
ABSTRACT CONCEPTS TO CONCRETE IMPLEMENTATION
Visualizing the Evolution of Data Structures through Animation

Christopher Smith, Jeffrey Strauss and Peter Maher
Department of Mathematics and Computer Science, Webster University, St. Louis, MO 63119, U.S.A.

Keywords: Algorithms, Animation, Education, Visualization.

Abstract: Data Structures and Algorithms courses are known to be a particularly challenging hurdle to overcome for

computer science students. Specifically, many students struggle with being able to visualize detailed

transformations as data structures evolve under standard operations. Such an understanding is a critical

factor for success in later software engineering courses, and therefore represents a vital platform on which

many more advanced principles are built. This paper describes a data structure visualization tool designed to

graphically demonstrate the manipulation of well-known data structures via standard operations. The tool is

designed to enable instructors to enhance the effectiveness of their lectures, and for students wishing to

solidify their understanding of key concepts via a user-friendly, animated environment. We detail the

primary features of the software, discuss the key benefits, and describe potential future enhancements.

1 INTRODUCTION

One of the largest obstacles for many students in a

computer science program is that of fully

understanding the design and implementation of

common algorithms and data structures. Such

fundamental concepts are introduced at the

beginning of the program and provide a vital

foundation for memory management and common

programming principles taught in later software

engineering courses (Aho, Ullman and Hopcroft,

1983). Developing a sound understanding of how

such data structures evolve under standard

operations, as well as the internal mechanics of

common computer algorithms, is both challenging

and enormously important.

Traditionally, when a student is learning the

concepts of algorithms and data structures, he or she

traces lines of code and manually draws a diagram

of what is expected to happen. Although such a

process has enormous value, the lack of feedback

means that the student is unable to definitively

determine whether their understanding is accurate.

Moreover, when an instructor introduces these topics

in lectures, hand-drawn diagrams can quickly

become difficult to comprehend.

The Data Structure Visualizer (DSV) described

in this paper is designed to support the needs of both

students and instructors. Common data structures

such as dynamic arrays, linked lists, stacks, queues,

priority queues, hash tables, and binary trees, as well

as standard sorting algorithms are implemented and

can be clearly visualized via an animated display

window. Code for standard operations on each data

structure is provided. By stepping through each line

of code, users can observe the evolution of the data

structures being studied.

In the classroom, there are limits to what one can

draw for students on a whiteboard – it is a suitable

tool for displaying code, but performs very poorly as

a medium to illustrate the dynamic behavior of data

structures. Even using standard illustrations for

visual elements, such as nodes in a linked list,

attempting to show any kind of behavior using lines

and arrows or by erasing and redrawing can be

ineffective, or worse, confusing for students. This

tool provides a means to demonstrate the effects of

high-level, standard data structure manipulation

operations, as well as visually showing the effects of

each code statement. The ability to accurately

demonstrate these changes in a clear, repeatable

manner significantly enhances the clarity of

descriptions provided in lectures, as well as being

more engaging to students.

Conversely, from a students‟ perspective, having

the ability to repeatedly step through lines of code

and visually observe how each statement modifies a

data structure is highly educational. They are no

282

Smith C., Strauss J. and Maher P. (2010).
ABSTRACT CONCEPTS TO CONCRETE IMPLEMENTATION - Visualizing the Evolution of Data Structures through Animation.
In Proceedings of the 2nd International Conference on Computer Supported Education, pages 282-287
Copyright c© SciTePress

longer dependent on seeing such changes only

within the context of a lecture, but are able to

observe the effects of operations in their own time.

Used in conjunction with traditional textual

descriptions, this tool enables students to solidify

their understanding of the concepts in a unique and

highly effective manner.

The DSV has been designed to be highly

expandable and will be augmented with additional

algorithms and data structures in the future.

