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Abstract: In this paper characteristics of defining hyperplanes of constant returns to scale technology in DEA have 
been investigated. A defining hyperplane namely H is a type of hyperplane that with the elimination of H, 
the production possibility set (PPS) will be enlarged (In this paper a defining hyperplane exactly is the full 
dimensional efficient facet (FDEF) and may be found in Olesen and Peterson (1996, 2003)).  The point of 
view of some of the characteristics is conceptual and the interpretation of defining hyperplanes of constant 
returns to scale technology can be achieved by these conceptual characteristics. However, some of the 
characteristics are practical and one can easily utilize them in practice. Some parts of topology and convex 
analysis have been considered to show the truth of characteristics. 

1 INTRODUCTION 

Data envelopment analysis (DEA) is a non-
parametric approach which was suggested by 
Charnes et al. (1978) to measure the relative 
efficiency of a decision making unit (DMU) and 
provide DMUs with relative performance 
assessment on multiple inputs and outputs. Based on 
different essential properties and corresponding to 
different characteristics of the production possibility 
set (PPS) and production frontiers, different DEA 
models, such as the CCR model, the BCC model and 
the FDH model, have been introduced.  

An important task of DEA is to identify the 
returns to scale (RTS) of DMUs based on the 
position of the supporting hyperplanes of efficient 
frontier. Therefore, the investigation of different 
types of hyperplanes of efficient frontier or PPS is 
an important part of DEA.  

No many papers in DEA have been written on 
the subject of “investigation of efficient frontier” 
and “characteristics of different types of 
hyperplanes”. Finding of the piecewise linear 
frontier of production function which identifies the 
efficient frontier and efficient DMUs in DEA has 
been investigated by Jahanshahloo et al. (2005), in 
particular the aim of their study was to develop a 
way to obtain efficient frontier by using 0-1 integer 
programming, then by means of it, identification of 

efficient DMUs and their returns to scale 
characteristics. Also, searching of efficient frontier 
in DEA, has been considered by Korhonen (1997). 
Korhonen tried to provide the decision maker (DM) 
an interactive method which allows him or her to 
incorporate performance information in to the 
efficient frontier analysis by enabling him or her to 
make a free search on efficient frontier, furthermore, 
Korhonen provided the DM all references of an 
inefficient DMU, enabling him or her to choose the 
most preferable unit as reference. Furthermore, 
Jahanshahloo et al. (2007) suggested a way of 
finding strong defining hyperplanes of production 
possibility set in DEA, particularly their method is 
based on the relation between efficient surfaces and 
strong defining hyperplanes of production possibility 
set. Also, Cooper et al. (2007) make it possible to 
select the weights, obtained by the multiplier model 
in DEA, associated with the facets of higher 
dimension that a DMU generates, in particular their 
method supplies model for locating facets of the 
maximum possible dimension of the efficient 
frontier. Furthermore, the construction of all DEA 
efficient frontiers in generalized data envelopment 
analysis (GDEA) has been discussed by Yu. et al. 
(1996). 

Almost in all of the abovementioned researches, 
there is no investigation about the characteristics of 
defining hyperplanes of production possibility set 
that is so essential in DEA. In this paper, we have 
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presented some essential theorems in order to 
identify the defining hyperplanes of constant returns 
to scale (CRS) technology. These theorems enable 
us to recognize whether a hyperplane obtained by 
the optimal solution of the multiplier form of CCR 
model is a defining hyperplane.  

Furthermore, one of the most important task of 
defining hyperplanes of production possibility set is 
sensitivity analysis that enable us to determine the 
amounts of perturbations of data that can be 
tolerated by a DMU on efficient frontier before 
becoming inefficient. Also, we can utilize the 
concept defined in this paper in order to evaluate the 
efficiency of DMUs by using the defining 
hyperplanes of PPS, which efficient DMUs are on 
them.  

