
DIFFICULTIES WITH COLLECTION CLASSES IN JAVA
The Case of the ArrayList Collection

Stelios Xinogalos
Department of Technology Management, University of Macedonia, Loggou-Tourpali,59200 Naousa, Greece

Keywords: Teaching Object-oriented Programming, Object Collections, ArrayList.

Abstract: This paper describes research on teaching Object-Oriented Programming (OOP) concepts to undergraduate

students. The research focuses on the difficulties of using collections for grouping objects, which is a very

common task in object-oriented applications. This research was motivated by the observation that ArrayList

collections are a source of various difficulties, combined with the fact that these difficulties have not been

investigated before in the literature. The data analyzed come from an undergraduate course on “Object-

Oriented Design and Programming”, which uses Java and the educational IDE BlueJ. The research carried

out used both a qualitative and a quantitative research method. In this paper we present an analysis of the

difficulties regarding ArrayLists that aims at providing a useful resource for those teaching OOP.

1 INTRODUCTION

Teaching and learning OOP concepts is

accompanied with many difficulties. Many

researchers identified this fact and extended research

has been carried out regarding various aspects of

teaching and learning OOP. This research focuses on

difficulties and misconceptions about the

fundamental concepts taught first in an OOP course:

 Declaring and calling (multiple) constructors

(Carter & Fowler, 1998) and understanding their

real essence (Fleury, 2000).

 Confusing instance variables (attributes) with

local variables (Truong, Roe & Bancroft, 2004)

and shadowing of instance variables by local

variables.

 Defining and calling void and non-void methods

(Hristova, 2003).

 Distinguishing between classes and objects

(Carter & Fowler, 1998; Holland, Griffiths &

Woodman, 1997).

 Distinguishing between objects and instance

variables, the identity and attributes of an object,

an object and a simple record (Holland, Griffiths

& Woodman, 1997), and in general

misconceptions regarding the fundamental notion

of object.

More advanced, but still fundamental for OOP,

concepts such as inheritance, abstract classes and

interfaces have not been examined so thoroughly,

while others, such as collections for grouping

objects have not been examined at all. Our belief

that it is about time to start studying students’

difficulties in concepts like that, led us in

undertaking research on Java collections for

grouping objects. One of the most popular Java

collections is the ArrayList collection. The

advantages of ArrayList collections are many

and researchers state that it should be introduced

first and emphasized over Arrays (Jacobson &

Thornton, 2004; Ventura, Egert & Decker, 2004).

This paper focuses on the difficulties of using

ArrayList collections for grouping objects, which is

a very common task, even in small scale programs

developed by undergraduate students. First, we

present the research design and method and then an

analysis of the results. Finally, we present the

conclusions and future plans for research.

2 RESEARCH DESIGN-METHOD

2.1 Research Rationale & Motivation

The research regarding ArrayLists presented in this

paper is part of a long-term assessment of an OOP

course that aims at teaching the fundamental

concepts of OO design and programming to

undergraduate students. The course uses Java, the

BlueJ environment (Kölling, Quig, Patterson &

120

Xinogalos S. (2010).
DIFFICULTIES WITH COLLECTION CLASSES IN JAVA - The Case of the ArrayList Collection.
In Proceedings of the 2nd International Conference on Computer Supported Education, pages 120-125
Copyright c© SciTePress

Rosenberg, 2003) and the accompanying book

(Barnes & Kölling, 2004), and is highly supported

by the use of computers. Specifically: (1) the course

comprises of a weekly 2-hour lecture and lab where

students use computers for developing programs; (2)

educational material is available through an

asynchronous course-management, tele-education

platform, called CoMPUs; (3) problems that require

the development of computer programs are assigned

and submitted on a weekly basis through CoMPUs;

(4) students are encouraged to utilize the

“conversation area” of CoMPUs for interaction with

each other and the instructor regarding difficulties

with the taught concepts and the assignments.

The first results of the course we taught showed

that students face many difficulties with ArrayLists.

