
A COMPRESSION SCHEME FOR EFFICIENT REMOTE
STREAMING OF DYNAMIC 3D CONTENT

Giuseppe Marino, Paolo S. Gasparello, Davide Vercelli, Franco Tecchia and Massimo Bergamasco
PERCRO, Scuola Superiore Sant’Anna, Pisa, Italy

Keywords: Distributed rendering, Distributed applications, Remote graphics, Delta compression, Geometric compression.

Abstract: Real-time 3D content distribution over a network (either LAN or WAN) requires facing several challenges,
most notably the handling of the large amount of data usually associated with 3D meshes. The scope of
the present paper falls within the well-established context of real-time capture and streaming of OpenGL
command sequences, focusing in particular on data compression schemes. However, we advance beyond
the state-of-the-art improving over previous attempts of “in-frame” geometric compression on 3D structures
inferred from generic OpenGL command sequences and adding “inter-frame” redundancy exploitation of the
traffic generated by the typical architecture of interactive applications.

1 INTRODUCTION

In this paper, we propose a method to allow efficient
distribution of OpenGL streams over the Internet by
means of various form of data compression. This
work stems from our previous research in the context
of cluster-based immersive visualisation; in this field,
intercepting OpenGL or Direct3D calls by means of
custom system drivers and distribute them over a net-
work has proved to effectively decouple the applica-
tion architecture from the underlying rendering sys-
tem, allowing for a reconfigurable rendering nodes ar-
rangement.

While previous work in this field (Humphreys
et al., 2001)(Humphreys et al., 2002)(Yang et al.,
2002) focused on multicasting command streams
over Local Area Networks, our goal was to extend
this kind of cluster-based rendering architectures to
work over WAN networks too, as this would allow
for a new generation of network streamed 3D ap-
plications. We propose here an approach that ad-
dresses the low-bitrate requirement and the real-time
constraint challenges using a combination of inter-
frame and intra-frame compression of OpenGL com-
mand streams as well as using light-weight compres-
sion/decompression schemes.

2 RELATED WORK

A number of approaches have been proposed to
stream graphical commands over a network in a dis-
tributed rendering architecture. WireGL (Humphreys
et al., 2001), is one of the most relevant examples. It is
a software system developed to distribute the graphic
load of an OpenGL application to a cluster of ma-
chines. A graphical command stream is generated by
means of a custom device driver library capable of in-
tercepting the OpenGL API calls invoked by a generic
application.

The software project Chromium (Humphreys
et al., 2002) is a further refinement of the WireGL
concept. It inherits the interception mechanism of its
predecessor, but system configuration become more
flexible, allowing to build a graph that describes the
complete network structure and can be used to con-
figure each single node.

AnyGL (Yang et al., 2002), a large-scale hybrid
distributed graphics system, deals with the problem
of managing the large amount of data generated by a
OpenGL streaming application, introducing the con-
cept of data compression for the first time. In this
case geometry data redundancies are reduced by using
simple position predictors. Vertex normals (Deering,
1995) and colors are compressed in similar ways.

In our approach we propose the adoption of state-
of-the-art geometry compression techniques (Alliez
and Gotsman, 2005). In particular, we concentrate
on the mesh connectivity compression. We adopt the

267
Marino G., Simone Gasparello P., Vercelli D., Tecchia F. and Bergamasco M. (2010).
A COMPRESSION SCHEME FOR EFFICIENT REMOTE STREAMING OF DYNAMIC 3D CONTENT.
In Proceedings of the International Conference on Computer Graphics Theory and Applications, pages 267-270
DOI: 10.5220/0002834802670270
Copyright c© SciTePress



A B

Frame data flows from computer A
to computer B in traffic chunks

...

F
ram

e 0

F
ram

e 1

F
ram

e 2

F
ram

e n

...

Figure 1: Streaming OpenGL comands over a network
connection from A to B: each frame generate a chunk of
OpenGL data. Larger frames are usually generated at appli-
cation bootstrap time.

valence driven approach, first introduced by Touma
and Gotsman (Touma and Gotsman, 2000) and subse-
quently improved by Alliez and Desbrun (Alliez and
Desbrun, 2001). In this technique the output symbol
stream is the sequence of the vertex valence values,
whose order is given by the conquest process. The
mesh connectivity is compressed on average with 1.5
bits per vertex for regular meshes.

Differential compression is another approach to
face the issue of data transmission. It consists in
representing the differences between a source and
a target file in a compact way. This technique is
mostly based on the diff algorithm (Hunt and McIl-
roy, 1976). It produces, given a target and a source
file, a patch containing a sequence of delete, change
and append operations. In their work, Korn and Vo
(Korn and Vo, 1995) proposed vdelta, an algorithm
based on the Lempel-Ziv’77 approach (Ziv and Lem-
pel, 1977). Afterwards they proposed a newer version
vdelta called vcdiff (Korn and Vo, 2002). In our work
we employ a Google code open source implementa-
tion of this algorithm (Open-vcdiff, 2008).