Some of the characteristics presented in this 
paper are more conceptual, however others are more 
practical.  Furthermore, the conceptual point of view 
of theorems presented in this paper, enable us to 
interpret the characteristics of defining hyperplanes 
of CRS technology. Although some of the theorems 
are so practical and one can easily utilize them in 
practice. Not only, the conceptual point of view of 
theorems is essential and is so useful to 
interpretation of defining hyperplanes of CRS 
technology, but also the practical point of view of 
theorems is a necessity and enable us to utilize the 
characteristics in practice. 

The aim of this paper is to use the conceptual 
point of view of some parts of topology and convex 
analysis and a combination of them with DEA to 
present some conceptual and practical characteristics 
in order to determine when a hyperplane of PPS is a 
defining hyperplane. The main idea of this paper is 
based on the geometrical interpretation of efficient 
facets of the highest dimension of the frontier that 
the DMU under assessment contributes to span. In 
particular a defining hyperplane is a full dimensional 
efficient facet (FDEF) and may be found in Olesen 
and Peterson (2003). These geometrical 
interpretations enable us to establish the presented 
characteristics. Some of these characteristics are 
conceptual that we will not be able to utilize them in 
practice. Although, we use these conceptual 
characteristics in order to establish some practical 
characteristics that one may easily utilize them in 
practice.  

The sections of this paper are organized as 
follows. In the next section, Section 2, we provide 
additional background of our paper. In Section 3, we 
give basic concepts of some parts of topology, 
convex analysis and DEA models. Section 4 
investigates the characteristics of defining 

hyperplanes of constant returns to scale (CRS) 
technology. In Section 5, we present an example to 
illustrate the characteristics. 

2 BACK GROUND 

As previously noted, this paper is dealt with the 
characteristics of defining hyperplanes of CRS 
technology in DEA. These defining hyperplanes 
play an important role in DEA as previously 
mentioned.  

In this paper, we restrict attention to geometrical 
differences between defining hyperplanes of CRS 
technology and those supporting hyperplanes of 
CRS technology that are not defining. As we know, 
these two kinds of hyperplanes play a crucial role in 
DEA, since they are generally utilized to determine 
different types of concepts such as efficiency, bench 
mark DMUs, rates of substitution and 
transformation, returns to scale, sensitivity analysis 
and etc.  

The main idea of this paper is based on 
geometrical interpretation of defining hyperplanes of 
CRS technology. In order to state a geometrical 
characteristics of defining hyperplanes of CRS 
technology, we use a combination of different kinds 
of concepts such as interior points of a set, an ε -
neighborhood around a point and geometrical 
interpretation of CRS technology efficient frontier to 
state a specific relation between the dimension of 
intersection of each defining hyperplanes with the 
production possibility set (PPS) of CRS technology 
that we use this characteristics to show the truth of 
others stated characteristics.  

Secondly, we utilize a model proposed by 
Cooper et al. (2007) to determine a hyperplane that 
is binding at the maximum number of extreme 
efficient units. With utilizing the abovementioned 
hyperplane namely ∗H , we define a created DMU 
obtained by center of gravity of extreme efficient 
units that the abovementioned hyperplane ∗H  is 
binding at them. Eventually, a set of feasible 
directions obtained by connecting the created DMU 
to each extreme efficient unit that the hyperplane 

∗H  is binding at them has been defined to present a 
practical characteristic. 
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3 THEORETICAL 
CONSIDERATIONS 

3.1 Some Basic Concepts of Topology 

In this subsection we review some topological 
properties of sets and some basic results from 
convex analysis. 
Definition 1. Given a point nRx∈ , a 
−ε neighborhood around it is the set 

{ }εε <−= xyyxN )(  
(1)

Definition 2. Let X  be an arbitrary set in nR . x is 
said to be in the interior of X , denoted by Xint , 
if  XxN ⊂)(ε  for some 0>ε . 

Definition 3. Let X  be an arbitrary set in nR . x  is 
said to be in the boundary of X , denoted by X∂ , 

if  )(xNε contains at least one point in X and one 

point not in X for every 0>ε . 
Definition 4. A set X in nR is called a convex set if 
given any two points 1x  and 2x in X then 

Xxx ∈−+ 21 )1( λλ  for each [ ]1,0∈λ . 