Since we could not locate any research regarding

ArrayLists in the literature, our efforts focused on

recording students’ difficulties and, if possible,

forming categories that would help us and other

educators both in designing more effective didactic

situations and carrying out further research on

ArrayLists. The research carried out the first year

used, mainly, a qualitative research method, and data

was collected by observations, informal interviews,

keeping notes at labs, analyzing students programs,

and formal exams in the middle and at the end of the

semester. The analysis of the vast amount of data

from the 1st course showed that students faced many

difficulties with ArrayLists (Xinogalos, Satratzemi

& Dagdilelis, 2006). This fact motivated us in

carrying out further research on the topic.

2.2 Research Questions

Question 1: Which are the main difficulties

regarding the definition and manipulation of

ArrayList objects?

Question 2: What are the key concepts of OOP that

students must have mastered prior to teaching object

collections?

2.3 Research Design & Method

In the next sections we present the results of a

written exam, participating in the final grade of the

course, that took place in the middle of the semester

the 2nd year of teaching the course.

Students were given the skeleton of: (1) a

Candidate class, used for representing candidates

for the “Cambridge First Certificate” or “Certificate

of Proficiency”; and (2) an ExaminationBook

class, used for grouping the candidates of the two

certificates in two distinct ArrayList fields

(called FCE and PCE). The Candidate class had

three fields called name, title and money for

storing the name of the candidate, the title of the

certificate and the amount of money paid

respectively, as well as accessor and mutator

methods. In the ExaminationBook class students

were asked to implement various methods that

required manipulating ArrayLists.

3 ANALYSIS OF RESULTS

3.1 The Results

Next, we present the results of the study in a tabular

form. In all cases, the percentages presented in the

“Correct” and “Errors” columns are calculated based

on the number of students that actually answered the

corresponding question and not on the 64 students

that participated in the exam. We must mention that

students used Java 4.0 at that time, which means that

objects stored in an ArrayList were treated as

Object type and casting had to be used. In the

excerpts of code presented bold face is used for

marking error-prone code elements.

3.1.1 Defining Accessor Methods

Defining a get method is quite straightforward.

However, students face difficulties that are presented

below. In the case of get methods we present the

results both for “String/int” get methods (Table

1) and “ArrayList” methods (Table 2), since the

results are significantly different.

Table 1: “String” and “int” get methods.

Categories of students’ replies %

Correct 72

No answer 16

Errors with the Return type 19

 int (instead of String in 2 methods) 9

 void 6

 String (instead of int in 1 method) 2

 return type is missing 2

Errors with the Return statement

 wrong values are returned (usually the

parameter used in the constructor for the

corresponding field is returned)

6

 return statement is missing 2

 <field>.get(); 2

DIFFICULTIES WITH COLLECTION CLASSES IN JAVA - The Case of the ArrayList Collection

121

Table 2: “ArrayList” get methods.

Categories of students’ replies %

Correct 41

No answer 28

Errors with Return type 48

 String 28

 Int 11

 Void 4

 Candidate (the type of the objects stored in the

ArrayList)
2

 return type is missing 2

Errors with Return statement 13

 the size of the ArrayList is returned 9

Iterates the ArrayList and prints the objects retrieved 4

3.1.2 Adding Objects to an ArrayList

Students were asked to implement an

addCandidate method with a Candidate

object as a parameter that adds the object in the

appropriate ArrayList field according to the

value of the object’s title field. Next, we present

the definition of the addCandidate method and

the results from students’ answers (Table 3).
public void addCandidate(Candidate

 aCandidate)

{

String temp = aCandidate.getTitle();

if (temp.equals(

 "Cambridge First Certificate"))

 FCE.add(aCandidate);

else if (temp.equals(

 "Cambridge Proficiency Certificate"))

 PCE.add(aCandidate);

else

 System.out.println("There is no such

 certificate");

}

Table 3: Adding objects to an ArrayList.

Categories of students’ replies %

Correct 14

No answer 31

Errors in Return type 7

 return type is missing 2

 wrong type 4

Errors in Parameters 20

 wrong parameter type: String 16

 parameter is missing 2

 String FCE, String PCE 2

Errors in accessing private fields outside their class

 direct access of a private field outside its class

and without an instance
41

 accessing the instance aCandidate instead of its

title field
16

 direct access of a private field outside its class

(<object>.field)
5

Use of = = or = instead of equals 61

Adding objects to an ArrayList 23

 FCE += Candidate; 5

 FCE++; 5

3.1.3 Iterating and Printing an ArrayList

Students were also asked to implement a method for

iterating the FCE ArrayList field and printing

the name of all the candidates that have paid (the

money field has a value greater than 0), the number

of candidates that have paid and the amount of

money collected. A typical implementation of this

method is presented, as well as a review of students’

answers (Table 4).
public void showFCECandidates()

