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Abstract: A new method to describe the skeleton of a polygonal figure is presented. The skeleton is represented as a 
planar graph, whose edges are linear and quadratic Bezier curves. The description of a radial function in 
Bezier splines form is given. An algorithm to calculate control polygons of Bezier curves is proposed. Also, 
we introduce a new representation of skeleton as a straight planar control graph of a compound Bezier 
curve. We show that such skeleton representation allows simple visualization and easy-to-use skeleton 
processing techniques for image processing. 

1 INTRODUCTION 

A closed domain on Euclidean plane 2R  such that 
its boundary consists of one or more simple 
nonintersecting polygons is called a polygonal 
figure. The set of polygonal figure points that have 
two or more closest boundary points of figure is 
called the skeleton or medial axis. Polygonal figures 
and their skeletons are widely used in image shape 
analysis and recognition (Pfaltz, Rosenfeld, 1967). 

To construct the skeleton of a polygonal figure 
the concept of a Voronoi diagram of line segments is 
commonly used (Drysdale, Lee, 1978, Kirkpatrick, 
1979). The polygonal figure boundary is a union of 
linear segments and vertices, which are considered 
as the Voronoi sites. The Voronoi diagram of these 
sites is generated and the skeleton is extracted as a 
subset of the diagram. The skeleton of a polygonal 
figure with n  sides can be obtained from the 
Voronoi diagram taking )(nO  time. By-turn, there 
are known  effective  )log( nnO  algorithms to 
construct the Voronoi diagram for the general set of 
linear segments (Fortune, 1987, Yap, 1987) as well 
as for the sides of a simple polygon (Lee, 1982) or 
multiply-connected polygonal figures (Mestetskiy, 
Semenov, 2008). 

Geometric construction of a polygonal figure 
skeleton is simple enough: it is a planar graph with  
straight-line and parabolic edges (figure 1).  

However,  such  analytical  description  of  skele- 

tons presents some difficulties. Presence of parabolic 
edges gives rise to certain problems in constructing, 
storing, processing, and utilizing skeletons in image 
analysis. The general form for a parabola is 
described by an implicit equation. This is not handy 
for calculation of parabolas intersections, for 
drawing and analysis.  

 

 
Figure 1: A polygonal figure and its skeleton. 

This shortcoming  generates the tendency to 
handle skeletons having no parabolic edges. This 
idea is implemented in the concept of straight 
skeleton (Aichholzer, Aurenhammer, 1996). But the 
straight skeleton suffers from certain shortcomings, 
videlicet: complexity of mathematical definition, 
low algorithmic efficiency, regularization 
complexity if noise effects are available.  

In this paper, we propose a different method of 
describing a skeleton in the form of a planar graph 
with straight edges. To construct such a graph, 
computing parabolic edges is not necessary either at 
the step of the Voronoi diagram computing, or at the 
steps of skeleton storing, drawing and processing, 
respectively. This can be achieved as follows. 

1. The skeleton of a polygonal figure is the union 
of a set of the first and second order elementary 
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Bezier curves. This union we call the compound 
Bezier curve. 

2. A compound Bezier curve is defined by its 
control graph, which is obtained from the control 
polygons of elementary Bezier curves. Every control 
graph has linear edges. 

Thus, to describe the skeleton, a straight-line 
control graph is needed (figure 2).  

The set of control graph vertices consists of two 
subsets. The first subset is formed by vertices of 
polygonal figure skeleton. And the second one 
consists of the certain control points called handles 
of Bezier curves. 

2 STRUCTURE OF THE 
SKELETON  

 

 
Figure 2: The control graph of the skeleton from figure 1. 
Terminal vertices are black and handle vertices are white.  

Assume that M is a polygonal figure on 2R  with 
the Euclidean distance 2,),,( Rqpqpd ∈ .  The 
boundary of the figure M∂  consists of several 
simple polygons. 

An empty disk of the figure M  of radius  0≥r  
centered at a point p  is the closed point set 

{ }rqpdRqqpKr ≤∈= ),(,:)( 2  
 such that MpKr ⊂)( .  

A maximal empty disk (or, inscribed disk) 
)(max pKr  of the figure M  is the empty disk that is 

not contained in any other empty disks.  
The skeleton S  of the figure M  is the set of all 

centers of maximal empty disks of the figure 
{ }∅≠∈= )(,: max pKMppS r . 

