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Abstract: Distributed semantic stores can employ self-organization principles to improve their scalability. We present
an implementation that uses ant colony optimization for clustering similar semantic information facilitating
scalable retrieval. For the clustering mechanisms we use similarity measures that do not rely on access to
a complete ontology. We describe a syntactical and a fingerprint-based similarity measure and discuss them
regarding to expressiveness and computational effort. The results of an evaluation show that, with increasing
volume of data and number of processes, the fingerprint-based measure performs much better than the syn-
tactical one. We conclude with a discussion how to combine the advantages of the two measures and propose
some technical enhancements improving the efficiency of the system.

1 INTRODUCTION

In adherence to the Semantic Web’s distributed na-
ture, RDF knowledge bases are, in general, scattered
across multiple server machines on the Internet. How-
ever, there are still no coherent solutions for efficient
distributed storage and retrieval for these vastly grow-
ing amount of data. Admittedly, there are a num-
ber of very powerful RDF triple stores handling mil-
lions or even billions of triples, e.g. Virtuoso Server1,
BigOWLIM2 and Allegro Graph3. These are de-
signed, though, to operate on a central server ma-
chine or a computer grid comprising a limited number
of hosts still depending on centralized components.
Therefore, these concepts cannot scale for the mil-
lions of web servers as they exist on the Internet today.
To cope with such huge server networks, our approach
is to use self organization mechanisms like they are,
for example, found in ant colonies to decentralize the
storage access, preventing bottlenecks and as a result
provide a scalable highly distributed store for seman-
tic information. In this paper we present a distributed
RDF store where triple storage and retrieval is per-
formed by simple virtual ants which cluster similar
triples in a server network. The resulting system gets

1http://virtuoso.openlinksw.com/
2http://www.ontotext.com/owlim/big/
3http://www.franz.com/agraph/allegrograph/

along without any central control, triple writing and
retrieval can be executed from each node in the net-
work enabling load-balanced requests.

The rest of this paper is organized as follows. In
Section 2 we give a short introduction in RDF and
SwarmLinda, present two other approaches of dis-
tributing RDF stores. We introduce in section 3 the
underlaying algorithms for writing an retrieving data,
while in section 4 we present the similarity measures
used by the algorithms of section 3. Section 5 gives a
brief overview about the implementation. Finally sec-
tions 6 and 7 show and discuss the test results of this
paper and gives an outlook over future work.

2 RELATED WORK

SwarmLinda (Menezes and Tolksdorf, 2003) is a
Linda-System (Gelernter, 1985) that uses swarm al-
gorithms to store and retrieve data from a server net-
work. Data is stored as tuples that contain several
typed fields and retrieval is performed on the base
of templates that match these tuples. For example
to retrieve a tuple <"zebrafish",55> from the store a
template <String, int> could be used as well as <"ze-
brafish",int> or <String,55>. In analogy to ants in
nature that perform foraging and brood sorting tasks
(Bonabeau et al., 1999), tuples in SwarmLinda that
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match the same template are clustered and trails are
left in the system to make these clusters traceable.

In (Tolksdorf and Augustin, 2009) and (Koske,
2009) the ant colony algorithms of SwarmLinda were
adopted to realize a distributed storage for RDF triples
in which similar triples are clustered. RDF (Resource
Description Language)4 is a language to represent in-
formation about resources on the Web in a machine
readable way. An RDF triple is used to describe a
resource that is identified by a URI. An RDF triple
always has the form (S,P,O), where S is the subject
and P and O the predicate and object of the triple. For
example, with the triple( http://birds.org/description/
onto.rdf#sparrow, http://animals.org/livesOn, http://
plants.org/grains) we can state that sparrows live on
grains.