{

int num = 0;

int sum = 0;

Iterator it = FCE.iterator();

while (it.hasNext())

{

Candidate aCandidate = (Candidate)

 it.next();

 if (aCandidate.getMoney() > 0)

 {

System.out.println(

 aCandidate.getName());

num++;

sum += aCandidate.getMoney();

 }

}

System.out.println("Candidates Number:"

 + num);

System.out.println("Total: " + sum);

}

Table 4: Iterating and printing an ArrayList.

Categories of students’ replies %

Correct 8

No answer 41

Errors in Return type 13

 return type is missing 5

 wrong return type is used (String, int,

ArrayList)
8

Parameter is used (without reason) 18

Errors in accessing private fields outside their

class

 direct access of a private field outside its

class and without an instance
47

 direct access of a private field outside its

class (<object>.field)
3

Errors in retrieving objects from an ArrayList 45

 a while loop is used but objects are not

retrieved
13

 the name of the ArrayList field is used as

type of the variable and casting:

 FCE Fce = (FCE) it.next()

13

 the ArrayList is not iterated 8

 the retrieved object (it.next()) is not

assigned to a variable
5

3.1.4 Creating and Returning an ArrayList
as a Subset of an Existing One

A method that iterates an ArrayList object

passed through a parameter to it, creates and returns

a new ArrayList containing the candidates that

have not paid was the next task. A sample

implementation and students’ errors (Table 5) are

presented.
public ArrayList rejectedCandidates(

CSEDU 2010 - 2nd International Conference on Computer Supported Education

122

 ArrayList aList)

{

ArrayList newList = new ArrayList();

Iterator it = aList.iterator();

while (it.hasNext())

{

Candidate aCandidate = (Candidate)

 it.next();

if (aCandidate.getMoney() == 0)

 newList.add(aCandidate);

}

return newList;

}

Table 5: Defining the rejectedCandidates method.

Categories of students’ replies %

Correct 14

No answer 42

Errors in return type 35

 void 6

 return type is missing 4

 wrong return type is used (String,Candidate,

double)
10

Errors in declaring parameters 27

 wrong parameter type: Candidate 11

 wrong parameter type: int 4

 parameter is missing 2

Errors in the use of the ArrayList parameter 13

 the ArrayList parameter is instantiated in the

method
8

 all the methods are called for the parameter 5

Direct access of a private field outside its class

and without an instance
8

Errors in copying objects from one ArrayList to

another (adding objects)
19

 wrong argument 8

 the argument of the add method is the

ArrayList parameter
5

Errors in retrieving objects from an ArrayList 12

 a while loop is used but objects are not

retrieved
11

 the retrieved object (it.next()) is not

assigned to a variable
5

Errors in return statement

 the ArrayList parameter is returned instead

of the new ArrayList
5

 the ArrayList is iterated and its objects are

returned one by one
3

 return FCE.size(); return PCE.size(); 3

 return is used inside the body of while 3

3.2 Review of Difficulties

In this section we review students’ difficulties with

manipulating ArrayLists based on the results

recorded and presented in Tables 1 - 5. Students’

difficulties are grouped in 6 categories.

3.2.1 Return Type

The percentage of students that use a wrong return

type is much smaller in void methods (Table 3:

7%, Table 4: 13%) and methods that return a value

of some primitive type or a type considered by

students as primitive – such as String – (19%,

(Xinogalos, Satratzemi & Dagdilelis, 2007)) than the

percentage of students that uses a wrong return type

in methods that return an ArrayList object (Table

3: 48%, Table 5: 35%) or a value of some object

type in general. The most common errors referring

to return types are the following:

 When a non-void return type is used in a void

method, usually the type of the object or an

object’s field that is referenced in this method is

used (Table 4: 8%).

 The same percentage of students that uses a non-

void return type in a void method uses void as

the return-type in a non-void method. For

example, see the methods

showFCECandidates (Table 4: 8%) and

rejectedCandidates (Table 5: 10%).