This definition of the skeleton is more accurate 
as comared to the one given in the introduction since 
terminal vertices of skeletal graph are determined. 
According to this definition all convex vertices of 
the figure are terminal vertices of the skeleton. A 
non-degenerate maximal empty disk touches the 
figure boundary at least at two points. Every point of 
the figure can be considered as a degenerate disk of 
zero radius. These disks are empty ones because 
they do not contain internal points and therefore, the 
boundary points of the figure. Degenerate disks 

centered at convex vertices of figure are maximal 
empty disks because they are not contained in other 
empty disks. Consequently, convex vertices of 
polygonal figure are part of the skeleton.  

A radial function is determined at every point of 
skeleton. Radial function is equal to a radius of the 
inscribed disk centered at this point. The radial 
function assigns “the width” of figure relative to the 
points of the skeleton. 

Let S  be the skeleton of the polygonal figure 
M . The total number of points in the set S  is 
infinite, but it occurs that all these points are located 
at the finite set of the straight-line and quadratic 
parabolic segments. Let Ss∈  be a point of a 
skeleton and Mgg ∂∈21,  be the two closest 
boundary points of Ss∈ .  The points  1g  and 2g  
may have different positions on the figure boundary. 
We shall name the boundary point by a corner point 
if it is the vertex of polygonal figure, and simple 
point otherwise. Three cases of 1g    and  2g  type 
combinations are possible: 1g  and 2g  make a pair 
of corner points, a pair of simple points or a corner 
and a simple point.  

If both 1g , 2g  are corner points then the point 
Ss∈  lies on the medial perpendicular of the 

straight line segment [ ]21, gg    (figure 3a).  
If both points 1g , 2g  are simple and lie on 

different sides of the figure then s is equidistant 
from these sides. Then the point s  lies on the 
bisector of the angle, formed by these sides (figure 
3b). If these sides are parallel then s lies on the 
straight line equidistant from these sides (figure 3c). 

But if one of the points (for example, 1g ) is 
corner and the other ( 2g ) is simple then s  is 
equidistant from 1g  and from the side of polygon, 
which contains 2g . In this case s  lies on the 
parabola having a focus 1g . And the directrix of 
parabola is the side of polygon such that 2g lies on 
this side (figure 3d). 

Thus, we distinguish three types of lines. The 
first line (straight line) is defined by the pair “vertex-
vertex”, the second one (bisector) is defined by the 
pair “side-side” and the third one (parabola) is 
defined by the pair “vertex-side”. Every point of the 
skeleton lies on one of these lines. 

Let us use the following terminology. Vertices 
and sides of polygonal figure are called sites. The 
maximal connected subset of the skeleton 
equidistant from the pair of sites is called middle 
axis or, bisector. There are vv-bisectors, ss-bisectors 
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and vs-bisectors for the pairs of sites “vertex-
vertex”, “side-side” and “vertex-side”, respectively. 

(c) 
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(d) 
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Figure 3: Bisector types of polygonal figure. 

3 SKELETON VERTICES 

We aim to propose a method describing the skeletal 
graph such that calculation of the equations of 
parabolic bisectors is not needed. 

The skeleton vertices are equidistant to three or 
more sites. To find these vertices tangent circles can 
be constructed for the triplets of sites. Calculation of 
such circles involves a number of geometric tasks 
(figure 4) related to the following combinations: 

1) three vertex-sites (figure 4a); 
2) two vertex-sited and one segment-site (figure 

4 b,c); 
3) two segment-sites and one vertex-site (figure 

4 d,e); 
4) three segment-sites (figure 4 f).  
The second and third combinations involve two 

cases depending on whether the vertex-sites match 
the terminal points of segments. 

Assume that the tangent circle exists and the 
sequence of tangent points is defined. Then the 
tangent circle is unique. To compute the center t  of 
the circle tangent three sites 321 ,, sss , the following 
system of equation is to be solved: 

⎪⎩
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⎨
⎧

=
=
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3
2

1
2

2
2
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2
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stdstd  

In the cases in figures 4a,c,e,f  both equations are 
linear. But in the cases in figures 4b,d one equation 
is linear, and the other is quadratic. After expressing 
the Y-coordinate of the point t  through the X-
coordinate in the linear equation it become possible 
to reduce the second equation to the usual quadratic 
equation, which is easily solved. 

(a) (b) (c) 

(d) (e) (f)   
Figure 4: Tangent circles for the triplets of sites. 

