AUTOMATIC TAG IDENTIFICATION
IN WEB SERVICE DESCRIPTIONS*

Jean-Rémy Falleri, Zeina Azmeh, Marianne Huchard and Chouki Tibermacine
LIRMM, CNRS and Montpellier Il University - 161, rue Ada 34392 Montpellier Cedex 5, France

Keywords:

Abstract:

Tags, Web services, Text mining, Machine learning.

With the increasing interest toward service-oriented architectures, the number of existing Web services is

dramatically growing. Therefore, finding a particular service among this ever increasing number of services
is becoming a time-consuming task. User tags or keywords have proven to be a useful technique to smooth
browsing experience in large document collections. Some service search engines, like Seekda, already propose
this kind of facility. Service tagging, which is a fairly tedious and error prone task, is done manually by the
providers and the users of the services. In this paper we propose an approach that automatically extracts tags
from Web service descriptions. It identifies a set of relevant tags extracted from a service description and
leaves only to the users the task of assigning tags not present in this description. The proposed approach is
validated on a corpus of 146 services extracted from Seekda.

1 INTRODUCTION

Service-oriented architectures (SOA) are achieved by
connecting loosely coupled units of functionality. The
most common implementation of SOA uses Web Ser-
vices. One of the main tasks is to find the relevant
Web services to use. With the increasing interest to-
ward SOA, the number of existing Web services is
dramatically growing. Finding a particular service
among this huge amount of services is becoming a
time-consuming task.

Web services are usually described with a standard
XML-based language called WSDL. A WSDL file in-
cludes a documentation part that can be filled with a
text indicating to the user what the service does. The
potential users of the service spend time to understand
its functionality and to decide whether or not to use it.
A selected service may become unavailable after a pe-
riod of time, and therefore, a mechanism that may fa-
cilitate the discovery of similar services becomes in-
dispensible. Tagging is a mechanism that has been
introduced in search engines and digital libraries to
fulfill exactly this objective.

Tagging is the process of describing a resource by
assigning some relevant keywords (tags) to it. The

*France Télécom R&D has partially supported this work
(contract CPRE 5326).

40

Falleri J., Azmeh Z., Huchard M. and Tibermacine C.

AUTOMATIC TAG IDENTIFICATION IN WEB SERVICE DESCRIPTIONS.
DOI: 10.5220/0002804800400047

tagging process is usually done manually by the users
of the resource to be tagged. Tags are useful when
browsing large collections of documents. Indeed, un-
like in traditional hierarchical categories, documents
can be assigned an unlimited number of tags. It allows
cross-browsing between the documents. Seekda?, one
of the main service search engines, already allows its
users to tag its indexed services. Tags are also useful
to have a quick understanding of a particular service
and service classification or clustering.

In this paper, we present an approach that auto-
matically extracts a set of relevant tags from a WSDL.
We use a corpus of user-tagged services to learn how
to extract relevant tags from untagged service descrip-
tions. Our approach relies on text mining techniques
in order to extract candidate tags out of a descrip-
tion, and machine learning techniques to select rele-
vant tags among these candidates. We have validated
this approach on a corpus of 146 user-tagged Web ser-
vices extracted from Seekda. Results show that this
approach is significantly more efficient than the tradi-
tional (but fairly efficient) #fidf weight.

The remaining of the paper is organized as fol-
lows. Section 2 introduces the context of our work.
Then, Section 3 details our tag extraction process.
Section 4 presents a validation of this process and dis-

Zhttp://www.seekda.com

In Proceedings of the 6th International Conference on Web Information Systems and Technology (WEBIST 2010), page

ISBN: 978-989-674-025-2

Copyright (© 2010 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

AUTOMATIC TAG IDENTIFICATION IN WEB SERVICE DESCRIPTIONS

cusses the obtained results. Before concluding and
presenting the future work, we describe the related
work in Section 5.

2 CONTEXT OF THE WORK

Our work focuses on extracting tags from service de-
scriptions. In the literature, we found a similar prob-
lem: keyphrase extraction, which aims at extracting
important and relevant short phrases from a plain-text
document. It is mostly used on journal articles or on
scientific papers in order to smooth browsing and in-
dexing of those documents in digital libraries. Before
starting our work, we analyzed one assessed approach
that performs keyphrase extraction: Kea (Frank et al.,
1999) (Section 2.1). We concluded that a straightfor-
ward application of this approach is not possible on
service descriptions instead of plain-text documents
(Section 2.2).