Definition 5. A point x  in a convex set X  is called 
an extreme point of X , if x  can not be represented 
as a strict convex combination of two distinct points 
in X . 
Definition 6. A hyperplane H in nR is a set of the 
form 

{ }kpxx =  (2)

where p is a non-zero vector in nR and k  is a 
scalar. Also, p is usually called the normal or the 
gradient to the hyperplane. 
Definition 7. A hyperplane divides nR into two 
regions, called half spaces. Hence two half spaces 

+H and −H  may be defined in the following 
manner: 

{ }kpxxH ≥=+  (3)

{ }kpxxH ≤=−  (4)

where p is a non-zero vector in nR and k  is a 
scalar. Also, 

−+= HHH ∩  (5)

Definition 8. A polyhedral set or polyhedron is the 
intersection of a finite number of halfspaces. A 
bounded polyhedral set is called a polytope.  

Suppose that the polyhedral set under discussion 
in the following definitions has the form 

{ }0, ≥≤= xbAxxX  (6)

where A  is nm× and b is an m -vector. The 
hyperplanes associated with the )( nm + defining 
halfspaces 

mibxax ii ,...,1},{ =≤  (7)

And 

njxex j ,...,1},0{ =≥  (8)

are called defining hyperplanes of X . 
Definition 9. Let Xx ∈ . A constraint ll bxa ≤  is 
binding, or tight, or active, at Xx ∈ , if 

ll bxa =  (9)

Definition 10. A hyperplane H is a supporting 
hyperplane of X , if 

Φ≠XH ∩ & )( −+ ⊆⊆ HXorHX  (10)

Definition 11. The set of points in X that 
correspond to some non-empty of binding defining 
hyperplanes of X are called faces of X . Given any 
face F of X if )(Fr is the maximum number of 
linearly independent defining hyperplanes binding at 
all points feasible to F , then the dimension of F , 
denoted by )dim(F , is equal to )(Frn − .  
Also, the highest dimensional face of X  is of 
dimension 1)dim( −X and it is called a facet of X .  

3.2 DEA Background 

Assume that we have n  DMUs each consuming m  
inputs and producing s outputs. Let X be an 
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)( nm× -matrix and Y be a )( ns× -matrix 
consisting of non-negative elements, containing 
observed input and output measures for the DMUs, 
respectively. We denote by 

njXX jj ,...,1,0,0 =≠≥  (the jth column of 

X) the vector of inputs consumed by DMUj. A 
similar notation is used for outputs.  

The traditional CCR models, as introduced by 
Charnes et al. (1978) are fractional linear programs, 
which can easily be formulated and as linear 
programs. Those models are so-called constant 
returns to scale (CRS) models. Later Banker et al. 
(1984) developed the so-called BCC models with 
variable returns to scale (VRS).  

The CCR and BCC models are the basic model 
types in DEA. Those basic models can be presented 
in a primal or dual form. The usage of primal and 
dual varies in the literature, and it is more 
straightforward to call them multiplier and 
envelopment models, respectively. The multiplier 
model provides information on the weights of inputs 
and outputs. The weights are interpreted as prices in 
many applications. The envelopment models provide 
the user with information on the lacks of outputs and 
the surplus of inputs of a unit. Also, the envelopment 
model characterizes the reference set for the units. 
Moreover, the production possibility set (PPS) of 
CCR and BCC models can be interpreted from the 
structure of envelopment models. Since, we are 
interested in CCR models in this paper, we represent 
the PPS of constant returns to scale (CRS) 
technology in the following manner: 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

≥

≥≤=
=

0
,,),(

λ

λλ YXYXZ
T

T

c
YX  (11)

Based on the PPS of CRS technology the 
envelopment form of CCR model is in the following 
manner: 

θMin  

.0

..

