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Abstract: This paper focuses on the problem of recovering the occluded facial image automatically with the aid of 
domain specific prior knowledge and no manual face alignment or user-specified occlusion region is 
needed. The robust alignment and occlusion recovery are solved sequentially by a novel recovery scheme 
called the direct combined model (DCM). Local occluded facial patches are recovered by utilizing the 
information propagated from other non-occluded patches and is further constrained by a global facial 
geometry. The error residue between the recovered result and the geometric constraint is then used for 
updating the parameter of alignment function for the next iteration. Into this recovering framework, DCM 
efficiently and robustly updates the results of recovering and aligning based on a compact statistic model 
representing the prior updating knowledge. Our extensive experiment results demonstrate that the recovered 
images are quantitatively closer to the ground truth with no manual alignment and occlusion dection. 

1 INTRODUCTION 

Recently, with the help of a large collection of other 
facial images, a number of face occlusion recovery 
techniques have been developed. Park et al. (Park et 
al., 2005) and Saito et al. (Saito et al., 1999) propose 
methods to remove occlusion and reconstruct facial 
images with principal component analysis (PCA). 
However, the results synthesized via the original 
PCA process are highly affected by the appearance 
and location of the occlusion. Subsequently, Hwang 
et al. (Hwang et al., 2003) and Mo et al. (Mo et al., 
2004) presented methods to recover occluded faces 
using two separate eigenspaces sharing the same 
coefficients. However, the occluded and non-
occluded appearances have an entirely different 
character, recovery results using the same weights 
for two different spaces tends to be inaccurate. 
Furthermore, the learning-based facial recovery 
methods are required automatically detecting the 
occluded area and aligning the test image with 
training examples. However, pervious methods, e.g. 
(Hwang et al., 2003; Lin et al., 2009; Mo et al., 
2004), are need a user either to specify the occlusion 
region or to align the occluded face images. 
This paper unifies the tasks of automatic occluded 

face recovery, detection, and alignment in a 
Bayesian framework, and solves these problems 
sequentially by a novel particle-based recovery 
scheme. In this framework, we introduce a novel 
learning algorithm, DCM, to deterministically and 
robustly infer the affine parameters and the 
recovered facial appearance. 

2 DIRECT COMBINED MODEL 

The DCM algorithm assumes there are two related 
classes: class X and class Y, e.g. the facial 
appearances of occluded and non-occluded patches 
or the affine parameter and the corresponding facial 
appearance. Let the structure of the coupled training 
dataset be 1 1 2 2( , ), ( , ) , ( , )N Nx y x y x y…, , where N is 
the total number of ( , )x y  feature pairs. The 
combined principal space [ ]T T T

X YU U  for minimizing 
the energy function ( , , )X YE U U W : 

2 2
2 2
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|| || || ||

n n
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− − + − −∑ ∑  (1)

can be solved by SVD process, where and wi is the 
weight set calculated by projecting each feature pair, 
( , )x y , onto the combined principal space [ ]T T T

X YU U , 
and ( , )x y is the mean vector pair. 
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Figure 1: Workflow of testing process consists of (a) geometry/illumination normalization, (b) patch-based occlusion 
detection and recovery, (c) probabilistic propagation: (c.1) face-based measurement, (c.2) drift, and (c.3) diffuse. 

According to (De la Torre et al., 2001), the 
common drawback of such combined formulation, [ ]T T T

X YU U , is that it is not suitable for predicating 
from one class to another. We exploit the 
fundamental property of SVD in Eq.(1), the 
unpredictable problem is resolved via a MMSE 
criterion.  

2ˆ ˆ( ) arg min ( ) ( , )
y

y x y y P x y dXdY= −∫∫  (2)

where ( , )P x y  is the joint probability of feature 
vectors x and y, and ˆ( )y x  is the estimated vector y 
for a given x. According, it is the expected value or 
vector of the posterior probability of y for a given 
observation x, [ | ]E Y X x= . 