The obtained solution has to satisfy two auxiliary 
conditions, which are easily checked. The first 
condition requires the projections of t  onto the 
segment-sites to lie on these segments themselves. 
The second condition requires the tangent circle to 
lie inside the figure. This means the center of 
tangent circle is required to lie to the left of the 
segment-site. 

4 SKELETON EDGES AS BEZIER 
CURVE 

Explicit description of the parametric curve 
)),(),(()( tytxtV =  ]1,0[∈t  provides handy tools to 

deal with parabolic edges of skeleton. )(tV  
determines the skeleton edge with the vertices )0(V  
and )1(V .  

The main idea of our solution is that every 
parabolic edge of the skeleton can be represented by 
a quadratic Bezier curve  

)()()()( 2
22

2
11

2
00 tBVtBVtBVtV ++= , ]1,0[∈t ,  

where 22
0 )1()( ttB −= , )1(2)(2

1 tttB −= , 22
2 )( ttB =  are 

Bernstein polynomials. This curve is determined by 
its control triangle },,{ 210 VVV . The points 0V  and 

2V  are called the terminal points, and the point 1V  is 
handle point of the Bezier curve. 0V  and 2V  are 
vertices of skeleton, bat 1V  is not a skeleton vertex. 

Such a way of edge description is compact and 
easy-to-use since the only point together with two 
terminal ones defines every edge. Also skeleton 
drawing and handling becomes very simple since 
various effective algorithms to handle Bezier curves 
are known. 

Generalized description is based on 
representation  of linear edges  of the  skeleton in the 
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form of first order Bezier curves 
)()()( 1

11
1
00 tBVtBVtV += , ]1,0[∈t . 

Here points 0V , 1V  denote terminal points of 

bisector. ttB −=1)(1
0  and tVtB ⋅= 1

1
1 )(  are Bernstein 

polynomials. 
A parabolic skeleton edge is a vs-bisector. Let A  

and B  be a pair of sites that assign this bisector. 
Moreover, let A  be a vertex and B  be a side of 
polygonal figure connecting  vertices 1B  and 2B . 
We shall denote the side B  itself as well as a line 
containing it by 21BB . Without loss of generality,  let 
us assume the polygonal figure be left to the side 

21BB . Let us drop the perpendicular from the point 
A  to the straight line 21BB  calling the intersection 
D .  Denote the middle of AD  by O . The sites A  
and B designate a rectangular Cartesian coordinate 
system originated at O  and having DA  as its Y-axis 
and a line parallel to 21BB  as its X-axis (figure 5).  

Given the sites A  and B , the bisector of  A  
and B  consists of the centers of the circles touched 
both 21BB  and A .  Let  0V  and 2V  be the terminal 
points of this bisector. And let 0С  and 2С  be the 
projections of  0V  and 2V   onto the straight line 

21BB  (figure 5). 
Let us examine a point ),( yxV =  on the bisector 

and its orthogonal projection U  on the straight line 
21BB . The point A  coordinate pair is ),0( p . Since 

22 UVAV =  we obtain 222 )()( pypyx +=−+ . 

Then the bisector parabolic equation is 2

4
1 x
p

y = . 

Given the points ),( 000 yxV =  and ),( 222 yxV = , 
consider two lines tangent parabola at 0V   and  2V . 

x

y

O 
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Figure 5: Parabolic curve for vs-bisector. 

As is known, the equation of a tangent line for a 
curve 0),( =yxF  at point )ˆ,ˆ( yx  is 

0)ˆ()ˆ,ˆ()ˆ()ˆ,ˆ( =−⋅′+−⋅′ yyyxFxxyxF yx . 

In our case, we have pyxyxF 4),( 2 −= . Then 
the equations for tangent lines at the points  0V  and 

2V  on the curve are the following: 

0)(4)(2 000 =−⋅−−⋅ yypxxx  (1) 

0)(4)(2 222 =−⋅−−⋅ yypxxx  (2) 

Since   
2
00 4

1 x
p

y =  , 2
22 4

1 x
p

y =  (3)

the solution of the system (1)-(2) is  

)(
2
1

201 xxx += , (4)

201 4
1 xx
p

y =  (5) 

Thus, we have obtained the point of tangent lines 
intersection ),( 111 yxV = . 