2 DEVELOPMENT PROCESS

We began the development process by examining

existing visualization tools (Chen and Sobh, 2001)

(Erkan, VanSlyke and Scaffidi, 2007). What we

found was surprising: there are many existing

visualization tools freely available on the Internet

already, but all of them are significantly lacking

either in their flexibility, content, detail or visual

attractiveness. Many were entirely hard-coded and

had no interactivity, while others offered users some

control over a limited set of operations. Even the

few that offered some flexibility often featured

visualizations that were primitive, confusing or

extremely oversimplified.

Existing animation tools, even when well-

developed have one critical flaw: they grossly

oversimplify the potential complexities of operations

in even basic data structures. While they are

effective as an uncomplicated, early and completely

logical look at a data structure, they lack the

sophistication to fully demonstrate the subtleties of

standard data structure transformations. These tools

are useful in offering students a logical

understanding of such structures, but cannot

transition them from that high-level, abstract concept

into their actual, physical implementations in code.

From the beginning of this project, we

understood that building a visualization application

solely based on features which we deemed useful

would likely produce something which was

insufficient for widespread use. By interviewing

both faculty and students, we were able to gain

perspective on the problems they were trying to

solve, and develop specific design requirements for

the application.

The major benefit of using direct interviews over

surveys or other information-gathering techniques

was that it gave us an opportunity to pursue new and

unanticipated ideas that developed during

conversations. In fact, these gave us some of the

most meaningful insights into building this type of

application. The one universal theme expressed by

faculty in every interview was the difficulty students

have in transitioning from the logical “draw it on

paper” understanding of a data structure to its

physical “write it in code” implementation.

It was from this theme that we determined that

ultimately what all existing tools lacked was

precision and detail. By delving deeply into the line-

by-line details of implementing data structures, yet

presenting them in an easy to follow and visually

engaging format, we could match up this logical

understanding with the actual code behind it.

Effectively, we saw that to realize the potential of

this application, we would need to provide a one-to-

one ratio between a line of code and an action on the

screen.

3 FEATURES AND

CAPABILITIES

The graphical interface for the DSV consists of five

major components:

a) Animation Window. In which graphical

representations of data structures evolve as a

result of operations being performed

b) Code Window. Displaying implementation code

for the operation being performed

c) Data Structure Manipulation Interface.

Enabling the desired data structure to be selected

and appropriate operations initiated

d) Control Interface. Providing control over how

the animation proceeds

e) Variable Display Window. Showing key

variables and their current values.

The overall interface is outlined in Figure 1 in

which a standard „bubble sort‟ algorithm is being

demonstrated.

Figure 1: Demonstration of the „bubble sort‟ algorithm.

ABSTRACT CONCEPTS TO CONCRETE IMPLEMENTATION - Visualizing the Evolution of Data Structures through
Animation

283

Each component, and its role within the

application, will be described in more detail via

several examples.

Users begin by choosing the desired data

structure via selecting a tab in the „data structure

manipulation interface‟ component. Within each tab,

buttons are provided to enable users to execute all

standard operations on the chosen data structure.

This portion of the interface is shown in Figure 2.

Figure 2: Data structure selection and manipulation.

Once a button is clicked, implementation code

for that operation appears in the „code window‟

component. For example, a user may select the

„Linked List‟ data structure, and choose to

investigate how values can be inserted at the end of

the list. The tool will show the code for the

„InsertEnd‟ function, as shown in Figure 3.

Figure 3: Code display.

Through the „control interface‟ component, users

are given the option of automatically executing the

statements of the function at a designated speed, or

manually stepping through each statement via a

button click, as shown in Figure 4.

In both cases, the DSV will animate the

evolution of the data structure based on each

statement. Figure 5 shows the state of the display

after several insertions.

Figure 4: Animation control.

Figure 5: Demonstration of the „InsertEnd‟ operation.

During this operation the key variables are „size‟,

representing the current size of the linked list, and

the „value‟ being inserted. The „variable display

window‟ component is used to show these variables,

as highlighted in Figure 6.

Figure 6: Variable display.

Figure 7: Demonstration of binary tree insertion.

This type of animation is particularly effective

for data structures such as „Binary Trees‟ due to

their recursive nature – a concept that is very

challenging for many students. Figure 7 shows the

CSEDU 2010 - 2nd International Conference on Computer Supported Education

284

state of the DSV following several insertions into a

binary tree.