3 CAPTURING OPENGL
STREAMS

We organized our work around our own software sys-
tem for the capture and distribution of OpenGL calls
performed by a graphical application. Our system ex-
ploits a Chromium-like network scheme: there is a
master node, where the graphical application is run-
ning, and a number of slave nodes, that receive the
OpenGL stream generated by the master node and
broadcasted into the network. The master node uses
a custom device driver interposed between the appli-
cation and the OpenGL system library, capable of in-
tercepting any call performed. Every time a call is in-
tercepted and before its execution, the custom driver
creates a ghost command code to be streamed over
the network. In this way each slave, once received
the stream, can replicate all the OpenGL calls, re-

Geometric 
compressor

glSwapBuffers()

Generic 
OpenGL calls . . .

. . .

Geometry 
description

. . .

Packetizer

Previous 
frame data

diff LZO (Zlib)

Data sent 
across the 

networkcompressed
geometry

Figure 2: Overall system working scheme (master).

constructing the master’s OpenGL state and graphical
output.

4 THE OVERALL
ARCHITECTURE

Once the OpenGL calls have been intercepted with
the mechanism described in the previous section, they
are passed to the packetizer module (Figure 2). This
component is in charge to encode all the informa-
tion about performed calls and then stores them into a
command buffer. If the frame contains geometry de-
scription commands, a geometric compression mod-
ule will handle them, and send the compressed output
to the packetizer. Once this process has been com-
pleted, the buffer content is compared against the pre-
vious frame by the diff module, as described in Sec-
tion 6. The output of this operation is then com-
pressed with a general purpose compressor (LZO or
Zlib) and sent over the network. On the slave node
the original data is reconstructed by decompression
phases performed in reverse order with respect to the
master side.

5 COMPRESSING FRAMES
GEOMETRY

Transferring complete 3D model descriptions over the
Internet may represent a serious problem. If models
are large and/or the network link is not fast enough,
slave node applications may stutter, being interrupted
by long pauses spent for model synchronization.

We approach this issue by introducing a mesh en-
coder component, based on the combination of sev-
eral general purpose and specific known compres-
sion techniques (Figure 3). Connectivity and geom-
etry data is recognised by analyzing a sequence of
OpenGL API calls, and then compressed with our
scheme.

Some functional block of the process requires for
the input model to be manifold. Therefore, in the

GRAPP 2010 - International Conference on Computer Graphics Theory and Applications

268



Output
Buffer

A
ri

th
 C

o
d
e
r

Model

Attrs Quant

Conn

Vertex
Predict

SC

VBE Conn
Symbol

Attrs
Symbol

1° Stage 3° Stage2° Stage

M
a
n
if
o
ld

iz
e SC

SC

SC

Figure 3: The architectural scheme of the 3D mesh com-
pressor.

first stage, the mesh topology is checked and adapted
(Gueziec et al., 1998) to comply with the manifold
constraint. In this phase, vertex attributes and con-
nectivity data are separated to feed the next stage.

In the second stage, the valence based approach
(VBE block) (Touma and Gotsman, 2000)(Alliez and
Desbrun, 2001) drives a mesh traversal using con-
nectivity information, and outputs symbols whenever
new topological elements are encountered. As soon
as a vertex gets conquered, its attributes are quantized
and predicted with the parallelogram rule (Touma and
Gotsman, 2000), so that only differences are transmit-
ted. A final compression stage provides entropy min-
imization by means of a fast adaptive context-based
arithmetic coder (Salomon, 2004).

6 EXPLOITING FRAME TO
FRAME COHERENCE

The OpenGL frame structure of a typical 3D appli-
cation begins with some frames dedicated to the de-
scription of the 3D objects composing the scene. A
lot of data is generated at this point, ant it can be
compressed as described in the previous sections. Af-
ter that, if the 3D model is no longer modified, the
following frames often consist in the exploration of
the model itself. Each frame is mainly a collec-
tion of drawing calls and calls to change the camera
placement. It is clearly visible how the “exploration
frames” are similar: they only differ by the position
of the camera. So, once the drawing calls are sent for
the first time (inside the OpenGL stream associated
to the first frame) the only information really needed
to reconstruct the subsequent frames are the updated
camera positions.

To exploit frame-to-frame coherence we use a diff
algorithm, as described in Section 2. Figure 4 shows
how the diff operation is performed by our system.
The OpenGL stream associated to each “exploration”
frame can be seen as the sum of its geometry (G) and
camera setting (C) sections. G sections are the same
for all the frames, while the C sections are frame de-
pendent. While the first frame is sent unmodified, for
each of the subsequent frames an incremental packet

G C1 G C1

G C2 C2diff patch G C2

G C3 C3diff patch G C3

Master DLL Slave application

. . .

G Cn Cndiff patch G Cn

. . .

Frame n-1

G Cn+1 Cn+1diff patch G Cn+1

. . .

. . .

Frame n-1

Frame 1

Frame 2

Frame 3

Frame n

Frame n+1

Figure 4: Working scheme of the diff compression. Dashed
arrows represent packet sending over the network.