2.1 Description of Kea

Kea (Frank et al., 1999) is a keyphrase extractor for
plain-text documents. It uses a Bayesian classification
approach. Kea has been validated on several corpora
(Jones and Paynter, 2001; Jones and Paynter, 2002)
and has proven to be an efficient approach. It takes
a plain-text document as input. From this text, it ex-
tracts a list of candidate keyphrases. These candidates

k
are the |J k-grams of the text. For instance, let us con-
i=1
sider the following sample document: “I am a sam-
ple document”. The candidate keyphrases extracted if
k =2 are: (I,am,a,sample,document,I am,am a,a sam-
ple,sample document). To choose the most adapted
value of k for the particular task of extracting tags
from WSDL files, we made some measurements and
found that 86% of the tags are of length 1. It clearly
shows that one word tags are assigned in the vast ma-
jority of the cases. Therefore we will fix k = 1 in our
approach (meaning that we are going to find one word
length tags). Nevertheless, our approach, like Kea, is
easily generalizable to extract tags of length k.

Kea then computes two features on every candi-
date keyphrase. First, distance is computed, which is
the number of words that precede the first observa-
tion of the candidate divided by the total number of
words of the document. For instance, for the sam-
ple document, distance(am a) = é Second, tfidf,
a standard weight in the information retrieval field,
is computed. It measures how much a given candi-
date keyphrase of a document is specific to this doc-
ument. More formally, for a candidate ¢ in a doc-

ument d, tfidf(c,d) = tf(c,d) x idf(c). The met-
ric tf(c,d) (term frequency) corresponds to the fre-
quency of the term c¢ in d. It is computed with the

following formula: 7f(c,d) = W The

metric id f(c) (inverse document frequency) measures
the general importance of the term in a corpus D.

idf(c) = log(rz2km).

Kea uses a naive Bayes classifier to classify the
different candidate keyphrases using the two previ-
ously described features. The authors showed that this
type of classifier is optimal (Domingos and Pazzani,
1997) for this kind of classification problem. The two
classes in which the candidate keyphrases are classi-
fied are: keyphrase and not keyphrase. Several evalua-
tions on real world data report that Kea achieves good
results (Jones and Paynter, 2001; Jones and Paynter,
2002). In the next section, we describe how WSDL
files are structured and highlight why the Kea ap-
proach is not directly applicable on them.

2.2 WSDL Service Descriptions

We extract tags from the following WSDL elements:
services, ports, port types, bindings, types and mes-
sages. Each element has an identifier, which can op-
tionally come with a plain-text documentation. Figure
3 (left) shows the general outline of a WSDL file.

One simple idea to extract tags from services
would be to use Kea on their plain-text documenta-
tions. Unfortunately, an analysis of our service cor-
pus shows that about 38% of the services are not doc-
umented at all. Another important source of informa-
tion to discover tags are the identifiers contained in
the WSDL. For instance weather would surely be an
interesting tag for a service named WeatherService.
Unfortunately, identifiers are not easy to work with.
Firstly because identifiers are usually a concatenation
of different words. Secondly because they are associ-
ated with different kinds of elements (services, ports,
types, ...) that have not the same importance in a ser-
vice description. Therefore, extracting candidate tags
from WSDL files is not straightforward. Several pre-
processing and text-mining techniques are required.
Moreover, the previously described features (#fidf and
distance) are not easy to adapt on words from WSDL
files. First because WSDL deals with two categories
of words (the documentation and the identifiers) that
are not necessary related. Second because the dis-
tance feature is meaningless on the identifiers, which
are defined in an arbitrary order.

41

WEBIST 2010 - 6th International Conference on Web Information Systems and Technologies

WSDL + Tags Already classified
Corpus words

word 1 + features + class Trained
—> |word 2 + features + class| —> clasls'f'er
word n + features + class m
Figure 1: The training phase.

\New WSDL Unclassified Tags
file candidate words

word 1 + features Trained tag 1
—> |word 2 + features |+ classifier —> | tag 2
word n + features tag k

Figure 2: The tag extraction phase.

3 TAG EXTRACTION PROCESS

Similarly to Kea, we model the tag extraction problem
as the following classification problem: classifying a
word into one of the two tag and no tag classes. Our
overall process is divided into two phases: a training
phase and a rag extraction phase.