Permutation of Bernstein polynomials to the  
quadratic Bezier curve equation gives the parametric 
equations for Bezier curve )(tV : 

010
2

210 )(2)2()( xtxxtxxxtx +−−+−=  (6)

010
2

210 )(2)2()( ytyytyyyty +−−+−=  (7)

]1,0[∈t . 
Permutation of (4) to (6) presents 

txxxtx ⋅−+= )()( 020  (8)

And permutation of (3) and (5) to (7) presents 

[ ]=+−−+−= 2
020

2
0

22
220

2
0 )(2)2(

4
1)( xtxxxtxxxx
p

ty  

[ ]=+−−⋅−= 2
0200

22
20 )(2)(

4
1 xtxxxtxx
p

  (9) 

[ ]2020 )(
4
1 xtxx
p

−−=  

From (8) and (9) we have [ ]2)(
4
1)( tx
p

ty = , that 

is the equation of the parabola of vs-bisector. 
Thus, we have a parabolic bisector described as a 

quadratic Bezier curve. This curve is assigned by a 
control triangle { }210 ,, VVV . Two vertices 20 ,VV  are 
terminal points of the bisector, and 1V  is the point of 
intersection of tangents lines. 
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Consequently, in order to obtain bisector as the 
Bezier curve it is necessary to calculate tangent lines 
at the terminal points of bisector and to find their 
intersection. Let us consider the solution of this 
problem. 

5 CONTROL TRIANGLE OF 
SKELETON EDGE  

Let ),0( pA =  be the focus of a parabola and 
py −=  be the directrix of the parabola. Assume that 

the point )ˆ,ˆ( yxV =  lies on the parabola and 
),ˆ( pxC −=  is the projection of V onto the directrix 

(figure 6). Let us show that a tangent line to a 
parabola at the point )ˆ,ˆ( yxV =  is orthogonal to the 

vector AC . 

x

y

p 

С 

VA

‐p   
Figure 6: Orthogonality of tangent and direction from the 
focus into the point of projection.  

The equation of the tangent line to the parabola 
042 =− pyx  at the point )ˆ,ˆ( yxV =  is 

0)ˆ(4)ˆ(ˆ2 =−⋅−−⋅ yypxxx  (10)

We have that the vector )4,ˆ2( px −  is a normal 
vector of the tangent line and is collinear to the 
vector AC . 

This property makes it possible to find tangent 
lines at the terminal points 0V  and 2V  of a skeleton 
parabolic edge. This requires the projections 0С  and 

2С  of  0V  and 2V , respectively, onto the straight 
line 21BB  to be calculated first. Then the vectors 

0AС  and 2AС  are to be calculated. These vectors 
are orthogonal to the corresponding tangent lines.   

The source data to identify tangent lines to the 
bisector at its terminal vertices is the following.  

Given the pair of the sites A , B  and two terminal 
points ),( 000 yxV = , ),( 222 yxV =  of bisector, let us 
find the handle vertex 1V  of the control triangle 

},,{ 210 VVV . Without loss of generality, assume that 

the site A  is a vertex, the site B =[ 1B , 2B ] a side of 
the polygonal figure and the polygonal figure lies to 
the left of B .  

Let us introduce the following notation. Let PQ  
denote the vector with an initial point P and a 
terminal point Q . By ][ 2211 QPQP ×  denote the cross 

product, by ( )2211 , QPQP  denote the scalar product, 

by PQV +  denote a shift of  point V by vector 

PQ , by PQ  denote length of the vector. 

The algorithm to solve the problem is following: 
Algorithm steps 

1. To find the parameter p  of the parabola: 

21

121

2

][

BB

ABBBp
⋅

×
= . 

2. To find points 0С , 2С  which are projections of 

0V , 2V , respectively: 

( )
21

0121
2110

,

BB

VBBBBBBС ⋅+= , 

( )
21

2121
2112

,

BB

VBBBBBBС ⋅+= . 

