook’ and order them according to date
and price”).

Figure 1 shows a simple OQBE expression that
involves two object examples connected with a link
example, including two predicates based on attribute
examples and using further two attribute examples to
determine the result sorting. The result of the
expression is constructed through the projection
from the whole example structure onto the element

WEBIST 2010 - 6th International Conference on Web Information Systems and Technologies

180

marked with the output flag. In this case the type of
the expression result will be OrderedSet<Bid>.

Before we present a detailed algorithm in the
next section, let’s describe the evaluation of an
expression declared in OQBE as a sequence of the
following steps (disregarding optimisations):
1. Constructing expressions that retrieve objects

represented by the entry points of the graph.
2. Performing joins according to the navigation

through link examples.
3. If more than one graph has been drawn,

constructing a Cartesian product of their results.
4. Performing selections according to the constraints

included in the examples.
5. Sorting the result.
6. Building the final result by performing a

projection into one or more fields indicated by
output flags.

Figure 2: OQBE expression with a tuple result consisting
of two named fields (“get dates and prices of bids placed
for ‘VIDE cookbook’ between the given dates”).

The output flag can be applied to an object
example as a whole (in that case it marks a whole
object to constitute an element of the result of the
expression) or to an attribute. More than one output
flag can be used in a single expression. In that case
however, the result is assumed to be of a Tuple type
and hence the particular flags need to be
accompanied with appropriate tuple field names, as
shown in Figure 2.

Figure 3: OQBE expression including an embedded OCL
code (“get names and winning bids for auctions active in
the period specified”).

Since using single names and operations on them
can be too limiting for some of the abovementioned
applications of an attribute example, the language
provides a second similar construct, where instead of
an attribute name, an arbitrary OCL code can be
embedded. Figure 3 shows this construct used for
operation invocation.

An embedded OCL code is evaluated in a way
analogous to the plain attribute example names. This
feature allows us to overcome some technical

limitations of the built prototype tool (as in the
above simple case, i.e., by providing a dedicated
support for parameter-less method calls), however it
can also be useful as a shortcut or when an
expression is too complex to be fully visualized (for
example, multiplication or adding several values
stored in attributes of the same or a different object
and returning them as the expression result).

Figure 4: OQBE expression involving the comparator
construct (“get users who used to bid for items sold by
users with a lower rating”).

Although the readability considerations limit the
usage of connections between attribute examples, a
simple construct called Comparator was introduced
in order to represent comparisons between attribute
or object examples. Its usage is shown in Figure 4.

Figure 5: OQBE expression with a nested structure result
(“get user names together with sets of names and end dates
of their auctions”).

One of the features that makes OQBE different
from traditional QBE solutions based on the
relational model, is the availability of nested
structures in the construction of expression results.
In the textual OCL this is realized by nesting
subexpressions inside an explicit Tuple constructor.
In OQBE a tuple is constructed implicitly by
providing names to the output flags. Hence, the only
element that was necessary to achieve nested result
structures was a visual region inside which a
respective part of the diagram (containing its own
output flags) could be nested. Note that the nested
output region requires providing the field name for
it. The result type of the expression depicted in
Figure 5 would be the following:

Set<Tuple{ userName : string,
offer = Set<Tuple {name : string,
endDate : Date }> }>

APPLYING QUERY BY EXAMPLE IN OCL FOR PLATFORM-INDEPENDENT PROGRAMMING

181

3 CONCLUSIONS

In this paper we have outlined the concept of the
object query by example solution which serves for
visualising OCL expressions in the VIDE UML-
based action language. Combining OCL with UML
Actions and Activities provides a standard-
compliant and powerful language for processing
object-oriented data structures. Contrary to UML as
a whole however, OCL is known by relatively few
professionals, and may pose a barrier for a broader
adoption of a UML based programming language.
Hence we have proposed a QBE-inspired visual
language that offers a yet higher level of abstraction
compared to OCL. It builds upon UML syntax
metaphors and fits the visual syntax proposed for the
imperative constructs of the language (actions and
activities). The solution includes a concrete syntax
inspired by UML instance diagrams, underlying
metamodel for object examples, the algorithm for
OCL code generation and optimisation by rewriting.
We have also developed a prototype implementation
within the Eclipse framework. The prototype is a
fully-fledged IDE which facilitates designing queries
and running them directly on the target platform. In
the current version we have chosen, designed and
implemented a set of features that is not exhaustive,
but on the other hand, avoids the complexity that
would undermine the intuitiveness of the syntax and
the general usability of the tool.

Several further features have been identified and
are considered for enhancing the next release of the
prototype.

The evaluation workshop conducted with
students during the VIDE project (VIDE 2008)
seems to confirm that the syntax is intuitive for
inexperienced users who have UML background.
We have also observed that OQBE allowed users to
construct the queries whose complexity in textual
OCL and SQL constituted a barrier.

We are currently approaching a more direct
integration of UML-based modelling with our
ODRA platform, with visual expression construction
with OQBE being a part of the environment. Note
that even in case the resulting query code does not
need to be reviewed by an application developer, its
simplicity and clarity is important for performance
reasons. Hence, a work on the optimisation of the
generated queries has been also initiated.

The underlying concept of visual querying is also
more generally applicable. We are going to take
advantage of this fact when designing a generic data
exploration tool (involving navigation, querying and
intermediate results storage (basket)) for a SQL

database which is going to be used for motion data
search. Further important details of our solution
including the semantics, implementation solutions,
intended usage and the design of the diagram-to-
OCL code generator, remaining out the scope of this
short paper, have been described in other works
available at (VIDE 2009).

REFERENCES

Adamus, R., Daczkowski, M., Habela, P., Kaczmarski, K.,
Kowalski, T., Lentner, M., Pieciukiewicz, T., Stencel,
K., Subieta, K., Trzaska, M., Wardziak, T., Wiślicki,
J., 2008. Overview of the Project ODRA. In
Proceedings of the First International Conference on
Object Databases, ICOODB 2008. pp.179-197.

Ambler, S., 2007. A Roadmap for Agile MDA. Ambysoft.
Falda, G., Habela, P., Kaczmarski, K., Stencel, K.,

Subieta, K., 2008. Executable Platform Independent
Models for Data Intensive Applications. In
Computational Science - ICCS 2008, 8th International
Conference, Kraków, Poland, June 23-25, 2008,
Proceedings, Part III. Springer, pp. 301-310.

Falda, G., Habela, P., Kaczmarski, K., Stencel, K.,
Subieta, K., 2007. Platform-independent programming
of data-intensive applications using UML. In 2nd IFIP
Central and East European Conference on Software
Engineering Techniques, CEE-SET 2007, Springer,
pp. 103-115.

Habela, P., Kaczmarski, K., Stencel, K., Subieta, K., 2007.
Implementing OCL as a Database Query Language. In
On the Move to Meaningful Internet Systems: OTM
2007 Proceedings, Part I. Springer, pp. 17-18

Habela, P., Kaczmarski, K., Stencel, K., Subieta, K., 2008.
OCL as the Query Language for UML Model
Execution. In Computational Science - ICCS 2008, 8th
International Conference, Kraków, Poland, June 23-
25, 2008, Proceedings, Part III. Springer, pp. 311-
320.

VIDE, 2008. VIDE Visualize all moDel drivEn
programming. Industrial Use Cases and Examples.
http://www.vide-ist.eu/reflib/usecases.html

VIDE, 2009. VIDE Visualize all moDel drivEn
programming. Project website http://www.vide-ist.eu

WEBIST 2010 - 6th International Conference on Web Information Systems and Technologies

182