≥
≥
≤

λ
λ

θλ

o

o

Y
XtS

Y
X

 (12)

 

The multiplier form of model CCR based on the 
dual of model (12) is as follows: 

o
TYUMax  (13)

0,0

,...,1,0

1..

≥≥

=≤−

=

VU

njXVYU

XVtS

j
T

j
T

o
T

 

(13.1)
 

(13.2)

We know that in the optimal solution 
),( ∗∗ VU of model (13), at least one constraints of 

(13.2) is binding. Also, it is easy to show, this 
optimal solution ),( ∗∗ VU is the normal vector of a 
supporting hyperplane 

{ }0),( =−= ∗∗∗ XVYUYXH TTT  (14)
 

which, supports cT  constructed by observed 
data. 
Definition 12. DMUo is an extreme efficient unit if 
in the evaluation of DMUo, the optimal solution of 
model (12) is unique and 

0,1 == ∗
≠

∗
ojo λλ  (15)

Also, the indices of all extreme efficient units is 
denoted by  

{ }unitefficientextremeanisDMUjE j=  (16)
 

We know that cT  is the intersection of some 
hyperplanes. We call some of these hyperplanes as 
defining hyperplanes if with the elimination of these 
hyperplanes, cT  will be enlarged.   

Definition 13. A hyperplane H is a defining 
hyperplane of cT  if with the elimination of H , cT  
will be enlarged (A defining hyperplane used in this 
paper exactly is FDEF defined by Olesen and 
Peterson (2003)). 

4 CHARACTERISTICS OF 
DEFINING HYPERPLANES OF 
CRS TECHNOLOGY 

In this section, we present some essential theorems 
in order to recognize all defining hyperplanes of cT . 
In these theorems some important characteristics of 
defining hyperplanes of cT  have been identified. 
These theorems enable us to recognize when a 
hyperplane is a defining hyperplane of cT . 
Therefore, using these theorems one will be able to 
recognize any defining hyperplanes of cT  which 
was not possible before. As mentioned in previous 
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sections, if ),( ∗∗ VU is an optimal solution of the 
multiplier model of CRS technology (13), then  

}0),{( =− ∗∗ XVYUYX TT  (17)

will be a supporting hyperplane of cT . Assume that 

{ }
Kt

XVYUYXH T
t

T
t

T
t

,...,1

,0),(

=

=−=
 

(18)

are all defining hyperplanes of cT  which we are 
interested in. Also consider two defining half-spaces 

{ }0),( ≥−=+ XVYUYXH T
t

T
t

T
t  (19)

and 

{ }0),( ≤−=− XVYUYXH T
t

T
t

T
t  (20)

obtained by hyperplane tH for each Kt ,...,1= . 

With out loss of generality, we can assume that cT  
is the intersection of all defining half-spaces 

KtH t ,...,1, =− in the following manner: 

−
== t

K
tc HT 1∩  (21)

Theorem 1. The hyperplane H  is a defining 
hyperplane of cT  if and only if the dimension of 

)( HTc ∩  equals 1−+ sm . 

Proof. Assume that the dimension of )( HTc ∩  

equals 1−+ sm . On one hand, since, 
Φ≠HTc ∩ , we can find a point such as 

HTYXZ c
T ∩∈= ),(  for which there exists a 
)1( −+ sm  dimensional −ε neighborhood 

HTZN c ∩⊆)(ε . On the other hand, 
TYXZ ),(= is a point contained in cT  for which, 

only one hyperplane such as H  is binding. 
Therefore, with the elimination of half-space 

−H obtained by hyperplane H  from cT (without 

loss of generality assume that −⊆ HTc ), the point 
TYXZ ),(= will be an interior point of cT ′ ( cT ′  is 

the set obtained by the elimination of half-
space −H from cT ). Note that cc TT ′⊆ . Since, 

TYXZ ),(= is an interior point of cT ′ , therefore, 

there exists an ,0>ε for which, cTZN ′⊆)(ε . 