To overcome the scalability issues for storing mil-
lions of triples, P2P-algorithms where adopted to fit
the needs of RDF-storage. While Edutella (Nejdl
et al., 2001) bases on a Gnutella like approach, RDF-
Peers (Cai and Frank, 2004) uses a distributed hash
table (DHT) to compute the storage locations of RDF-
triples. Edutella offers a simple and cost effective way
to create the P2P-network for an arbitrary large num-
ber of peers, query processing suffers from a large
number of peers since queries are processed by flood-
ing the network creating a large overhead of traf-
fic. On the other side the DHT approach of RDF-
Peers guaranties the routing of queries in O(logn)
messages, but DHTs are costly to maintain. In our
approch we try to combine the benefits of both ap-
proaches without their drawbacks. The network is
created as simple as possible like Edutella and the
routing with pheromones makes it possible to answer
a query as fast as RDFPeers by using the optimal path
to the location of the triple. Since the dimension d
of power law graphs is usually limited to O(logn),
a query can be processed with only O(logn) mes-
sages. In this work we present an implementation of
a triple storage using optimised versions of the algo-
rithms from (Tolksdorf and Augustin, 2009) and pro-
vide an evaluation of this system in respect of scal-
ability comparing the syntactical similarity measure
from (Tolksdorf and Augustin, 2009) and a fingerprint
based similarity measure.

3 ALGORITHMS

To store and retrieve RDF triples from the system the
write and read procedures are used which are per-
formed by w- and r-ants. Ants communicate indi-

4http://www.w3.org/RDF/

rectly by depositing information on the nodes. These
so-called pheromones evaporate over time, making
the system adaptive to changes in network topology
and stored content. All ants behave autonomously
and probabilistically and use only local information
to compute their decisions. Each node holds a routing
table, maintained by the passing ants and which they
use for returning to the node of request.

3.1 Triple Writing

In the system, three copies for each inserted triple ex-
its, which each is clustered in regard to the triple’s
subject, predicate and object. As a result each node
holds three types of clusters, a subject, predicate and
object cluster which contain the triples that were clus-
tered regarding their subjects, predicates and objects,
respectively. Thus for a triple to be stored three w-ants
are generated which roam the network to find a suit-
able cluster for one of the triple’s resources respec-
tively. In the following we will refer to this resource
as cluster resource. The behavior of a single w-ant
is as follows. The w-ant starts living at the node of
the request and carries one triple copy and a resource
pointer r ∈ {S,P,O} which indicates the triple’s clus-
ter resource. In order to decide if the triple should be
dropped on the current node the ant measures the sim-
ilarity of its cluster resource r to the cluster resources
r1 . . .rn in the appropriate resource cluster. The nor-
malized sum of the resulting similarity values

Sim =
1
n

n

∑
i=1

sim(r,ri) (1)

is used for computing the drop probability.

Pdrop =

(
Sim

Sim+ cdrop

)2

(2)

In equation 2 Sim is an exchangeable similarity mea-
sure to determine the similarity between two re-
sources and cdrop a constant value which modifies the
likelihood of dropping the triple on the current node.

Based on Pdrop the w-ant decides whether to drop
its triple on the current location. If it does it stores
it in the appropriate cluster and walks back to its ori-
gin to report the success of the writing procedure. On
its way back it lays its cluster resource as pheromone
on each edge it takes. While the ant does not decide
to drop the triple it roams the network selecting paths
which are marked with pheromones of its cluster re-
source. The probability to change from the current
node i to a node j in its neighborhood NH(i) is given
by the following equation.

Pi j =
Ph j(cr)

∑n∈NH(i) Phn(cr)
(3)
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In equation 3 Phk(cr) is the amount of pheromones
matching the cluster resource cr on node k. The w-
ants age with each node change preventing them from
wandering around in the network endlessly. When a
w-ant reaches a certain age it drops its triple on the
current location whether it fits there or not and returns
back to its origin, spreading the pheromone Phk(cr)
corresponding to its cluster resource cr along the path
traveled.