Under the assumption that the joint distribution 
of X and Y in Eq. (1) is a multivariate normal 
density, Eq.(2) further is derived: 

( )†ˆ( ) Y Xy x y U U x x= + −  (3)
where †

XU  is the right inverse matrix of XU that can 
be approximated by the SVD algorithm. Eq. (3) is 
defined as the DCM transformation from X to Y, 
where the regression matrix †

Y XU U  can be calculated 
in off-line. Especially, in contrast to the standard 
multiple multivariate linear regression approach, the 
DCM transformation extracts only a few significant 
feature pairs to represent the relevant information, 
and thus, the major features of the X-Y correlation 
are better captured. 

3 DCM-BASED BAYESIAN 
ALIGNMENT AND RECOVERY 

We introduce a Bayesian framework to bind the 
tasks of occluded facial image alignment and 

recovery and the occlusion detection together, and 
address such a task by a novel particle-based scheme 
to model the posterior probability density function. 
The proposed process takes both the global and local 
facial appearance components of the input image 
into account, and sequentially recovers and 
propagates the particles by embedding with the 
DCM algorithm.  

3.1 Unified Probability Model 

Following the sequential recovery algorithm, the 
recovered facial appearance f in an image I is 
inferred from the previously recovered result f ′ :  

*

,
argmax ( | , , ) ( , | , )

bf
f P f b I P b f I d db

ξ
ξ ξ ξ′= ∫∫  (4)

where the affine parameter ξ  and the PCA weight 
vector b are included for aligning f with training 
examples and for guaranteeing the global facial 
geometric structure of f. It naturally decomposes into 
two terms: 

Posterior Probability ( | , , )P f b Iξ . Since the 
weight vector b is independent from the affine 
parameter ξ , the  posterior density term are factored 
as ( | ) ( | , )P b f P f Iξ  in the recovery stage (sec 
3.2). 

Propagation Probability ( , | , )P b f Iξ ′ . It is 
defined as the probabilistic propagation formulation: 

,
( , | ) ( , | , ) ( , | )

b
p b f P b b P b f d db

ξ
ξ ξ ξ ξ ξ

′ ′
′ ′ ′ ′ ′ ′ ′ ′= ∫∫  (5) 

where 'ξ  and 'b
 
are from the previous iteration.  

Fig. 1 illustrates the proposed particle based 
solution for this Bayesian framework. In practice, 
particles are sampled based on two inner corner 
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Figure 2: Training process consists of face-based PCA 
creation, patch-based DCM creation, and facial 
appearance error-to-eyes position updating DCM creation. 

points of the eyes P by an affine transformation 
function gA  via a parameter ξ . The initial position 
of two inner corner points of the eyes P0 (it is 
probably occluded) is roughly detected, and K 
initializations particles are randomly generated 
around P0: { }oP P P= + Δ . The particle weight π is 
measured with its coincidence with the learned 
eigenspace fU  (Initial weights of all particles are 
equal). Further, to suppress the effects of 
illumination differences between different facial 
appearances, a illumination normalization scheme Al 
is performed.  

3.2 Local-based Occlusion Recovery 

The posterior density, ( | , , )P f b Iξ  for recovery 
stage is modeled by a Markov network embedded 
with the proposed DCM algorithm. Different from 
the common patch-based Markov network 
approaches (Freeman et al., 2000; Liu et al., 2001; 
Sudderth et al., 2003) that selects the recovered 
patches from the training database, the current 
approach recovers patches by other non-occluded 
patches via the DCM transformation. 

Learning Patch Pair l-to-m DCM [ ]T T T
l mU U   (Fig. 2). For each patch , {1,2,..., }l m M∈  (each f is 

composed of M patches), the l-m patch pairs of N 
training facial appearances { ( )}f P  are used to train 
the combined principal space [ ]T T T

l mU U  and the 
DCM transformation from l to m by Eq. (1) and Eq. 
(3), respectively.  
Occlusion Detection (Fig. 1.b). The confidence of 

visibility of patch l is written as cl. which is directly 
proportional to the difference between the original 
local texture detail of patch l and the reconstructed 
texture by the bidirectional DCM transforms from l 
to m and from m back to l, where the patch m is one 
of neighbor patches of l.  

