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Abstract: This paper presents a robust method for localization and map building in dynamic environment. The 
proposed localization and map building provide general approaches to use them both in indoor and outdoor 
environments. The proposed localization is based on the relative global position starting from initial 
departure position. In order to provide reliable positioning information, Visual Odometry (VO) is used 
instead of ego robot’s encoder. Unlike general VO based localization, the proposed VO does not use 
iterative refinement in order to select inliers. The suggested VO uses ego motion model based on the motion 
control. The rotation and translation values of tracked features are guided by the estimated rotation and 
translation values obtained by motion control. Namely the estimated motion provides upper and lower limits 
of motion variation of VO. This estimated boundary of motion variation helps to reject outliers among 
tracked features.  The rejected outliers represent tracked features of fast/slow moving objects against ego 
robot movement.  The map is built along with ego robot path. In order to get rich 3D points in each frame 
accumulated dense map based temporal filter method is adapted. 

1 INTRODUCTION 

The stable and accurate position estimation is a key 
issue of the robot/vehicle navigation. The related 
researchers have proposed absolute/relative global 
position estimation. They have used GPS and INS 
(Inertial Navigation System) to estimate 
robot/vehicle position. Recently vision based new 
approaches have been introduced for localization. 
They have been called Visual Odometry (VO). The 
VO provides stable position and rotation estimation 
comparing with Encoder raw data. 

Nister(2004) gives one of the first solutions for 
Visual Odometry. He presents implementation 
results using single camera and stereo camera in 
order to estimate vehicle pose. He uses a feature 
tracking method and the 5 point algorithm with 
RANSAC to select the motion model in both single 
camera and stereo camera. The result of Visual 
Odometry is compared to result of INS/DGPS. 

Howard(2008) presents a different approach to 
Visual Odometry. Features tracked only in two 
consecutive frames are triangulated to obtain 3D 

points that are used in Visual Odometry. For 
computing the rotation and translation parameters, a 
back projection equation connecting the 3D tracked 
points from the previous frame with the 
corresponding 2D image points from the current 
frame is optimized.  The algorithm is verified 
outdoor on many different robot platforms. 

Agrawal(2007) presents Visual Odometry in 
rough terrain environment. They track features in 
multiple frames rather than just in two consecutive 
frames. A two step camera motion computation 
process is used on a bundle of frames considering 
each camera pose a different camera observing the 
same points in space. Re-projecting the same 3D 
points on each camera in turn tests for convergence. 
Visual Odometry pose is corrected by considering 
the gravity normal from IMU (Inertial Measurement 
Unit) and the yaw from GPS to maintain global pose 
consistency. 

Konolige(2006) presents outdoor mapping and 
navigation based on stereo vision. They use Visual 
Odometry integrated with IMU/GPS for robustness 
in difficult lighting or motion situation and for 
overall global consistency. The ground surface 
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model is determined with RANSAC and used in 
obstacle detection. They use an offline learning 
method for finding the paths and the extended road 
surface. 

The related works are mainly focused on VO 
based localization. Their methods have problems 
with inliers selection in dynamic environment and 
with visual information loss in fast changing 
situations. 

In this paper, for localization, an ego-motion 
model based special data filter method is proposed 
for selecting as inliers only the static features from 
the dynamic environment and for overcoming visual 
information loss in fast changing situations. 

The 3D images are registered along with position 
estimated by VO and ego-motion model in order to 
build 3D map. The 3D map also consists of 3D road 
surface. Especially road surface extraction is a tough 
task for vision.  

There are two major problems for the road 
surface extraction.   
1) The road surface extraction is strongly influenced 
by non-uniform illumination, variant road surface 
textures, and road surface conditions. Many 
researchers have proposed methods of road surface 
determination (Guo, Sofman and Dahlkamp, 2006). 
However there are still open issues in terms of 
accuracy and time cost efficiency.  
2) The road surface, many times, consists of 
homogeneous textures. It means that there are no 3D 
reconstructed points on the road surface.   

In this paper, simple X-Y (Front-view) 
projection method is proposed for road surface 
extraction, and accumulated dense map (temporal 
filter) is used for obtaining 3D positions of road 
surface. The method of accumulated dense map 
along with robot path provides rich 3D information 
even though features of road surface are not 
textured. 

This paper consists of three main sections. The     
localization is presented in the section 2.The map 
building is presented in the section 3. The     
experiments and their results are presented in the 
section 4.  

