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Abstract: In this paper, a robust and real-time lane detection method is proposed. The method consists of two steps,
the lane-marking detection and lane model fitting. After detecting the lane marking by the Intensity bump
algorithm, we apply the post filters by constraining the parallelism of lane boundary. Then, a novel model
fitting algorithm called Guided RANSAC is presented. The Guided RANSAC searches lanes from initial
lane segments and the extrapolation of lane segments is used as the guiding information to elongate lane
segments recursively. With the proposed method, the accuracy of the model fitting is greatly increased while
the computational cost is reduced. Both theoretical and experimental analysis results are given to show the
efficiency.

1 INTRODUCTION

In recent years, many driving assistance systems have
been developed. To increase driving safety, the basic
but important component is lane detection. With ac-
curate lane information, lane departure warning, lat-
eral control or impact warning can be achieved. In the
literature, various lane detection methods have been
proposed (Ieng et al., 2003; Kim, 2008; Wang and
Shen, 2004; Wu and Lin, 2007; Zhou et al., 2006).
Generally, the lane detection method consists of two
steps. The first step is to detect lane-marking features
such as edge features (Wang and Shen, 2004; Zhou
et al., 2006), ridgel features (Lopez et al., 2005) or
intensity bump features (Ieng et al., 2003). Then in
the next step, for specific lane models, model param-
eters are estimated using the lane-marking features.
In most cases, the appearance of lane on the road im-
age is not straight line but curve. Thus, most popu-
lar lane models are using polynomial based models to
represent lane curves as (Kim, 2008; Wang and Shen,
2004; Zhou et al., 2006). A good survey can be found
in (McCall and Trivedi, 2006). The Hough transform
is a good estimator working on simple models such
as straight line or circle. As an adaptation, in (Wang
and Shen, 2004), the image is divided into several sec-
tions so that lane segments in each section are approx-
imated as straight line segments. Then, Hough trans-
form is applied on each section. To estimate spline

curves, RANSAC is preferred. The author in (Kim,
2008) used an modified one to detect multiple lanes.
They generate a fixed number of hypotheses and then
verify using inliers support and constrains. Here we
denote this method as substandard RANSAC to dif-
ferentiate from standard one. It is important to note
that the substandard RANSAC neither guarantees to
achieve optimal solutions nor to find all possible mod-
els. In this paper, we propose a novel lane model fit-
ting algorithm called Guided RANSAC. It searches
all possible lanes by an iterative search strategy and
achieves optimal solutions with expected confidence.
The rest of paper is organized as follows: Section 2
gives the description of lane-marking detection and
filtering. Section 3 describes the Guided RANSAC
algorithm. In Section 4, theoretical analysis on com-
putational complexity is given. Then, Section 5 shows
the experimental results and Section 6 gives conclu-
sion.

2 LANE-MARKING DETECTION

For lane-marking detection, various algorithms have
been proposed. Among the existing techniques,
the intensity bump algorithm (Ieng et al., 2003) is
adopted in the proposed technique. To reduce the
false detections, a filter is introduced based on the fact
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that the two boundaries of the lane are parallel. Af-
ter intensity bump detection, we calculate first deriva-
tive of left and right boundary for each lane-marking
candidate:{dxl ,dyl ,dxr,dyr}. Then directions of left
and right boundary are calculated as:vl = Rl · [xl,yl ]

T

andvr = Rr · [xr,yr]
T . Then the lane-marking candi-

dates are filtered using the rule as:vl
T · vr > τ, where

Rl andRr are 2x2 matrix that to rotate edge orienta-
tions to boundary directions,τ is the threshold for the
boundary correlation.

3 LANE DETECTION METHOD

After the lane-marking detection, the detected results
are grouped to form meaningful structures such as
lines or curves. The popular approaches use poly-
nomial models with RANSAC as model fitting algo-
rithm (Kim, 2008; Wang and Shen, 2004; Lopez et al.,
2005). We follow this framework and present a new
model fitting algorithm to achieve lane detection ef-
ficiently. To extend the generalization of curve rep-
resentation, the lane is represented by multiple lane
segments. To represent one lane segment, we follow
Kim’s method (Kim, 2008) to use the cubic spline
model.

3.1 Guided RANSAC Algorithm

Conventionally, RANSAC method works on whole
sample space. For example, Kim’s method performs
lane fitting on the whole sample space (Kim, 2008).
Here in this paper, a novel method is presented to
fit the lane model in an iterative way. This method
is inspired by the CHEVP algorithm described in
(Wang and Shen, 2004). The CHEVP algorithm di-
vides the image into several horizontal sections and
lane segments are detected section by section. In-
stead of using explicit sections, we detect lane seg-
ments and elongate them recursively. The algorithm
is designed hierarchically as a main routine and a core
routine. The main routine scans all lane-markings se-
quentially. Once it finds an unvisited lane marking,
the core routine is activated to search a lane from a
starting lane-marking then iteratively search forward
to elongate the lane (see Figure 1). The core routine
mainly consists of two steps, a start search step and
an iterative search step. The start search step is to
find an initial lane segment. Once an initial lane seg-
ment is found successfully, the iterative search step is
activated to elongate the lane segment as long as pos-
sible. In the start search step, lane-markings which
located near the starting lane-marking are collected
as a search space. The initial lane segment is approx-

imated as a straight line. RANSAC is performed to
find the initial lane segment. In the iterative search
step, the lane-markings that close to the extrapolated
lane segment are gathered into a subset as the search
space. The idea is that lane markings located near the
extrapolated curve are more likely to lie on the lane.
It can be considered as a prediction of lane path. To
do the elongation, three control points are used during
the RANSAC fitting. One control point is randomly
sampled from the search space while the other two
are directly from the previous lane segment. There
are several advantages of this scheme. First, it avoids
the unexpected elongation since the curve should pass
through two control points of the previous lane seg-
ment. Second, the number of iterations during the
RANSAC can be reduced since the search space is
small and only one sample is drawn randomly.