3.2 Triple Retrieval

Triple retrieval is performed by r-ants which return
all found triples matching a given pattern. For ex-
ample, to retrieve the triple (S,P,O) from the sys-
tem we can invoke read<(S,?P,?O)>. The pattern
matches all triples that have S as subject. For each
operation, one r-ant is generated which looks for a
triple that matches the pattern. For example, if the
pattern is (S,?P,?O) the ant follows S-pheromones
Ph(S) to locate the appropriate cluster using equation
3 for the path selection. r-ants which find a matching
triple or a set of matching triples return to the node
of the request and like the w-ants leave pheromones
on their way back. The r-ants also age with each hop
in the network, meaning that if they are not success-
ful in finding a matching triple after having visited a
certain number of nodes, they return to the node of
the request without result, not leaving a pheromone
trail. Because of the pure probabilistic behavior of
the whole system, an empty result does not imply the
absence of matching triples, leaving the client the de-
cision to rerun the reading process. Following oper-
ations for the same query use w-ants with increased
maximum age, realizing a deeper search.

4 MEASURES

The algorithms above work with exchangeable sim-
ilarity measures that lead to different kinds of clus-
ters. In the following we will present two different
measures. The syntactical similarity measure leads
to clusters of triples that resemble in their contained
URIs but has more computing complexity. The vec-
tor similarity measure does abstract entirely from the
actual similarity of the resources minimizing the com-
putational costs of the ants.

4.1 Clustering based on URI Similarity

The first similarity measure that we used to cluster
similar triples was taken from (Tolksdorf and Au-
gustin, 2009) and compares the namespace of two

URIs. The similarity of two hierarchical URIs is mea-
sured by comparing the host and path component sep-
arately. The host and path themselves are splitted
into their hierarchical components which are com-
pared pairwise by applying the Levenshtein-distance
edit. The comparison of the segmented paths m =
m1/m2/. . ./mk and n = n1/n2 . . ./nl of two URIs is
given as follows.

simpath(m,n) =
min(k,l)

∑
i=1

ciedit(mi,ni) (4)

with

ci =
2max(k,l)−i

2max(k,l)−1

as a weighting function and edit as the normal-
ized Levenshtein-distance of two strings. As a re-
sult of the weighting function, a path segment a
level higher in the hierarchy is weighted double. To
compare the URIs http://birds.org/description/onto.
rdf#sparrow and http://birds.org/description/onto.rdf#
duck, first the hosts would be compared which are
equal in this case and then the paths would be com-
pared. The paths would be splitted into three parts,
the first one into description, onto.rdf and sparrow
and the other one into description, onto.rdf and duck.
The similarity between the two paths is then ≈ 0.86.
The similarity of two hosts is computed comparing
their domain-labels pairwise, starting with the hier-
archical highest label which is weighted highest. The
weighted sum of the host- and path comparison values
results in the overall similarity of the regarded URIs
u1 and u2.

simURI(u1,u2) = c1 · simhost(u1,u2)

+c2 · simpath(u1,u2)

To achieve that the paths only differentiate the URIs
if the hosts are equal (or very similar) c1 is set to 0.9
and c2 to 0.1, so that the host is weighted ninefold.
So the overall similarity for the URIs above would
be 0.9 · 1 + 0.1 · 0.86 = 0.986. An overview of the
comparison is shown in figure 1.

In order to compute Sim, an ant has to compare r
with all cluster resources on the current node. Since
computing the Levenshtein-distance is rather costly,
this measure suffers from a growing amount of data.
In the following section, an approach for dealing with
a larger number of triples will be presented.

4.2 Clustering based on Fingerprints

For the second similarity measure we take an arbitrary
hash function which maps the URI strings to 32-bit
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Figure 1: Example for the comparison of two URIs with
the URI similarity measure.

numbers and consider them as vectors as defined in
equation 5.