In addition to standard manipulations, the three

common binary tree traversal algorithms are also

demonstrated. Users are able to step through the

code for each of these traversals and clearly observe

the order in which nodes of the tree are visited.

Figure 8 shows a standard „inOrder‟ traversal

algorithm being demonstrated.

Figure 8: Demonstration of binary tree traversal.

Another algorithm that typically challenges

undergraduate computer science students is „heap

sort‟. This algorithm is notoriously difficult to

conceptualize, and hence an animated representation

of the steps involved is invaluable. The DSV depicts

the values to be sorted in both an array, as well as

showing their logical view in the form of a binary

tree. Again, each line of code in the implementation

may be stepped through with the configuration of

each data structure being modified accordingly.

Figure 9 shows the DSV‟s display after several

iterations of the heap sort algorithm.

The sort visualization includes some additional

features. First, when activated it automatically

creates an array of a default or specified size filled

with random integers, rather than requiring the user

to build the structure before sorting it. Also, instant

methods to randomize the data, and sort it in

ascending or descending order are provided. These

methods allow students to explore the performance

of each sorting algorithm on data which is already

sorted, or sorted in reverse order.

Additionally, this software fully supports undo

and redo functions, which are generally not included

in other similar offerings. This is particularly

important for a teaching tool because it allows the

instructor or student to repeatedly witness the same

operation with the same data, or to experiment with

the structure freely and still be able to restore it to a

prior state when needed.

Figure 9: Demonstration of the heap sort algorithm.

Most structures offer two general kinds of

approaches to adding data: adding a specific value,

or adding a random value. The ability to add a

random value with a single button-press was deemed

important because it allows users to quickly grow a

structure without the potential tedium of manually

entering data. Additionally, some data structures

have constructors which can create the structure with

some random data already in it – binary trees can be

created with a specified number of random nodes

already added (and can be limited by maximum

allowable level), and priority queues can be filled to

approximately 75% full when constructed (as would

happen when adding an entire array to the priority

queue), allowing the simulator to demonstrate an

initial heapify function.

The structures featured are designed to be

flexible and clear. For example, the software

supports both linked and array-based stacks and

queues, but allows the user to interact with each

form of implementation through the same interface.

Furthermore, the code in each function is chosen for

clarity and readability, not necessarily because it is

the most efficient approach or involves the fewest

characters of code. Since this is a teaching tool, the

goal is to have code that represents commonly

taught methods and can be readily understood by

students.

Through the interface described in this section,

both students and instructors are easily able to

benefit from the tool. Students are permitted to

experiment with standard data structures and

algorithms being studied, repeatedly tracing their

evolution through numerous manipulations.

Moreover, instructors have an invaluable tool to

enhance their presentations.

ABSTRACT CONCEPTS TO CONCRETE IMPLEMENTATION - Visualizing the Evolution of Data Structures through
Animation

285

4 TOOL DESIGN AND

IMPLEMENTATION

C# .NET and WPF (Windows Presentation

Foundation) were selected early on in the design

process, partially due to some previous experience

with .NET development, but also because .NET and

WPF in particular offer several features that

significantly enhanced the software. WPF allows for

faster and more streamlined development of visual

elements of an application through the use of

XAML, and has much richer features for graphical

applications. The data binding capabilities of WPF

are extensively used in this application, which

greatly simplifies the logistics of moving collections

of visual objects around the screen by allowing them

to be bound together and automatically handled as a

single unit. Additionally, the flexibility and power of

anonymous methods and lambda expressions in

.NET allow for one of the most unique features of

this software – a variable-speed, interactive

execution of data structure functions which can be

run automatically or stepped through line by line.

This application uses a custom visual framework

designed specifically to represent and manipulate

data structures as visual objects. In all but a few

cases, the structures with which users interact are

composed of the visual objects themselves.