Also, since c
T TYXZ ∂∈= ),( , each 

)(ZN ε contains at least one point in cT  and one 

point not in cT  for every 0>ε . Now, assume that 

this neighborhood is )(ZN ε . Thus, there exists a 

point such as oZ for which )(ZNZ o ε∈ and 

co TZ ∉ . This shows that co TZ ′∈ and co TZ ∉ . 

Consequently, cc TT ′⊂  and therefore, it means that 

with the elimination of half-space −H from cT , cT  

has been enlarged. Thus, H is a defining hyperplane 
of cT . 

To show the converse, assume that the 
hyperplane H is a defining hyperplane of cT . It is 
obvious that the dimension of each hyperplane such 
as H  in smR +  such as cT  is equal to )1( −+ sm . 

Since, H is a defining hyperplane of cT  therefore, 

there exists a point such as TYXZ ),(= in the 

interior of HTc ∩ . Now, with the elimination of 

half-space −H from cT , we will encounter with a 

set called cT ′ ( cc TT ′⊂ ). Since, 

)int(),( HTYXZ c
T ∩∈= , thus, TYXZ ),(= will be an 

interior point of cT ′ . This implies that there exists an 

0>ε  for which the −+ )( sm dimensional 

cTZN ′⊂)(ε . Now, it is trivial that 

HZN ∩)(ε is −−+ )1( sm dimensional and this 

implies that HTc ∩ is −−+ )1( sm dimensional. 
This completes the proof.                                         � 

Theorem 1 shows a characteristic of defining 
hyperplane of cT . In order to simplify and find 
more simple methods for introduction of defining 
hyperplanes of cT , we need to use the following 
model that has been introduced by Cooper et al. 
(2007) with some minor modification: 
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(22)

Where M is sufficiently large positive number and  
E  is the set of indices of all extreme efficient 
DMU’s defined in previous sections. 

Since, Φ≠E , thus model (22) finds a 
hyperplane which, is binding, at the maximum 
number of extreme efficient units. 

Assume that 

),,,( ∗∗∗∗ LTVU , ),...,( 1
∗∗∗ = EttT

),...,( 1
∗∗∗ = EllL  

(23)

is an optimal solution of model (22). We define the 
hyperplane ∗H in the following manner: 

{ }0),( =
∗

−
∗=∗

X
T

VY
T

U
TYXH  (24)

The following theorem emphasizes the existence 
of a defining hyperplane of cT  at each extreme 
efficient unit.  

Theorem 2. There exists at least one defining 
hyperplane of cT  such as H for each Ej∈ , for 
which, HYXZ T

jjj ∈= ),( . 

Proof. As we know, −
== t

K
tc HT 1∩ . To the 

contrary of the desired result, suppose that there is 
no defining hyperplane of cT  which is binding 
at EjYXZ T

jjj ∈= ,),( . Therefore, 

KtHYXZ tjjj ,...,1),(int),( =∈= − . 

Consequently, )(int),( cjjj TYXZ ∈= , which is in 

contradiction with Ej∈ . This completes the 
proof.                                                                        � 

In order to improve the conditions under which 
one can more easily identify the defining 
hyperplanes of cT  and present more practical 
characteristics of determining defining hyperplanes 

of cT , we define a set based on the optimal solution 
of model (22) as follows: 

{ })22(,0 intjE j == ∗∗  (25)

The following theorem, shows that, ∗E  is not 
vacuous. 

Theorem 3. Φ≠∗E . 
Proof. The proof is obvious and omitted.                � 

The improvement of conditions and characteristics 
of determining defining hyperplanes of cT  made us 
define a created DMU in the following manner: 

∑
∗∈

∗
∗∗∗ ==

Ej

T
jj

T YX
E

YXZ ),(1),(  (26)

Particularly, TYXZ ),( ∗∗∗ = is the center of 
gravity of extreme efficient units for which, the 
hyperplane ∗H  (defined based on the optimal 
solution of model (22)) is binding. The following 
theorem states that, TYXZ ),( ∗∗∗ = is in 

boundary of cT . 