Figure 1 summarizes the behavior of the training
phase. In this phase we have a corpus of WSDL files
and associated tags, extracted from Seekda, (Section
3.1). From this training corpus, we first extract a list
of candidate words by using text-mining techniques,
(Sections 3.2 and 3.3). Then several features (met-
rics) are computed on every candidate. A feature is
a common term in the machine learning field. As an
example, it may be the frequency of the words in their
WSDL file. Finally, since manual tags are assigned to
those WSDL files, we use them to classify the can-
didate words coming from our WSDL files. Using
this set of candidate words, computed features and as-
signed classes, we train a classifier.

Figure 2 describes the tag extraction phase. First,
like in the training phase, a list of candidate words is
extracted from an untagged WSDL file and the same
features are computed. The only difference with the
training phase is that we do not know in advance
which of those candidates are true tags. Therefore we
use the previously trained classifier to automatically
perform this classification. Finally the tags extracted
from the WSDL file are the words that have been clas-
sified in the tag class.

3.1 Creation of the Training Corpus

As explained above, our approach requires a train-
ing corpus, denoted by 7. Since we want to extract
tags from WSDL files, T has to be a set of couples
(wsdl,tags), with wsdl a WSDL file, and tags a set of
corresponding manually assigned tags. We created a
corpus using Seekda. Indeed, Seekda allows its users
to manually assign tags to its indexed services. We
created a program that parses the Seedka result pages

4

wsbL _Identifier set
Typesi Service;MyService

Documentation Port:Portl
Messages Binding;MyBinding
Documentation Type;Typel
Type;Type2

Port Types
Documentation Message;Msgl
Operations Message;Msg2
Documentation
Bindings Global
Documentation documentation
Services \Union of the plain
Documentation text
Ports documentations of

Documentation the WSDL file.

Figure 3: WSDL pre-processing.

to extract WSDL files together with their user tags.
To ensure that the services of our corpus were sig-
nificantly tagged, we only retain the WSDL files that
have at least five tags. Using this program, we ex-
tracted 150 WSDL files. Then, we removed from 7
the WSDL files that triggered parsing errors. Finally,
we have a training corpus containing 146 WSDL files
together with their associated tags.

To clean the tags of the training corpus, we per-
formed three operations. We removed the non al-
pha numeric characters from the tags (we found sev-
eral tags like _onsale or :finance). We also removed
a meaningless and highly frequent tag (the _unkown
tag). Finally, we divided the tags with length n > 1
into n tags of length 1, in order to have only tags
of length 1 (the reason has been explained in section
2.1). The length of a tag is defined as the number of
words composing this tag.

Finally, we have a corpus of 146 WSDL files and
1393 tags (average of 9.54 tags per WSDL file). An
analysis of 7 shows that about 35% of the user tags
are already contained in the WSDL files.

3.2 Pre-processing of the WSDL Files

As we have seen before, a WSDL file contains sev-
eral element definitions optionally containing a plain-
text documentation. The left side of figure 3 shows
such a data structure. In order to simplify the WSDL
XML representation in a format more suitable to ap-
ply text mining techniques, we decided to extract two
documents from a WSDL description. First, a set
of couples (type,ident) representing the different el-
ements defined in the WSDL. We have type € (Ser-
vice,Port, PortType,Message, Type, Binding) the type of
the element and ident the identifier of the element.
We call this set of couples the identifier set. Sec-
ond, a plain text containing the union of the plain-text
documentations found in the WSDL file, called the
global documentation. This pre-processing operation
is summarized in the figure 3.

AUTOMATIC TAG IDENTIFICATION IN WEB SERVICE DESCRIPTIONS

Service;MyWeatherService
Port;WeatherPortSOAP

1. Identifier |Binding;WeatherBinding
type filtering |Message;WeatherMessage

Type;ZipCode
Type;Location
Service;MyWeatherService]

Port;WeatherPortSOAP
Type:ZipCode
Type;Location

Service;([My,PP],[Weather,NN],

3. POS | [service,NN])

tagging|port; ([Weather,NN1,[Port,NN],
[SOAP.ANI) 4. Stopwords

Type; ((Zip,NN],[Code, NN]) removal

Type; ([Location,NN])

Service;([My,PP],[Weather,NNJ)
Port;([Weather,NN]) 5. POS

'Type;([Zip,NN],[Code,NN]) jltering

2. Tokenization

Type;([Location,NN])

Service;([Weather,NN])
Port;([Weather,NN])

Type; ([Zip,NN],[Code,NNJ)|
Type;([Location,NN])

)

[Service;(My,Weather,Service
Port;(Weather,Port, SOAP)
[Type:(Zip,Code)
(Type:(Location)

Figure 4: Processing of the identifiers.