Individual data structures are built from a base data

structure class which handles basic manipulation of

these objects, can arrange them into independent

groups, display value-type variables in a structure,

use illustration objects to highlight pointers, loop

iterators or other peripheral elements, and saves and

restores structure states to allow undo and redo

operations. By using a smart canvas as a drawing

surface for these visual objects, they can be

automatically scaled and centered, allowing a

structure to grow arbitrarily large.

Each data structure function occurs in two

phases: first, a look-ahead phase pre-determines

everything that will occur in a particular execution

of a function based on user input, and in doing so

creates a list of anonymous delegates which act as

small, dynamically generated functions each

representing a single line of code. A controller then

steps through these functions one at a time, allowing

the user to demonstrate them slowly, speed through

them quickly or advance them by a mouse click.

Particular attention was paid to the smoothness and

uniformity of animations, to both capture student

attention and enhance the learning experience.

As originally intended, each line of sample code

displayed corresponds to some action on the screen.

Even small details, such as the lifetime of variables

within their scope, have been considered so as to

provide a completely accurate portrayal of how code

is behaving. The sample code is highlighted both by

„active line‟ and by „pass or fail‟ on conditionals,

illustrating movement inside and between loops and

clauses. Providing a mapping between individual

programming language statements and an animated

display enables the algorithm to come to life, and

greatly aids a student in transitioning from an

abstract concept to a concrete implementation.

5 CONCLUSIONS

The visualization software described in this paper

presents significant benefits for both instructors and

students. In addition to the clear animation features

of this tool, the ability to step through individual

lines of code and observe the effects on data

structures being considered is invaluable. The

expandable design of the tool provides enormous

future potential for additions of more advanced data

structures and algorithms.

This application is now entering testing in Data

Structures courses at Webster University. As part of

this phase, we intend to gather quantitative and

qualitative information from students regarding the

effectiveness of the tool, what features they find

most useful, which ones they find less useful or

could use improvement, and gather suggestions for

useful additions in future versions. The experiences

and opinions of this first group of students will be

extremely important for future development.

Based on some initial feedback, there are already

new features planned for the next release. First,

additional structures will be added (namely AVL

trees and doubly linked lists), as well as new sort

algorithms and variations on existing functions (for

example, different methods of chaining and handling

collisions in a hash table). Additionally, support for

variable levels of detail on structures is planned. For

example, a quick sort could be shown in full detail,

or in a simplified version which omits the actual

line-by-line partition code and displays only the

results of recursive partition, which could be useful

as an introduction to the algorithm.

Finally, some upgrades to the interface which are

planned include the addition of an overlay on top of

the drawing surface which will contain a “key”

illustrating the components of each visual element,

as well as support for variations in the appearance of

elements themselves. WPF's XAML-based styling

greatly simplifies altering the appearance of ele-

CSEDU 2010 - 2nd International Conference on Computer Supported Education

286

ments and supporting different skins.

We believe we have created a unique educational

tool with significant potential for in-classroom

instruction and individual student use. It

significantly exceeds the visualization capabilities of

similar offerings while simultaneously

demonstrating the explicit associations between the

logical view of a data structure and the code used to

create and manipulate it. Effectively, it allows

students to “see” code behave in a way that was

previously not possible. Additionally, the project

itself was an invaluable learning experience,

involving all phases of design and development on a

challenging topic that was both personally relevant

and extremely useful for the academic community. It

is our hope that this can become a widely used tool

which enhances the classroom experience for both

instructors and students.

REFERENCES

Aho, A., Ullman, J., Hopcroft, J., 1983. Data Structures

and Algorithms,Addison Wesley.

Chen, T., Sobh, T., 2001. A Tool for Data Structure

Visualization and User-defined Algorithm Animation,

fie, vol. 1, pp.TID-2-7vol.1, Frontiers in Education

Conference, 2001. 31st Annual, 2001.

Erkan, A., VanSlyke, T.J., Scaffidi, T., Data Structure

Visualization with LaTeX and Prefuse. ITICSE 2007,

Dundee, Scotland.

ABSTRACT CONCEPTS TO CONCRETE IMPLEMENTATION - Visualizing the Evolution of Data Structures through
Animation

287