Theorem 4. c
T TYXZ ∂∈= ∗∗∗ ),( . 

Proof. Noting theorem 3, we have Φ≠∗E . 
Therefore, ∗H  defined in (24) is a supporting 

hyperplane of cT . Since, cT is a convex set 

therefore,  c
T TYXZ ∈= ∗∗∗ ),(  . Also,  we  have 

∑

∑∑

∗

∗∗

∈

∗∗
∗

∈
∗

∗

∈
∗

∗

∗∗∗∗

=−

=−

=−

Ej
jj

Ej
j

Ej
j

XVYU
E

X
E

VY
E

U

XVYU

0)(1

)1()1(  
(27)

This shows that the defining hyperplane ∗H is 
binding at c

T TYXZ ∈= ∗∗∗ ),(  and it means that 

c
T TYXZ ∂∈= ∗∗∗ ),(  and this completes the 

proof.                                                                        � 

Theorem 5. If the optimal solution of model (13) in 
the evaluation of created unit TYXZ ),( ∗∗∗ = is 

unique then the hyperplane ∗H will be a defining 
hyperplane of cT . 
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Proof. Consider the following model, which is the 
multiplier form of CCR model based on the set E  
when unit TYXZ ),( ∗∗∗ = is under evaluation: 

∗YUMax T

.0,0
1

0

,0..

≥≥
=

≤−

∈≤−

∗

∗∗

VU
XV

XVYU

EjXVYUtS

T

TT
j

T
j

T

 
(28)

Assume that model (28) has unique optimal 
solution ),( VU . Define, 

{ }0),( =−= XVYUYXH TT  (29)

It is obvious that 0=− ∗∗ XVYU TT  and H is 
the only supporting hyperplane of cT  at 

TYXZ ),( ∗∗∗ = . Therefore, we can define a face of 

cT  for which, TYXZ ),( ∗∗∗ = is on it as follows: 

cTHF ∩=  

It is trivial that F is the only face contained 
TYXZ ),( ∗∗∗ = , therefore, the dimension of F  

equals to 1−+ sm  and this means that the 
dimension of cTH ∩  equals to 1−+ sm . 

Therefore, considering Theorem 1, H  is a defining 
hyperplane of cT . Note that H is equivalent to ∗H  

and this means that ∗H  is a defining hyperplane of 

cT , thus the proof is complete.                                � 

To simplify and improve better recognition of 
defining hyperplanes of cT , we utilize the following 
definition of feasible directions constructed by 
connecting TYXZ ),( ∗∗∗ =  to each extreme 

efficient unit that ∗H is binding at them: 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈

−=
=

∗

∗∗

Ej

YXYXd
dD

TT
jjj

j
,),(),(

 (30)

Theorem 6. If the dimension of D equals to 
1−+ sm  then ∗H is a defining hyperplane of cT .  

Proof. Noting that c
T TYXZ ∈= ∗∗∗ ),( , 

c
T

jjj TYXZ ∈= ),(  for each ∗∈ Ej  and cT  is a 

convex set, we have ( ) cj TZZZ ∈−+ ∗∗ λ  for each 
∗∈ Ej and [ ]1,0∈λ . Also, since 

∗∗∗∗ ∈= HYXZ T),( , ∗∈= HYXZ T
jjj ),(  for 

each ∗∈ Ej  and ∗H  is a convex set, 
therefore ( ) ∗∗∗ ∈−+ HZZZ jλ  for each ∗∈ Ej and  

[ ]1,0∈λ . Thus, these imply that  

( ) ∗∗∗ ∈−+ HTZZZ cj ∩λ  for each ∗∈ Ej and  

[ ]1,0∈λ . Therefore, since, the dimension of D  

equals to 1−+ sm , thus we have 1−+ sm  
independent feasible direction at ∗Z  in ∗HTc ∩ .  
This implies that the dimension of ∗HTc ∩  equals 

to 1−+ sm and by theorem 1, ∗H  is a defining 
hyperplane of cT . Therefore the proof is 
complete.� 