3.3 Selection of the Candidate Tags

As seen in the previous section, we have now two
different sources of information for a given WSDL.:
an identifier set and a global documentation. Un-
fortunately, those data are not yet usable to compute
meaningful metrics. Firstly because the identifiers are
names of the form MyWeatherService, and therefore
are very unlikely to be tags. Secondly because these
data contain a lot of obvious useless tags (like the you
pronoun). Therefore, we will now apply several text-
mining techniques on the identifier set and the global
documentation.

Figure 4 shows how we process the identifier set.
Here is the complete description of all the performed
steps:

1. Identifier Type Filtering: during this step,
the couples (type,ident) where type € (Port-
Type,Message,Binding) are discarded. We applied
this filtering because very often, the identifiers
of the elements in those categories are duplicated
from the identifiers in the other categories.

2. Tokenization: during this step, each cou-
ple (type,ident) is replaced by a couple
(type,tokens). tokens is the set of words
appearing in ident. For instance, (Ser-
vice,MyWeatherService) would be replaced
by (Service,[My, Weather,Service]). To split ident
into several tokens, we created a tokenizer that
uses common clues in software engineering to
split the words. Those clues are for instance a case
change, or the presence of a non alpha-numeric
character.

3. POS Tagging: during this step each couple
(type,tokens) previously computed is replaced
by a couple (type, ptokens). ptokens is a set
of couples (token;,pos;) derived from tokens
where token; is a token from rokens and pos;
the part-of-speech corresponding to this token.
We used the tool tree tagger (Schmid, 1994)
to compute those part-of-speeches. Example:
(Service,[My, Weather,Service]) is replaced by
(Service,[(My,PP),(Weather,NN),(Service,NN)]).
NN means noun and PP means pronoun.

Union of the documentations
of our weather
service.

1. HTML tags
removal

Union of the documentations
2. POS of our weather service.

tagging _ ([Union,NN] [of,IN] [the,DT]
[documentations,NNS]
[of,IN] [our,PP$] [weather,NN]
3. POS [service,NN] [.,SENT]
filtering [Union,NN]

[documentations,NNS]
[weather,NN] [service,NN]

Figure 5: Processing of the global documentation.

4. Stopwords Removal: during this step, we
process each couple (type, prokens) and re-
move from prokens the elements (token;, pos;)
where token; is a stopword for type. A stop-
word is a word too frequent to be mean-
ingful. We manually established a stopword
list for each identifier type. Example: (Ser-
vice,[(My,PP),(Weather, NN),(Service,NN)]) is re-
placed by (Service,[(My,PP)(Weather,NN)]) be-
cause Service is a stopword for service identifiers.

5. POS Filtering: during this step, we process
each couple (type,ptokens) and remove from
ptokens the elements (roken;, pos;) where pos; ¢
(Noun,Adjective,Verb,Symbol). Example: (Ser-
vice,[(My,PP),(Weather,NN)) is replaced by (Ser-
vice,[(Weather, NN)]) because pronouns are fil-
tered.

Figure 5 shows how we process the global docu-
mentation. Here is the complete description of all the
performed steps:

1. HTML Tags Removal: the HTML tags (words
begining by < and ending by >) are removed from
the global documentation.

2. POS Tagging: similar to the POS tagging step
applied to the identifier set.

3. POS Filtering: similar to the POS filtering step
applied to the identifier set.

The union of the remaining words in the identifier
set and in the global documentation are our candidate
tags. When defining those processing operations, we
took great care that no correct candidate tags (i.e. a
candidate tag that is a real tag) of the training corpus
have been discarded. The next section describes how
we adapted the Kea features to these candidate tags.

3.4 Computation of the Features

We have now different well separated words. There-
fore we can now compute the tfidf feature. But

43

WEBIST 2010 - 6th International Conference on Web Information Systems and Technologies

Table 1: Excerpt of the ARFF file enriched with the words.