 The return type is missing in a small number of

students’ programs (Tables 1-5: 2% - 5%).

3.2.2 Return Statement

In methods were an ArrayList object should be

returned, some students return the size of the

ArrayList instead (Table 2: 9%, Table 5: 3%).

Also, a small number of students iterate the

ArrayList that should be returned and prints

(Table 2: 4%) or returns (Table 5: 3%) its objects

one-by-one.

3.2.3 Parameters

Difficulties with declaring methods’ parameters are

quite often and some times related to errors with

return types, as mentioned above and in (Xinogalos,

Satratzemi & Dagdilelis, 2006). The most common

errors are the following:

 A parameter is used without needed. This error

was rare (4%) in simple get methods like those

of the Candidate class (Xinogalos, Satratzemi

& Dagdilelis, 2007), but it was much more often

in more complicated methods that manipulate

objects, such as showFCECandidates (Table

4: 18%). In this method most of the students that

declared a parameter (13% out of 18%) used an

int parameter called somewhat “money” that

seems to represent the field money that has to be

tested for every object in the ArrayList.

 A wrong parameter type is used. However, the

parameter type, in most cases, is not selected

randomly. In the addCandidate method that

“checks a String field of a Candidate

object in order to add it to the appropriate

ArrayList”, most of the students use a

String parameter (Table 3). In the

DIFFICULTIES WITH COLLECTION CLASSES IN JAVA - The Case of the ArrayList Collection

123

rejectedCandidates method where the

task is to “add some Candidate objects from

one ArrayList to another”, most of the

students use a Candidate parameter (Table 5).

3.2.4 Accessing a Private Field Outside its
Class

Manipulating ArrayLists involves retrieving the

objects stored in them and accessing their fields,

which should be declared private. Although this

is a common task half the students fail to access

private fields correctly outside their class. The

most common errors are:

 Direct access of a private field and without an

instance (Table 3: 41%, Table 4: 47%). This

behavior might be a generalization of the fact

that students spend most of the time defining

methods that access directly the fields that are

defined in the same class. Also, this might be a

result of students’ inability to understand that

more than one object of a given class might exist

the same time and it is not enough to mention

just the name of the field we want to access.
 Accessing an instance instead of its field (Table

3: 16%).

 Direct access of a private field outside its class

(Table 3: 5%, Table 4: 3%).

3.2.5 Retrieving Objects from an ArrayList

Iterating and retrieving the objects stored in an

ArrayList is a typical task in applications based

on such lists. Most textbooks provide templates, but

students do not apply them correctly due to a flawed

understanding of the ArrayList concept. Students

use an Iterator object and a while loop for

iterating an ArrayList, but the following errors

are made:

 A while loop is used but objects are not retrieved

(Table 4: 13%, Table 5: 11%).

 The name of the ArrayList field is used as

type of the variable and casting (Table 4: 13%).

 The ArrayList is not iterated (Table 4: 8%).

 The retrieved object is not assigned to a

variable (Table 4 & 5: 5%).

3.2.6 Adding Objects to an ArrayList

The ArrayList class provides an add method for

adding objects to it. However, students do not

always make use of this method or do not use it

correctly (Table 3: 23%, Table 5: 19%). For

example, 1 out of 10 of the students used a statement

like:
FCE += Candidate; or FCE++;

for adding a Candidate object to an ArrayList

called FCE. Also, several students (Table 5:19%)

use a wrong argument in the add method.

4 CONCLUSIONS

Manipulating ArrayLists is a skill that all students

leaning OOP must acquire. However, this does not

seem to be so easy. The difficulties that were

recorded in the first teaching of an OOP course

(Xinogalos, Satratzemi & Dagdilelis, 2006) resulted

in a re-designed course (Xinogalos, Satratzemi &

Dagdilelis, 2007) where two lessons were devoted to

ArrayLists and lab exercises specially designed to

face these difficulties were used. The re-designed

course gave definitely better results, according to

observation during lab sessions, informal interviews

and homework assignments. However, the results of

the middle term exams showed that students still

face many difficulties. The main difficulties

(Research question 1) are:

D1. Students use a wrong return type in methods

where an ArrayList object is returned (Tables 2

& 5). Usually, the type of one of the fields of the

objects stored in the ArrayList is used as return

type. In most cases this is a primitive type or a

type considered by students as primitive (such as

String).