The conclusions highlight the achievements of 
the work. 

2 PROPOSED LOCALIZATION 

2.1 Pre-processing for Selecting Good 
Tracking Features 

The VO is based on the 3D points obtained by 

triangulation of features determined by feature 
tracking method (Shi, 1994). In this paper we do not 
use our own triangulation method. We directly used 
the 3D points provided by Tyzx (Tyzx.com) dense 
stereo engine. Unfortunately the 3D points are 
affected by noise due to different reasons. It causes 
inaccurate translation/rotation estimation of VO. 
Therefore 3D noise elimination procedure is 
required before determining inliers for translation/ 
rotation estimation.  This 3D noise is filtered 
following image projection procedure. The 
coordinate system is configured as X (west-east), Y 
(north-south), and Z (current position to ahead)). 
There are three ways in which the projection can be 
achieved: X-Y projection (Front-view), Y-Z 
projection (Side-view), and X-Z projection (Top-
view). The X-Y projection method is adopted in this 
paper because noise points and object points are 
easily separated. Scoring map (500 x 312) in the X-
Y projection is achieved by following equation: 
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where c and r are column and row of 500 x 312 
image, iX and iY  are 3D point  coordinates, and 

minX and minY are the minimum values of iX  and iY  
respectively.  

Each cell of the scored map is filled with number 
of projected 3D points by corresponding Equation 
(1). The cells which have smaller scored number 
than the threshold ( thresholdN ) are eliminated. 
The thresholdN  is determined by following off-line 
recursive iterations only at the beginning. The 

thresholdN  starts with “0”, it increments until the 
average Y value of X-Y projected points becomes a 
positive floating point value. Due to the down 
orientation of the Y axis and due to the positioning 
of the origin of the world coordinate system on the 
road surface, the initial average values are negative 
floating point values. In each iteration, the cells 
which have smaller scored number than the 
threshold are eliminated.  After iteration is finished, 
the remaining 3D points are restored from scoring 
map. These 3D points will be used for VO. 

2.2 Inliers Selection for Visual 
Odometry  

In dynamic environments, the selection of inliers in 
Visual Odometry is very important. Unlike other 
Visual Odometry approaches (Nistér, Howard, 
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Agrawal, Konolige), the proposed Visual Odometry 
avoids influences of non-static objects. We select 
static features to compute translation/rotation 
estimation of robot in terms of X, Z, and yaw ( X -
Z plane) angle.  

1) In the first step we extract good features in the 
intensity image by well-known (Shi-Tomassi, 1994) 
method: For tracking these features in two 
consecutive images the pyramidal Lukas-Kanade 
optical flow based tracking method is used (Lucas, 
1981).  As a result, we obtain between 300-400 pairs 
of features.  

2) The ego motion model is used to determine 
maximum-and minimum-variation boundary of 
translation/rotation. 

The ego motion model is based on the kinematics 
and dynamics model of a differential-drive robot. 
The kinematics and dynamics model is derived from 
point to point movement. It is descried in Figure 1. 

 
Figure 1: The point )( AtB  to point )( BtB  movement. 

During point to point movement, translation 
( yx ΔΔ , ) and rotation (α and /or β ) is obtained. In 
addition, translation velocity v  and rotational 

velocity 
•

θ  are also obtained.  
The rotation estimation is induced from the ego 

robot’s rotational velocity and complex motion 
control equation during two consecutive image 
frames. The rotational angle follows:  
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where tΔ  is the elapsed time between two 
consecutive frames, rE and tE is rotation and 
translation error. These rE and tE are determined 

experimentally.  
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The xΔ and yΔ  are induced from forward 

kinematics.  
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The x0 and y0 of Figure. 1 are equivalent to 
X direction of camera coordinates and Z direction 

of camera coordinates respectively. 
From equation (2) and (3), the physical 

movement of ego robot is determined in terms of 
translation and rotation. These translation value and 
rotation angle are used to filter out features of VO.  
Namely the features which have bigger rotational 
angles and translation values than the equation (2) 
and (3) will be excluded for VO. The excluded 
features represent fast moving objects comparing to 
movement of ego robot. The remaining features after 
excluding fast moving features are used for 
computing mean ( Tμ , Rμ ) and Absolute Standard 
Deviation (ASD: Tσ , Rσ ) in terms of translation and 
rotation. As a result of computing ASD, two ASDs 
(+/- ASD: Tσ± , Rσ± ) are obtained. The features 
that have bigger translation values than TT σμ −  and 
bigger rotational angle than RR σμ −  will be kept as 
inliers for VO. Therefore finally we can compute a 
pair of mean inliers, one corresponding to the 
previous frame and the other to the current frame: 

( )11, −− tt ZX , ( )tt ZX ,  
They are used for computing translation and 

rotation of robot as part of VO. 