S
[L [«)
S S |3 51 s |5
Word S S g | 2 |2
Weather [0,0.01] 0.01,0.04 X NN X
Location 10.03,0.1] 0.04,0.15 X JJ
Code 10.03,0.1] 0.01,0.04 X 44

words appearing in documentation or in the identi-
fier names are not the same. We decided (mostly be-
cause it turns out to perform better) to separate the
tfid f value into a t fid figeny and a t fid f,. wWhich are
respectively the ¢ fid f value of a word over the iden-
tifier set and over the global documentation. Like in
Kea, we used the method in (Fayyad and Irani, 1993)
to discretize those two real-valued features.

The distance feature still has no meaning over the
identifier set, because the elements of a WSDL de-
scription are given in an arbitrary order. Therefore
we decided to adapt it by defining five different fea-
tures: in_service, in_port, in_type, in_operation and
in_documentation. Those features take their values
in the (true, false) set. A true value indicates that the
word has been seen in an element identifier of the cor-
responding type. For instance in_service(weather)-
= true means that the word weather has been seen
in a service identifier. in_documentation(weather) =
true means that the word weather has been seen in the
global documentation.

In addition of these features, we compute another
feature called pos, not used in Kea, which signifi-
cantly improves the results. pos is simply the part-
of-speech that has been assigned to the word dur-
ing the POS tagging step. If several parts-of-speech
have been assigned to the same word, we choose
the one that has been assigned in the majority of the
cases. The different values of pos are: NN (noun),
NNS (plural noun), NP (proper noun), NPS (plu-
ral proper noun), JJ (adjective), JJS (plural adjec-
tive), VV (verb), VVG (gerundive verb), VVD (preterit
verb), SYM (symbol).

3.5 Training and using the Classifier

We applied the previously described technique to all
the WSDL files of 7. In addition to the previously de-
scribed features, we compute the is_tag feature over
the candidates. This feature takes its values in the
(true, false) set. is_tag(word) = true means that
word has been assigned as a tag by Seekda users for
its service description. We have serialized all those
results in an ARFF file compatible with the Weka tool
(Witten and Frank, 1999). Weka is a machine learn-
ing tool that defines a standard format for describing
a training corpus and provides the implementation of

44

many classifiers. One can use Weka in order to train
a classifier or compare the performances of different
classifiers regarding a given classification problem.
Table 1 shows an excerpt of the ARFF file we pro-
duce, enriched with the words for the sake of clarity.

With this ARFF file, we used Weka to train a
naive Bayes classifier, shown as optimal for our kind
of classification task (Domingos and Pazzani, 1997).
This trained classifier can now be used in the tag ex-
traction phase. As previously said, the beginning of
this phase is the same as the one of the training phase.
It means that the WSDL file goes through the pre-
viously described operations (pre-processing, candi-
dates selection and features computation). Only this
time, the value of the is_tag feature is not available.
This value will be automatically computed by the pre-
viously trained classifier.

4 VALIDATION OF THE
PROPOSED WORK

This section provides a validation of our technique on
real world data from Seekda to assess the precision
and recall of our trained classifier.

Methodology. We conducted two different experi-
ments. In the first one, the trained classifier is applied
on the training corpus 7 and its output is compared
with the tags given by Seekda users (obtained as de-
scribed in Section 3.1). After having conducted the
first experiment, a manual assessment of the tags pro-
duced by our approach revealed that many tags not
assigned by the user seemed highly relevant. This
phenomenon has also been observed in several human
evaluations of Kea (Jones and Paynter, 2001; Jones
and Paynter, 2002), that inspired our approach. It oc-
curs because tags assigned by the users are not the
absolute truth. Indeed, it is very likely that users have
forgotten many relevant tags, even if they were in the
service description. To show that the real efficiency
of our approach is better than the one computed in
the first experiment, we perform a second experiment,
where we manually augmented the user tags of our
corpus with additional tags we found relevant and ac-
curate by analyzing the WSDL descriptions of the ser-
vices.

Metrics. In the evaluation, we used precision and
recall. First, for each web service s € 7, where
T is our training corpus, we consider: A the set
of tags produced by the trained classifier, M the set
of the tags given by Seekda users and W the set of

AUTOMATIC TAG IDENTIFICATION IN WEB SERVICE DESCRIPTIONS

words appearing in the WSDL. Let I = ANM be
the set of tags assigned by our classifier and Seekda
users. Let E = M NW be the set of tags assigned
by Seekda users present in the WSDL file. Then we

define precision(s) = % and recall(s) = %, which

are aggregated in precision(T) = %‘f"""m and
recall(T) = %ﬁalm) The recall is therefore com-

puted over the tags assigned by Seekda users that are
present in the descriptions of concerned services.