−→
h (v) = (h0(v), · · · ,hi(v), · · · ,h31(v))

with hi(v) =
{

1, if h(v)/2i ≥ 1
0, else

(5)

As similarity measure simvec between two URI strings
v and w we take the scalar product of their so called
hash vectors which are normalized by the Euclidean
Norm ‖‖.

simvec(v, w) = 〈
−→
h (v)

‖−→h (v)‖
,

−→
h (w)

‖−→h (w)‖
〉

=
∑31

i=0 hi(v) ·hi(w)√
∑31

i=0 hi(v)2 ·
√

∑31
i=0 hi(w)2

(6)

The simvec value is in the range of 0 and 1. It is 1
if the hash values of the two URI strings are equal
and 0 if the resulting hash vectors are orthogonal as
the scalar product of two orthogonal vectors is al-
ways 0. For example, to compare two URIs u1=http:
//birds.org/description/onto.rdf#duck and u2=http://
birds.org/description/onto.rdf#sparrow, these would
first be mapped to 32-bit numbers by an arbitrary
hash function h. For simplification, in this ex-
ample we assume that the function maps to 4-bit
numbers. Given that h(http://birds.org/description/
onto.rdf#duck) = 5 = (0,1,0,1) and h(http://birds.org/
description/onto.rdf#sparrow) = 11 = (1,0,1,1) the
fingerprint-based similarity simvec between the two
URIs would be ≈ 0.4. Figure 2 shows the calculation
steps for this example.

For any scalar product holds:
n

∑
i=1
〈x,yi〉= 〈x,

n

∑
i=1

yi〉 (7)

Therefore for the vector similarity simvec the follow-

Figure 2: Example for the comparison of two URIs with
the fingerprint similarity measure.

ing holds.

31

∑
i=0

simvec(v,wi) = simvec(v,
31

∑
i=0

wi) (8)

This helps to reduce the computational effort of the
w. For each r-cluster on a node with r ∈ {s, p,o}
we keep the sum of the hash vectors to all clus-
ter resources li . . . ln in that cluster up to date: Tr =
∑n

i=1 h(li). An ant which wants to compute the simi-
larity sum Sim for a r-cluster gets along with one com-
parison: simvec(cr,Tr) instead of computing the sim-
ilarity to all cluster resources li . . . ln in that cluster:
∑n

i=1 simvec(cr, li). As Tr is only updated when there
are triples removed or added to the cluster, the effort
to keep T up to date is relatively low compared to the
computational costs that are omitted with each step
that the writing ants make in the network. There-
fore the computational time can be kept in O(1) in
opposite to the O(n) time for the URI measure.

On the other hand, unlike the URI-based similar-
ity measure, the vector-based similarity measure does
not take any semantic similarity of the URIs into ac-
count. Depending on the given hash function, two
URIs which are semantically similar can have com-
pletely different hash values or completely different
URIs can have the same hash value.

5 IMPLEMENTATION

The RDFSwarms system is implemented in Java. It
consists of an arbitrary large number of identical
nodes following the P2P-paradigm.

Nodes and clients communicate over TCP/IP
streams through an byte based protocol, where each
operation is encoded as a single message. If a mes-
sage is received by a node, a thread is started to per-
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form the operation (e.g. reading from a store, updat-
ing the pheromone table etc.), migrating the thread
from node to node until it fulfills its task. Ants are re-
alized as single operations moving from node to node.
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Figure 3: Architecture of the RDFSwarms System.

A node consists of several subsystems shown in
figure 3. The external socket to which other nodes
and clients can connect to is represented in the fig-
ure as outgoing arrows. Over these connections the
ManagementAPI and the API communicates with the
neighborhood and the clients.

Decoded messages are passed by the API to the
Core Engine, which handles the management of the
performing threads. Every outgoing operation is ini-
tialized by the Core Engine and is passed to the cor-
responding APIs which handle the communication.

Ant-based operations are forwarded to the mod-
ular similarity system, supporting the measures pre-
sented in section 4. It further provides an interface
making the measures completely exchangeable for
further research.