2.3 Hybrid Filter for Localization 

The localization in this paper is relative global. The 
robot’s position is accumulated from starting 
position along with robot’s path. This relative global 
position is obtained by hybrid filter. The hybrid filter 
consists of Visual Odometry (VO)-based motion 
estimation and ego motion model based motion 
estimation. The hybrid filter switches VO estimation 
to ego motion estimation according to current 
situation. The VO is mainly used for robot’s 
localization. The ego motion estimation is used 
when visual information is lost and no tracking 
features exist in the scene. The case of loss of visual 
information especially appears in clumsy and 
compact indoor environment when the scene is too 
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close. The case of no available tracking features 
appears in the poor illuminated or in the no textured 
image scenes.  

The proposed hybrid-filter-based localization can 
be used in both indoor and outdoor environment.  

The equation of the relative global localization 
follows: 

We choose the X, Z coordinates of the 3D feature 
points from the previous and current 
frames, ( )11, −− tt ZX , ( )tt ZX , . The position estimation 
of robot in terms of X, Z is: 

( ) ( )θθ Δ−•=Δ−•= cos,sin currcurr ZX   

curraccumaccumcurraccumaccum ZZZXXX +=+= ,
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currX is X axis mapping of • , 
currZ  is Z axis 

mapping of • . 

3 PROPOSED MAP BUILDING 

The 3D map is registered along with robot’s path. 
Tyzx’s stereo camera is used for proposed 3D map 
building. The proposed map-building method 
generates complete road surface as well as 3D 
environment. Two map building algorithms are 
introduced to solve the above mentioned problems. 
The 3D road pixel determination is based on X-Y 
projection. The 3D environment is built through 
temporal fusion using a dense accumulation–based 
temporal filter.  

For the 3D road pixel determination, the row 
position with the maximum pixel number in the 
filtered X-Y projection map is determined by 
searching. Lets call it indexroadr _ .  

The 3D points which are in the indexroadr _  row 
cells of scoring map are assumed as the 3D points of 
the road surface. From experiments the 3D points of 
road surface are between 1_ −indexroadr  
and 1_ +indexroadr . This approach was proved to be 
very simple and very robust in the structured 
environment.  

For the 3D environment building, the 

successive depth images are fused using a temporal 
filter. The temporal filter is implemented by 
exploiting two information: position height and its 
time stamp. At each step we replace the current 
position height if a new height is provided for that 
position, or discard the height having a time step 
older than the current one with a pre-defined 
threshold.  

The pixels of road surface which are extracted in 
the first case, but also the pixels corresponding to 
the other elements of the environment are 
accumulated by the temporal filter. Consequently the 
accumulated 3D environment surface is generated. 
This 3D relative environment surface is registered 
by 2D translation and rotation on the 3D world 
coordinates.  

The obtained local 3D road surface is registered 
based on the following equation. 
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where ( tX , tY , tZ ) is the global position of the robot 
at time t , and rθ  is relative yaw at time t , 
( env

iX , env
iY , env

iZ ) is the relative environment pixel 
position at time t  ( i  goes from 0 to the total number 
of 3D pixels) and  ( t

iX , i
tY , t

iZ ) is the new position 
of the pixel relative to the global coordinate system. 
The global position ( tX , tZ ) and relative yaw ( rθ ) 
comes from { }θΔ,, accumaccum YX  of equation (4).  

The proposed Hybrid-filter-based localization and 
map building can be run in real-time conditions and 
variant environments (indoor and outdoor).  

4 EXPERIMENTS 

As mentioned in Section 2.2, the ego robot is 
modeled as differential drive robot, and empirical 
parameters determination for translation error and 
rotational angle error is required. These errors 
mainly come from robot’s weight load. In order to 
determine translation error and rotational error, robot 
navigates pre-defined path with constant 
commanded velocity (100 mm/sec). The pre-defined 
path is a rectangle (1500 mm x 1500 mm). 