Evaluation. Figure 6 (left) gives results for the first
experiment where the output of the classifier is com-
pared with the tags of Seekda users, while in Figure
6 (right), enriched tags of Seekda users are used in
the comparison (curated corpus). In this figure, our
approach is called ate (Automatic Tag Extraction). To
clearly show the concrete benefits of our approach, we
decided to include in these experiments a straightfor-
ward (but fairly efficient) technique. This technique,
called #fidf in Figure 6, consists in selecting, after
the application of our text-mining techniques, the five
candidate tags with the highest #fidf weight.

In Figure 6 (left), the precision of ate is 0.48.
It is a significant improvement compared to the #fidf
method that achieves only a precision of 0.28. More-
over, there is no significant difference between the re-
call achieved by the two methods. To show that the
precision and recall achieved by ate are not biased by
the fact that we used the training corpus as a testing
corpus, we performed a 10 folds cross-validation. In
a 10 folds cross-validation, our training corpus is di-
vided in 10 parts. One is used to train a classifier,
and the 9 other parts are used to test this classifier.
This operation is done for every part, and then, the
average recall and precision are computed. The re-
sults achieved by our approach using cross-validation
(precision = 0.44 and recall = 0.42) are very similar
to those obtained in the first experiment.

In Figure 6 (right), we see that the precision
achieved by ate in the second experiment is much bet-
ter. It reaches 0.8, while the precision achieved by the
tfidf method increases to 0.41. The recall achieved
by the two methods remains similar. The precision
achieved by our method in this experiment is good.
Only 20% of the tags discovered by ate are not cor-
rect. Moreover, the efficiency of ate is significantly
higher than #fidf.

Threats to Validity. Our experiments use real
world services, obtained from the Seekda service
search engine. Our training corpus contains services
extracted randomly with the constraint that they con-
tain at least 5 user tags. We assumed that Seekda users

Raw Seekda corpus Curated Seekda corpus

as 062

0.0
0.0

T ae i ale tidt T ate i ate thdr

Precision Recall Precision Recall

Figure 6: Results on the original and manually curated
Seekda corpus.

assign correct tags. Indeed, our method admits some
noise but would not work if the majority of the user
tags were poorly assigned. In the second experiment,
we manually added tags we found relevant by exam-
ining the complete description and documentation of
the concerned services. Unfortunately, since we are
not “real” users of those services, some of the tags we
added might not be relevant.

S RELATED WORK

In this section, we will present the related work ac-
cording to two fields of research: keyphrase extrac-
tion and web service discovery.

According to (Turney, 2003), there are two gen-
eral approaches that are able to supply keyphrases for
a document: keyphrase extraction and keyphrase as-
signment. Both approaches are using supervised ma-
chine learning approaches, with training examples be-
ing documents with manually supplied keyphrases.

In the keyphrase assignment approach, a list of
predefined keyphrases is treated as a list of classes in
which the different documents are classified. Text cat-
egorization techniques are used to learn models for as-
signing a class (keyphrase) to a document. Two main
approaches of this category are (Dumais et al., 1998;
Leung and Kan, 1997).

In the keyphrase extraction approach, a list of
candidate keyphrases are extracted from a document
and classified into the classes keyphrase and not
keyphrase. There are two main approaches that fall
in this category: one using a genetic algorithm (Tur-
ney, 2000) and one using a naive Bayes classifier (Kea
(Frank et al., 1999)).

Web service discovery is a wide research area
with many underlying issues and challenges. A

45

WEBIST 2010 - 6th International Conference on Web Information Systems and Technologies

quick overview of some of the works can be acquired
from (Brockmans et al., 2008; Lausen and Steinmetz,
2008).Here, we describe a selection of works, classi-
fied using their adapted techniques.

Many approaches adapt techniques from machine
learning field, in order to discover and group similar
services. In (Crasso et al., 2008a; HeBand Kushm-
erick, 2003), service classifiers are defined depend-
ing on sets of previously categorized services. Then
the resulting classifiers are used to deduce the rele-
vant categories for new given services. In case there
were no predefined categories, unsupervised cluster-
ing is used. In (Ma et al., 2008), CPLSA approach is
defined that reduces a service set then clusters it into
semantically related groups.