3. To find vectors 0AC  and 2AC : 

),()..,..( 000 bayAyСxAxСAC =−−=  

),()..,..( 222 dcyAyСxAxСAC =−−=  

),( ba  and ),( dc are coordinate pairs of 0AC  and 

2AC , respectively. 
4. To solve the system of equations  

⎩
⎨
⎧

=−⋅+−⋅
=−⋅+−⋅

0)()(
0)()(

22

00

yydxxc
yybxxa

 

5. The solution of the system gives the 
coordinates of the handle point ),( 111 yxV =  of the 
control triangle. 

6 SKELETAL GRAPH AS A 
COMPOUND BEZIER CURVE  

We showed that each parabolic edge of the skeleton 
(vs-bisector) can be described by its quadratic Bezier 
curve. For generality we can consider linear edges 
(vv-bisectors and ss-bisectors) to be linear Bezier 
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curves )()()( 1
11

1
00 tBVtBVtV += , ]1,0[∈t . Here 

points 0V , 1V  denote terminal points of bisector. 

From ttB −=1)(1
0  and tVtB ⋅= 1

1
1 )(  we have 

tVtVtV ⋅+−⋅= 10 )1()( .  
Thus, the skeleton is a union of Bezier curves of 

first- and second-order. We call this union the 
“compound Bezier curve” analogously to the related 
font design concept, where compound curves 
describe the closed outlines of font symbols. In this 
paper, curves describe more complex structure that 
is a connected planar graph. 

Planarity of the control graph of the compound 
Bezier curve is an important property of the control 
graph. This property can be proved as follows. 

Let us examine the vertex-site A  and the 
segment-site B  connected with the parabolic edge.  

If points 0V  and 2V  lie on the same side of the 
Y-axis, i.e., 0x  and 2x  are of the same sign, then  
from (5) it follows that 01 ≥y   and the point 1V  lies 
above the segment B .  

Assume that 0x  and 2x  have different signs 
(figure 7). Since the focus A  of the parabola is the 
concave vertex of polygonal figure then the angle 
α , formed by incident sides of A , belongs to the 
interval παπ 2<< . Let us examine the angle 

20 AVV∠  between vectors 0AV  and 2AV . It is 
obvious that 

παππαπ <−=⎟
⎠
⎞

⎜
⎝
⎛ ⋅+−≤∠

2
2220 AVV  

x

y

A 
V0  V2
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α 
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x2 x* 

π/2  π/2 

V1 

 
Figure 7: Planarity of the control graph. 

Consequently, the point 2V  lies below the 
straight line 0AV  passing through the focus A , and 
point 0V . This straight line intersects parabola at the 

point 0V  and at the point ∗V  with the coordinates 

),( ∗∗ yx , moreover 2xx >∗ . The equation of the 

straight line 0AV  is xapy ⋅+= , where a  is the 
angular coefficient. The points of intersection of this 
straight line with the parabola can be found from the 

equation 2

4
1 x
p

axp =+ . 

This quadratic equation has two roots: 

⎟
⎠
⎞⎜

⎝
⎛ +−⋅= 12 2

0 aapx , ⎟
⎠
⎞⎜

⎝
⎛ ++⋅=∗ 12 2aapx . 

Intersection point 1V  of the tangent lines has an 
ordinate 1y . From the equation (5) and the condition  

2xx >∗  we obtain the following 

estimation ==>= ∗
200201 4

1
4
1

4
1 xx

p
xx

p
xx

p
y  

=⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞⎜

⎝
⎛ ++⋅⋅⎥⎦

⎤
⎢⎣
⎡

⎟
⎠
⎞⎜

⎝
⎛ +−⋅= 1212

4
1 22 aapaap
p

[ ] paap
p

−=+−⋅= )1(4
4
1 222 . 

We obtain py −>1  and the point 1V  lies above 
the segment B , too. Thus, we have that the control 
triangle of a parabolic edge does not intersect its 
own segment-site and lies inside the union of empty 
circles centered at the points of a parabolic segment. 
Consequently, the sides of  a control triangle do not 
have intersections with the remaining edges of 
control graph. But this means that the control graph 
of skeleton is planar. 

7 RADIAL FUNCTION OF 
SKELETON  

To each point of a skeleton a radial function assigns 
a radius to an inscribed empty disk centered at this 
point. Let us examine representation of the radial 
function if the skeleton is represented by the 
compound Bezier curve.   