Figure 1: Core routine of Guided RANSAC. Lane is elon-
gated step by step.

3.2 Lane Segment Aggregation

The Guided RANSAC algorithm attempts to detect all
lane segments. One possible case is that dashed lane
segments are detected separately. We try to aggre-
gate lane segments to form lanes. The lane segments
are aggregated using a method similar to hierarchical
clustering. Iteratively, two lane segments are merged
into one using a merging function. The Figure 2 illus-
trates the use of the merging function. It generates a
hypothesis by selecting three control points from two
lane segments. Then the consistency of tow lane seg-
ments are evaluated. Short lane segments are thresh-
old out by lane-marking support.

4 THEORETICAL ANALYSIS

The standard RANSAC algorithm mainly consists of
two steps: 1) hypothesis generation and 2) hypothe-
sis verification. The computational cost of standard
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Figure 2: The merging function generates a hypothesis to
merge segments. (a) can be merged. (b) and (c) cannot be
merged.

RANSAC depends on the number of iterations and
the population of the sample space to perform con-
sensus verification which can be expressed as a func-
tion linear tok ∗N, whereN is the population,k is the
number of iterations which depends on stopping cri-
terions. One typical criterion is the probability of bad
model support afterk iterations. Letw be the frac-
tion of inliers, m be the number of points needed to
generate hypothesis. Then the probability that no cor-
rect hypothesis is generated afterk iterations will be:
p = (1−wm)k. We have the confidence(1− p) to ob-
tain a good solution. Givenp, k can be calculated
as: k = log(p)/ log(1−wm). In order to find multi-
ple models, a substandard RANSAC is used in (Kim,
2008) that a fixed number of hypotheses is generated.
The problem is that a fixed number of hypotheses
can neither guarantee an optimal solution nor sup-
port all models. The Guided RANSAC solves the
above problems since it searches all possible lanes.
The Guided RANSAC can be considered as a set of
standard RANSACs. The computational cost can be
roughly expressed as:

T ∝
N

∑
i=1

(Si · ki) ·δ(visi = 0), (1)

whereS is the size of subset in a search region andvis
stands for the visit state of samples. As described in
Equation 3,k depends on the value ofp,w andm. p
is a predefined parameter.w is the fraction of inliers
given by user.m is 1 in Guided RANSAC as given in
section 3.2. In contrast, 3 or 4 control points are re-
quired using standard RANSAC. In a typical setting
thatp is 0.05 andw is 0.3, then log(p)/ log(1−w4) =
368.3 while log(p)/ log(1−w) = 8.4. It is promis-
ing that only few trials are required in our algorithm.
Furthermore, in each iterative search step, the search
space is restricted, so thatS ≪ N andw is generally
increased. Finally,T becomes a quite small value. In
worst case,T = N ∗ S ∗ log(p)/ log(1−w) where im-
age is total clutter. The additional computational cost
in Guided RANSAC is to generate subset. However,
the experimental results show that it is negligible.

5 EXPERIMENTAL RESULTS

The algorithm has been tested on image sequences
captured from real environment. The size of an im-
age is 720x480. First, we give the comparison re-
sult of standard RANSAC and proposed algorithm in
Figure 3. In this comparison, the standard RANSAC
uses 4 control points and both standard RANSAC
and Guided RANSAC use a bad model support cri-
terion with p = 0.05. The result shows that the com-
putational cost of our proposed algorithm is about 3
times less than standard RANSAC. We also found that
the real time cost of standard RANSAC and Guided
RANSAC are closely proportional to this result.
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Figure 3: The comparison of computational cost.
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Figure 4: The comparison of time cost.

In Figure 4, the comparison result between sub-
standard RANSAC and Guided RANSAC is given.
100 hypotheses are generated with 4 control points
as in (Kim, 2008). The reason of the peak time cost
of substandard RANSAC is that in a complex envi-
ronment, more outliers will lead to higher probability
to generate bad hypothesis. The average time cost of
Guided RANSAC is about 6 times less than substan-
dard RANSAC. Finally, we show the results on real
road images. In Figure 5, The lane aggregation con-
nects dashed lane or broken lane while removes false
positives. The results in Figure 6 show that the pro-
posed algorithm is robust to complex lane types such
as curved lane, dashed lane and crotched lane.
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Figure 5: Lane aggregation. The first row: without lane aggregation. Second row: with lane aggregation.

Figure 6: Detection results for complex lanes.

6 CONCLUSIONS

We have presented a novel method to detect lanes in
real-time. The algorithm requires little assumption
and is able to detect lanes in complex road conditions.
The experimental result shows that the proposed al-
gorithm is suitable for real-time applications such as
lane departure warning system. It can be extended to
many model fitting based applications such as curve
fitting, shape detection and so on.
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