As varying empirical parameters (Er and Et), the 
actual robot trajectory is varying too. The 
parameters are determined when the robot trajectory 
has the smallest error against pre-defined path. The 
behavior of the robot navigation looks like car due to 
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differential drive modeling. The results 
corresponding to different sets of translation and 
rotation error parameters are presented in Figure 2. 
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(a) In case of 

rE = 0.08 and 
tE =940 
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(b) In case of 

rE = 0.08 and 
tE =1010 

Figure 2: Ego motion calibration (blue: encoder data, red: 
estimated trajectories according to translation and rotation 
velocity) 

 
Figure 3: 3D data acquisition in variant environments. 

The parameter of rotation error is fixed to 0.08, 
and only the parameter of translation error changes 
from 940 to 1020. The blue line (rectangle) 

represents raw encoder data that is obtained in each 
four corners of pre-defined rectangle path. 

The red line represents robot’s trajectory that is 
computed by translation value and rotation angle 
along with time stamps. The minimum mismatched 
value (10 cm between departure position and 
returned position) is obtained when the parameter of 
translation error is about 1000. This case can be seen 
in Figure 2(b). These obtained error parameters are 
used in Equation (2) in order to provide maximum 
accuracy of VO.  

The road surface extraction by X-Y projection 
and temporal filter is presented in Figure 3. The 
extracted road surface pixels by X-Y projection is 
presented in blue color on the original image (e.g. 
(a)). Their corresponding 3D positions are displayed 
in (b), (c), and (d). The green spheres in the (b), (c), 
and (d) represents the 3D points before temporal 
filtering. The gray points represent the 3D points 
added by fusing 10.000 images using temporal 
filtering. 

The fusion of successive images has as 
consequence the increase of the density of the 3D 
representation together with the increase of the 
representation accuracy. 

To evaluate accuracy of localization, robot 
passes though 3 known points (2 meters, 6 meters, 
and 10 meter) in 5 turns. It is presented in Table 1.  
We obtained 1.5875 percentages of average error. 

As final experiment, the robot navigates in long 
indoor environment. When the robot navigates 
indoor, the robot met many different environment 
variations (non-uniform illuminations Figure 4. (1-
3), narrow paths Figure 4. (3-6), and non textured 
road surface Figure 4. (6-7)). In spite of these facts 
3D road surface and 3D environment is well 
registered along with the robot path.  

5 CONCLUSIONS 

This paper proposed a new robust localization and 
map building method based on VO and ego motion 
model. Robot navigates in dynamic environment hat 
contains moving objects, non-uniform illumination, 
and non textured road surfaces. The achieved 
accuracy of position estimation is 1.5875 errors 
percentage in 10 meters.  

 
 
 

         
             (a) Indoor                    (b) 3D data (front-view)      

 
   Fusion with Temporal filter: 3475509 points (gray and green); 
                 No fusion: 7192 points (green) 

(c) 3D data (side-view) after 1000 frames accumulation 
 

 
Fusion with Temporal filter: 99571 points (gray and green); 

No fusion: 353 points (green) 
(d) 3D Road data (side-view) after 1000 frames accumulation 
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(a) Raw accumulated image and reconstructed 3D road surface and 3D 
environment. 
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b) Distance variation along with  navigation path. 
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(c) Angle variation along with navigation path. 

Figure 4: Result Localization and map building in the long distance navigation (about 110 meter). 

Table 1: Accuracy comparison at each known position. 

Measuring 
Nr. 

2 meters 
(mm) 

6 meters 
(mm) 

10 meters 
(mm) 

Remark 
Error 
(%) X Z Yaw X Z Yaw X Z Yaw 

1 35.65 1847.5 -1.82 259.46 5625.01 -3.78 789.82 9703.77 -10.57 2.617 

2 80.29 2066.14 -4.23 416.25 5981.49 -5.46 900.35 10118.09 -6.98 0.766 

3 39.9 2062.2 -2.52 329.59 6095.2 -9.2 1298.73 10270.26 -14.44 1.729 

4 95.14 1901.13 -4.98 541.43 5704.66 -6.18 1442.69 9646.03 -15.59 2.042 

5 62.85 1975.55 -2.97 305.59 6018.14 -3.99 1063.45 10130.03 -16.25 0.783 
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