Furthermore the system contains a Sesame 25

based component for storing triples and pheromones.
The storage system for triples is further divided into
three sub-stores (see section 3). Each store is respon-
sible for reading and writing triples according to its
cluster type. For pheromones only one store exists,
which is used by all ant-operations regardless of their
type of cluster resource.

6 EVALUATION

For the evaluation we used four networks with respec-
tively 10, 20, 30 or 40 virtual nodes which each had
the topology of power law graphs. The test runs were
executed on 10 identical machines, each equipped
with 512 MByte RAM, a 2.4 GHz Intel P4 using De-
bian Lenny as operating system.

5http://www.openrdf.org/

We made sure, that no connected nodes run on
the same machine, otherwise the results would be
falsified as the influence of the communication be-
tween the two nodes running on the same machine
would not accounted into the evaluation results. As
test data, several testing sets with respectively 1.000,
10.000, 100.000, 1.000.000 RDF triples randomly se-
lected from the WordNet ontology6, were used. After
writing the data into the network, 10000 queries for
the corresponding datasets were performed. The same
test runs were carried out using the URI similarity as
well as the fingerprint based similarity-measure. The
averaged results per performed operation of the four
test runs are shown in figures 4, 5 and 6.

Figure 4: Average writing time using fingerprints.

Figures 4 and 5 show the time needed for writ-
ing n triples into a network of N nodes. The URI-
similarity measure was only evaluated with datasets
smaller than 10000 triples. As more nodes are added
to the network, the stores are stronger partitioned,
holding a smaller set of triples which can be compared
faster with r when using the URI-similarity. The
fingerprint similarity does not profit on more nodes,
since Sim can always be computed the same time. The
extra nodes visited in a larger network imply added
costs, but the path length is still limited to the dimen-
sion d of the network, which is O(log(N)), because
of the power law structure of the network.

Figure 5: Average writing time using URI.

The scalability behavior over the amount of triples

6http://www.w3.org/2006/03/wn/wn20/
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differs between the two measures. Optimizations per-
formed on the fingerprint measure realized a constant
cost for comparing a cluster resource with its corre-
sponding cluster. It even benefits from large amount
of data, since the probability of finding a matching
cluster rises with large amounts of data stored on each
node. For the URI-clustering a similar optimization
was not found so far. Performance tests show, that the
fingerprint based system performed about 500 times
faster then the URI system, storing about 2000 triples
per second making it competitive to a local instance
of a Sesame store in writing performance.

Figure 6: Average reading time per Triple.

Figure 6 shows the averaged test results for read.
In opposite to write, read performs slower, as more
triples are stored in the network, which can be justi-
fied with the scalability problems of the Sesame stor-
age system (100 triples: 0.184 ms/triple, 10000 triples
3.434 ms/triple).

7 CONCLUSIONS AND FUTURE
WORK

We have presented an approach to build scalable dis-
tributed RDF stores. At the core are basic clustering
algorithms which are derived from ant colony opti-
mization and configured by distinct similarity mea-
sures. In this paper we have presented two simple
measures that can be determined by strictly local cal-
culations.

We have further noticed the influence of the stor-
age layer on the read performance. While being
scalable on writing, the read performance drops, if
enough data is stored. With a more scalable sys-
tem, the network can process read queries for larger
datasets in a shorter time. A new storage layer, which
supports the measures natively would increase the
whole performance, since current opererations suffer
from a wrapping mechanism for Sesame.

As previously pointed out, our URI and fingerprint
similarity measures bear a trade-off of performance

against expressiveness, and vice versa, respectively.
In the future we aim for a hybrid measure, that com-
bines both clustering measures introduced here, en-
abling efficient RDF triple clustering with regard to
URI similarities.

On another note, we are currently investigating
concepts that allow for reasoning in such a RDF store
by defining algorithms for reasoning ants. These then
have to be integrated in our implementation and an
optimization cycle of the engineered RDFSwarms im-
plementation will be started. Furthermore, the RDF-
Swarms system will be applied as a storage infrastruc-
ture for an upcoming project dealing with semantic
geoinformation.
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