Occlusion Recovery (Fig. 1.b). We solve the 
defined Markov network by the nonparametric belief 
propagation method (NBP) (Sudderth et al., 2003), 
but the recovery order is from non-occluded patches 
to the occluded patches sorted based on their 
confident values, i.e. the c-value. 

3.3 Global-based Face Alignment 

After the recovery, the higher-weighted particles are 
chosen to form the distribution of ( , | )P b fξ′ ′ ′  in 
the face-based measurement step of the probabilistic 
propagation stage (Fig. 1.c.1), where only these 
correctly aligned ones will be treated as the updating 
initializations in the following steps of re-
randomization. According, the summarization of the 
current recovered results, { ( ), }f P π′ , is the mean of 
these particles, 

1
[ ] N

i ii
f E f f π

=
= = ∑ . 

Learning the Position-facial Appearance DCM 
[ ]T T T

f PU UΔ Δ (Fig. 2). Each training image I generates 
N’ perturbed facial appearances, { ( )}f P P+ Δ , by 
disturbing elements of the manually labeled position 
P. Subsequently, 'N P×Δ  of N training images and 
their corresponding facial appearance difference 
generated by fU are used to train the DCM 
combined principal space [ ]T T T

f PU UΔ Δ  and the DCM 
transformation from fΔ  to PΔ , respectively. 

Face Alignment. The drift step (Fig. 1.c.2) updates 
positions{ }P P P′ = + Δ from the given facial 
differences,{ }fΔ  based on the combined space 
[ ]T T T

f PU UΔ Δ in order to form the transition 
probability, ( , | , )P b bξ ξ′ ′ . Finally, a diffuse step 
(Fig. 1.c.3) is done on these higher-weighted 
particles to generate several copies and shift them to 
the neighbors of the updated position, { }P P′ ′+Δ . 
The new set of particles then forms the distribution 
of ( , | )P b fξ ′  for the following step. 

4 EXPERIMENTAL RESULTS 

The performance of the proposed recovery system 
was evaluated by performing a series of 
experimental trials using training and testing 
databases comprising 100 and 50 facial images, 
respectively, where specific facial feature regions of 
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the testing images are occluded manually. The 
normalized images are 28x96 pixels and the patch 
size and overlap size are 13 and 5, respectively.  

Fig. 3 presents representative examples of the 
reconstruction results. Table 1 presents the average 
recovery and alignment errors computed over all the 
images in the testing database. Fig. 4 compares the 
recovery results obtained using the proposed DCM 
method with those obtained by methods in (Hwang 
et al., 2003 and in Park et al., 2005). 

 
Figure 3: Reconstruction results of the DCM schemes: (1st 
and 3rd rows) occluded and ground truth facial images and 
(2nd and 4th rows) reconstructed facial images and its 
difference from its ground truth. 

 
Figure 4: Two examples of reconstruction results and 
errors using three eigen-based method. (1st column): 
original occluded images and the occlude features. 

5 CONCLUSIONS 

This study has presented a Bayesian framework for 
sequential facial occlusion alignment, detection, and 
recovery through a DCM-based algorithm. By 
considering both local and global facial structures, 
our recovered results closely resemble the ground 
truth facial appearances. Overall, the proposed 
method is a promising way to improve the 
performance of existing automatic face recognition, 
facial expression recognition, and facial pose 
estimation applications. 
 
 

Table 1: Average and standard deviation of the position P 
and the recovered f estimation errors for all images in 
testing database by different levels of occlusion. 

Facial 
features 

Ave. Error 
(Pixel/Grayvalues) 

Std. Dev. 
(Pixel/Grayvalues) 

Occl
usion 
Area P f P f 

Left Eye 0.7 6.6 0.5 1.7 10% 

Right 
Eye 

0.6 6.5 0.6 1.8 10% 

Both 
Eye 

0.7 6.6 0.6 16 24% 

Nose 1.0 7.0 1.2 2.0 16% 
Mouth 1.6 6.8 1.5 1.9 20% 
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