D2. Students use wrong parameter types in methods

manipulating ArrayLists (Tables 3 & 5). In most

cases, the type of the parameter is related to the

type of the entity (i.e. type of the field, object)

being processed in the method.

D3. When iterating an ArrayList students access

private fields of the objects retrieved directly,

without referring to an instance, or without using

accessor methods (Tables 3, 4 & 5).

D4. The size of the ArrayList object or the objects

stored in it are returned one-by-one instead of the

ArrayList object (Table 5).

D5. Students face difficulties in applying correctly

the code pattern for iterating an ArrayList and

retrieving objects (Tables 4 & 5).

D6. The add method of the ArrayList is not used, or

is used incorrectly (Tables 3 & 5).

D7. Generally, students find it difficult to

manipulate a class with fields/attributes of

ArrayList type.

The results of the study make clear that many of

the recorded difficulties are not related to ArrayLists

CSEDU 2010 - 2nd International Conference on Computer Supported Education

124

in particular, but in key OOP concepts (Research

question 2) that students must have mastered prior to

their exposure to object collections. These key

concepts and the associated difficulties regarding

ArrayLists reviewed above, are presented in Table 6.

Table 6: Association between OOP key concepts and

ArrayList-related difficulties.

OOP key concept ArrayList

difficulty Object types and not just primitive types

can be used as local variables, parameters

and return types

D1, D2,

D4 Classes can have fields/attributes of some

object type (collaborative classes)
D7

Access modifiers D3

Accessor methods and especially their

actual usefulness for accessing private

fields outside their class

D3

Internal and external method calls D3

Concluding, further research should be carried

out regarding the effective teaching and learning of

ArrayLists, and generally object collections. This

research could focus on: (1) using the findings of our

research for devising and evaluating more effective

teachings; (2) exploiting the method of our research

for conducting similar studies in order to validate the

results; (3) examining in what degree BlueJ supports

the comprehension and use of ArrayLists, as well as

examining if other environments provide greater

support in this issue; (4) devising, if necessary, new

tools (educational software) for supporting students

in comprehending object collections.

REFERENCES

Barnes, D. & Kölling, M., 2004. Objects First with Java:

A practical introduction using BlueJ, Prentice Hall.

Carter, J. & Fowler, A., 1998. Object Oriented Students?,

SIGCSE Bulletin, Vol. 28, No. 3, 271.

Fleury, A. E., 2000. Programming in Java: student-

constructed rules, ACM SIGCSE Bulletin, Vol. 32,

Issue 1, 197-201.

Holland, S. Griffiths, R. & Woodman, M., 1997. Avoiding

object misconceptions, ACM SIGCSE Bulletin, Vol.

29, No. 1, 131-134.

Hristova, M., Misra, A., Rutter, M. & Mercuri, R., 2003.

Identifying and Correcting Java Programming Errors

for Introductory Computer Science Students, ACM

SIGCSE Bulletin, Vol. 35, Number 1, 153-156.

Jacobson, N. & Thornton, A., 2004. It is Time to

Emphasize ArrayLists over Arrays in Java-Based First

Programming Courses, ACM SIGCSE Bulletin, Vol.

36, Number 4, 88-92.

Kölling, M., Quig, B., Patterson, A., & Rosenberg, J.,

2003. The BlueJ system and its pedagogy, Computer

Science Education, 13(4), 249-268.

Truong, N., Roe, P. & Bancroft, P., 2004. Static Analysis

of Students Java Programs, 6th Australian Computing

Education Conference, 317-325.

Ventura, P., Egert, C. & Decker, A., 2004. Ancestor

Worship in CS1: On the Primacy of Arrays, OOPSLA

‘04, 68-72.

Xinogalos, S., Satratzemi, M. & Dagdilelis, V. (2006),

Studying Students’ Difficulties in an OOP Course

Based on BlueJ, 9th IASTED International Conference

on Computers and Advanced Technology in

Education, 82-87.

Xinogalos, S., Satratzemi, M. & Dagdilelis, V. (2007), Re-

designing an OOP course based on BlueJ, 7th IEEE

ICALT Conference, 660-664.

DIFFICULTIES WITH COLLECTION CLASSES IN JAVA - The Case of the ArrayList Collection

125