In (Lu and Yu, 2007), a web service broker is de-
signed relying on approximate signature matching us-
ing XML schema matching. It can recommend ser-
vices to programmers in order to compose them. In
(Giinay and Yolum, 2007), a service request and a
service are represented as two finite state machines
then they are compared using various heuristics to
find structural similarities between them. In (Dong
et al., 2004), the Woogle web service search engine
is presented, which takes the needed operation as in-
put and searches for all the services that include an
operation similar to the requested one. In (Bouillet
et al., 2008), tags coming from folksonomies are used
to discover and compose services.

The vector space model is used for service re-
trieval in several existing works as in (Platzer and
Dustdar, 2005; Wang and Stroulia, 2003; Crasso
et al., 2008b). Terms are extracted from every WSDL
file and the vectors are built for each service. A
query vector is also built, and similarity is calculated
between the service vectors and the query vector.
This model is sometimes enhanced by using Word-
Net, structure matching algorithms to ameliorate the
similarity scores as in (Wang and Stroulia, 2003), or
by partitioning the space into subspaces to reduce the
searching space as in (Crasso et al., 2008b).

A collection of works (Aversano et al., 2006; Peng
et al,, 2005; Azmeh et al., 2008), adapt the for-
mal concept analysis method to retrieve web services
more efficiently. Contexts obtained from service de-
scriptions are used to classify the services as a concept
lattice. This lattice helps in understanding the differ-
ent relationships between the services, and in discov-
ering service substitutes.

46

6 CONCLUSIONS AND FUTURE
WORK

With the emergence of SOA, it becomes important for
developers using this paradigm to retrieve Web ser-
vices matching their requirements in an efficient way.
By using Web service search engines, these develop-
ers can either search by keywords or navigate by tags.
In the second case, it is necessary that the tags char-
acterize accurately this service. Our work contributes
in this direction and introduces a novel approach that
extracts tags from Web service descriptions. This
approach combines and adapts text mining as well
as machine learning techniques. It has been exper-
imented on a corpus of user-tagged real world Web
services. The obtained results demonstrated the effi-
ciency of our automatic tag extraction process. The
proposed work is useful for many purposes. First,
the automatically extracted tags can assist the users
who are tagging a given service, or to “bootstrap” tags
on untagged services. They are also useful to have
a quick understanding of a service without reading
the whole description. They can also be used to help
in building domain ontologies like in (Sabou et al.,
2005) (Guo et al., 2007), also in tasks such as service
clustering (for instance by measuring the similarity of
the tags of two given services), or classification (for
instance by defining association rules between tags
and categories).

With our approach, only tags appearing in the
WSDL files are to be found. This way, we miss some
interesting tags (such as associated words, synonyms
or more general words). Nevertheless, the identified
tags represent a good support to find other relevant
tags by using ontological resources (like WordNet), or
machine learning techniques. This is one of the per-
spectives of our work. We also plan to work on the
extraction of tags composed of more than one word.
Indeed, one-word tags are sometimes insufficient to
describe concepts like exchange rate or Web 2.0.

REFERENCES

Aversano, L., Bruno, M., Canfora, G., Penta, M. D., and
Distante, D. (2006). Using concept lattices to sup-
port service selection. Int. Journal of Web Services
Research, 3(4):32-51.

Azmeh, Z., Huchard, M., Tibermacine, C., Urtado, C., and
Vauttier, S. (2008). WSPAB: A tool for automatic
classification & selection of web services using formal
concept analysis. In Proc. of (ECOWS 2008), pages
31-40, Dublin, Ireland. IEEE Computer Society.

Bouillet, E., Feblowitz, M., Feng, H., Liu, Z., Ranganathan,
A., and Riabov, A. (2008). A folksonomy-based

AUTOMATIC TAG IDENTIFICATION IN WEB SERVICE DESCRIPTIONS

model of web services for discovery and automatic
composition. In [EEE Int. Conference on Services
Computing (SCC), pages 389-396.

Brockmans, S., Erdmann, M., and Schoch, W. (2008).
Service-finder deliverable d4.1. research report about
current state of the art of matchmaking algorithms.
Technical report, Ontoprise, Germany.