Figure 5: Some view of the testbed applications.

is generated and sent over the network.
With this technique it is possible to avoid sending

a large percentage of the frame data every time. In
many cases frames with sizes of the order of several
kilobytes can be represented with just a few dozen
bytes.

7 MEASUREMENTS

We have conducted formal testing of the compression
methods: measurements were taken using as a test-
bed a chromium-like cluster rendering system that we
have developed in house over the years. We selected
three test applications to be rendered on our frame-
work, selected for their visual complexity, in order
to cover a wide range of real-life scenarios: a simple
scene with just a small number of moving objects, a
complex CAD model being manipulated in real-time
and a complex scenario traversed by the camera with a

A COMPRESSION SCHEME FOR EFFICIENT REMOTE STREAMING OF DYNAMIC 3D CONTENT

269



first-person perspective (Figure 5). We connected two
computers over a network as in Figure 1: at one side
of the connection (A) the original application runs. Its
OpenGL command stream is intercepted and sent to
the slave node (B) for being remotely executed. The
goal of our test is to evaluate if the generated traffic is
compatible with typical Internet bandwidth, therefore
we measured the size of the data chunks in various
conditions.

Preliminary results show that geometric compres-
sion reduces the traffic load at application boot-
strap (and every time some new geometry is kicked-
in), while frame-to-frame compression minimizes the
amount of incremental data that needs to be ex-
changed as frames advance, exploiting the high re-
dundancy in data flow for interactive applications.
Numbers obtained suggest an average reduction for
the first frame to 1/3 of the original data size and for
subsequent frames to 1/8.

8 CONCLUSIONS

We have presented a method to allow efficient dis-
tribution of real-time generated content using on the
fly compression and decompression of OpenGL com-
mand streams. We advance beyond the state-of-
the-art improving over previous techniques of in-
frame geometric compression on 3D structures in-
ferred from generic OpenGL command sequences
and adding inter-frame redundancy exploitation of the
traffic generated by the typical architecture of interac-
tive applications. Measurements reveal for this com-
bination of techniques a very effective reduction of
network traffic obtained with a modest CPU over-
head. This suggest a significant application potential
of the technique whenever the amount of data band-
width is limited, such in the case of Internet-based 3D
streaming.

REFERENCES

Alliez, P. and Desbrun, M. (2001). Valence-Driven Connec-
tivity Encoding for 3 D Meshes. Computer Graphics
Forum, 20(3):480–489.

Alliez, P. and Gotsman, C. (2005). Recent advances in com-
pression of 3D meshes. Advances in Multiresolution
for Geometric Modelling, pages 3–26.

Deering, M. (1995). Geometry compression. In Pro-
ceedings of the 22nd annual conference on Com-
puter graphics and interactive techniques, pages 13–
20. ACM New York, NY, USA.

Gueziec, A., Taubin, G., Lazarus, F., and Horn, W. (1998).
Converting sets of polygons to manifold surfaces by

cutting and stitching. IEEE Visualization, 98:383–
390.

Humphreys, G., Eldridge, M., Buck, I., Stoll, G., Everett,
M., and Hanrahan, P. (2001). Wiregl: a scalable
graphics system for clusters. In SIGGRAPH ’01: Pro-
ceedings of the 28th annual conference on Computer
graphics and interactive techniques, pages 129–140,
New York, NY, USA. ACM.

Humphreys, G., Houston, M., Ng, R., Frank, R., Ah-
ern, S., Kirchner, P. D., and Klosowski, J. T. (2002).
Chromium: A stream-processing framework for inter-
active rendering on clusters.

Hunt, J. W. and McIlroy, M. D. (1976). An algorithm for
differential file comparison. Technical Report CSTR
41, Bell Laboratories, Murray Hill, NJ.

Korn, D. and Vo, K. (1995). vdelta: Differencing and com-
pression. Practical Reusable UNIX Software. John
Wiley & Sons.

Korn, D. G. and Vo, K.-P. (2002). Engineering a differenc-
ing and compression data format. In ATEC ’02: Pro-
ceedings of the General Track of the annual confer-
ence on USENIX Annual Technical Conference, pages
219–228, Berkeley, CA, USA. USENIX Association.

Open-vcdiff (2008). An encoder/decoder for the vcd-
iff (rfc3284) format. http://code.google.com/p/open-
vcdiff.

Salomon, D. (2004). Data Compression: The Complete
Reference. Springer.

Touma, C. and Gotsman, C. (2000). Triangle mesh com-
pression. US Patent 6,167,159.

Yang, J., Shi, J., Jin, Z., and Zhang, H. (2002). Design
and implementation of a large-scale hybrid distributed
graphics system. In Proceedings of the Fourth Euro-
graphics Workshop on Parallel Graphics and Visual-
ization, pages 39–49. Eurographics Association Aire-
la-Ville, Switzerland, Switzerland.

Ziv, J. and Lempel, A. (1977). A universal algorithm for
sequential data compression. IEEE Transactions on
Information Theory, 23:337–343.

GRAPP 2010 - International Conference on Computer Graphics Theory and Applications

270