Given the terminal points 0V  and  1V  of  a linear 
ss-bisector together with 0r  and 1r , we can find the 
radius of the empty disk centered at any inner point 
of the edge 0V 1V  ( 0r  and 1r  are radii of the disks 
centered at 0V  and  1V , respectively). The radius of 
empty disk centered at the point 

tVtVtV ⋅+−⋅= 10 )1()(  is  

trtrtr ⋅+−⋅= 10 )1()(  (11)

Let us consider the vs-bisector case. In the local 
coordinate system (figure 7) we have simple relation 
between radii of disks and ordinates of the points of 
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bisector  ptytr += )()( . From the property of 

Bernstein polynomials 1)()()( 2
2

2
1

2
0 =++ tBtBtB  we 

obtain 
=+++= ptBytBytBytr )()()()( 2

22
2
11

2
00

=⋅++⋅++⋅+= )()()()()()( 2
22

2
11

2
00 tBpytBpytBpy

)()()()( 2
22

2
11

2
00 tBrtBpytBr ⋅+⋅++⋅= .  

Therefore  

)()()()( 2
22

2
11

2
00 tBrtBrtBrtr ++=  (12)

Let us consider the disc centered at the handle 
point 1V . For radius of this disk we have  

pyr += 11 . This disk is called a handle disk.  As it 
follows from geometric analysis (figure 7), 1r  is the 
distance from the point 1V  to the line 21BB . We 

obtain: 
21

1121
1

][

BB

VBBBr ×
=  . 

Thus, the formulas (11) and (12) look like Bezier 
splines.  

Now let us consider the vv-bisector. All empty 
disks centered at this bisector inner points touch the 
common vertex of polygonal figure. Therefore the 
radius of an empty disk centered at the point 

tVtVtV ⋅+−⋅= 10 )1()(  is defined as distance from 
the point )(tV  to A .  

(a (b

(c)  (c)   
Figure 8: Polygonal figure, its skeleton, control graph, 
radial function, and straight skeleton. 

We see that within the vv-bisector the raidus of 
an empty disk can not be presented in Bezier spline 
form. Thus, in order to compute the radial function 
for any point of vv-bisector, coordintaes of related 
concave vertices of polygonal figure should be 

stored in the skeleton data structure. At the same 
time, vs-bisector and  ss-bisector require coordinates 
of centers of handle disks as well as radii of handle 
disks to be stored in the skeleton data structure. 

The example in figure 8 shows the polygonal 
figure and its skeleton (a), control graph of the 
skeleton (b), and control disks of radial function (c). 
Figure (d) shows the stright skeleton (Aichholzer, 
Aurenhammer, 1996) for this polygon. 

8 APPLICATIONS 

Skeleton representation based on the compound 
Bezier curve is a handy tool for visualization, 
storage and image shape analysis in computer 
vision. 

To visualize the skeleton it is enough to utilize 
standard graphic applications supporting drawing of 
straight-line segments and Bezier curves as well. 
Generally, graphic libraries are supplied with the 
tools to draw cubic Bezier curves. To exploit such 
programs in order to draw quadratic Bezier curves 
the known conversion of  control polygons is to be 
carried out. A quadratic Bezier curve with the 
control triangle { }210 ,, VVV  matches the cubic Bezier 
curve with the control quadrangle { }3210 ,,, WWWW  if 
and only if  

00 VW= , 
3
2

3
1

101 ⋅+⋅= VVW , 
3
1

3
2

212 ⋅+⋅= VVW , 23 VW =  

Thus,  obtaining  the  control polygon  of the  cubic  
Bezier curve matching the quadratic Bezier curve 
can be represented.  Example in the figure 9 presents an application 
of our method to a natural image (binary bitmap 
with the silhouette of Lomonosov Moscow 
university). 

Bezier representation of the polygonal figure 
skeleton and family of its maximal empty disks 
provide us with the opportunity to modify  shape of 
the figure. Modifying a figure shape based on 
adjusting the skeleton and its radial function can be 
used in computer graphics (Mestetskiy, 2000) and 
image recognition to measure similarity of flexible 
objects (Mestetskiy, 2007).  
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Figure 9: Skeleton representation of natural image: (a) 
binary bitmap, (b) polygonal figure approximation and the 
skeleton, (c) the control graph of the skeleton.  

9 CONCLUSIONS 

In this paper, we have presented a new approach to 
describe the skeleton of polygonal figure by stright 
line control graph of compound Bezier curves. One 
major advantage is the simplicity of this description. 
Another advantage is the independence from the 
algorithm of skeleton construction. The worst-case 
running time for skeletal graph transformation to 

compound Bezier curve is )(nO . Proposed form of 
skeleton presents the tool for storing skeletons in 
geographical databases and computer graphics 
systems. We are currently working on extending the 
above results to the segment Voronoi diagrams.  
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