Crasso, M., Zunino, A., and Campo, M. (2008a). Awsc: An
approach to web service classification based on ma-
chine learning techniques. Revista Iberoamericana de
Inteligencia Artificial, 12, No 37:25-36.

Crasso, M., Zunino, A., and Campo, M. (2008b). Query by
example for web services. In SAC ’08: Proc. of the
2008 ACM symposium on Applied computing, pages
2376-2380.

Domingos, P. and Pazzani, M. J. (1997). On the optimality
of the simple bayesian classifier under zero-one loss.
Machine Learning, 29(2-3):103-130.

Dong, X., Halevy, A., Madhavan, J., Nemes, E., and Zhang,
J. (2004). Similarity search for web services. In VLDB
'04: Proc. of the 30th int. conference on Very large
data bases, pages 372-383.

Dumais, S. T., Platt, J. C., Hecherman, D., and Sahami, M.
(1998). Inductive learning algorithms and representa-
tions for text categorization. In CIKM, pages 148-155.
ACM.

Fayyad, U. M. and Irani, K. B. (1993). Multi-interval dis-
cretization of continuous-valued attributes for classifi-
cation learning. In IJCAI, pages 1022-1029.

Frank, E., Paynter, G. W., Witten, I. H., Gutwin, C,
and Nevill-Manning, C. G. (1999). Domain-specific
keyphrase extraction. In IJCAI, pages 668—673.

Giinay, A. and Yolum, P. (2007). Structural and semantic
similarity metrics for web service matchmaking. In
EC-Web, pages 129-138.

Guo, H., Ivan, A.-A., Akkiraju, R., and Goodwin, R. Learn-
ing ontologies to improve the quality of automatic web
service matching. In WWW2007, pages 1241-1242.
ACM.

HeB, A. and Kushmerick, N. (2003). Learning to attach
semantic metadata to web services. In Int. Semantic
Web Conference, pages 258-273.

Jones, S. and Paynter, G. W. (2001). Human evaluation
of kea, an automatic keyphrasing system. In JCDL,
pages 148-156. ACM.

Jones, S. and Paynter, G. W. (2002). Automatic extraction
of document keyphrases for use in digital libraries:
Evaluation and applications. JASIST, 53(8):653-677.

Lausen, H. and Steinmetz, N. (2008). Survey of current
means to discover web services. Technical report, Se-
mantic Technology Institute (STI).

Leung, C.-H. and Kan, W.-K. (1997). A statistical learn-
ing approach to automatic indexing of controlled in-
dex terms. JASIS, 48(1):55-66.

Lu, J. and Yu, Y. (2007). Web service search: Who, when,
what, and how. In WISE Workshops, pages 284-295.

Ma, J., Zhang, Y., and He, J. (2008). Efficiently finding
web services using a clustering semantic approach. In
CSSSIA "08: Proc. of the 2008 Int. workshop on Con-
text enabled source and service selection, integration
and adaptation, pages 1-8.

Peng, D., Huang, S., Wang, X., and Zhou, A. (2005). Man-
agement and retrieval of web services based on for-
mal concept analysis. In Proc. of the The Fifth Int.
Conference on Computer and Information Technology
(CIT’05), pages 269-275.

Platzer, C. and Dustdar, S. (2005). A vector space search en-
gine for web services. In Third IEEE European Con-
ference on Web Services, 2005. ECOWS 2005., pages
62-71.

Sabou, M., Wroe, C., Goble, C. A., and Mishne, G. Learn-
ing domain ontologies for web service descriptions:
an experiment in bioinformatics. In WWW2005, pages
190-198. ACM.

Schmid, H. (1994). Probabilistic part-of-speech tagging
using decision trees. In Proc. of NeMLaP’94, vol-
ume 12. Pages 44-49.

Turney, P. D. (2000). Learning algorithms for keyphrase
extraction. Inf. Retr., 2(4):303-336.

Turney, P. D. (2003). Coherent keyphrase extraction via
web mining. In IJCAI, pages 434-442.

Wang, Y. and Stroulia, E. (2003). Semantic structure
matching for assessing web service similarity. In /st
Int. Conference on Service Oriented Computing (IC-
SOCO03, pages 194-207. Springer-Verlag.

Witten, 1. H. and Frank, E. (1999). Data Mining: Practi-
cal Machine Learning Tools and Techniques with Java
Implementations.

47