5 ILLUSTRATIVE EXAMPLE 

In order to illustrate the characteristics of Theorems, 
we present a numerical example with the data set as 
in table 1. The CRS technology based on the data set 
in Table 1, has been illustrated in Fig. 1. This figure 
can be viewed as representing a section at a given 
output level, say 1=y , of the PPS generated two 
DMUs (A and B) that use two inputs and produce 
the same quantity of output ( 1=y ). The optimal 
solutions of (12) when assessing the efficiency of 
the extreme efficient DMU A or DMU B correspond 
to the coefficients of the supporting hyperplanes at 
A or B, which pass through origin. Model (22) then 
selects the hyperplane represented with a dark solid 
line conneting as distinct from the ones represented 
by the lighter dotted lines. The first one is obviously 
preferable to the latter because it is supported by two 
units (A and B) instead of by only one (A) or one 
(B). Moreover, in this particular case, this also 
means that it contains a FDEF of the frontier that 
DMU A and DMU B contribute to generate. 
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A    C  
Z*  
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X1  

Figure 1: The graph of example. 

3BTable 1: Data set. 

DMU Input 1 Input 2 Output 
A 1 2 1 
B 2 1 1 
C 2 2 1 

It is obvious that the defining hyperplanes of cT  are 
in the following manner: 

{ }022),,( 1211 =−= xyyxxH T  

{ }03),,( 21212 =−−= xxyyxxH T  

{ }022),,( 2213 =−= xyyxxH T  

We can see that 2)dim( 1 =HTc ∩ , 

2)dim( 2 =HTc ∩ and 2)dim( 3 =HTc ∩  as it 
has been shown in Theorem 1. Therefore, the 
condition of Theorem 1, 

1)dim( −+= smHT tc ∩  has been satisfied and 
this shows the truth of Theorem 1.  

The optimal solution of model (3) shows that 
{ }2,1=E . As stated in Theorem 2, the 

hyperplanes 1H  and 2H are two defining 

hyperplanes of cT  associated with ADMU  and 

the hyperplanes 2H and 3H are two defining 

hyperplanes of cT  associated with BDMU . 
These show the truth of Theorem 2.  

If we solve the model (22) it will be obtained that 
{ }2,1=∗E  and this shows the truth of Theorem 3. 

If we utilize the relation (26) we will encounter with 
a created DMU,  

( ) ( ) ( )TTT

TYXZ

1,5.1,5.11,1,2
2
11,2,1

2
1

),(

=+=

= ∗∗∗

 (31)

which has been shown in Fig. 1. It is trivial that the 
hyperplane 2H is binding at ( )TZ 1,5.1,5.1=∗ . 

Consequently, ( ) c
T TZ ∂∈=∗ 1,5.1,5.1  and this 

shows the truth of Theorem 4.  
If we solve model (11) associated with created 

DMU, ( )TZ 1,5.1,5.1=∗ , we will obtain a unique 

optimal solution ( ) ⎟
⎠
⎞

⎜
⎝
⎛=∗∗∗ 1,

3
1,

3
1,, 21 vvu . Now, 

based on the optimal solution of model (28), the 
hyperplane ∗H  will be in the following manner: 

⎭
⎬
⎫

⎩
⎨
⎧

=−−=∗ 0
3
1

3
1),,( 2121 xxyyxxH T  (32)

that is exactly the hyperplane 2H . This shows the 
truth of Theorem 5. 
The set D  as stated in (13) is as follows: 

( )
( ) ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−=

−=
=

T

T

d

d
D

0,5.0,5.0

,0,5.0,5.0

2

1  (33)

It is obvious that 1)dim( =D . Since, ∗H  is a 

defining hyperplane of cT , the converse of Theorem 
6 does not hold and this shows that Theorem 6 is 
only a sufficient condition. 

6 CONCLUSIONS 

In this paper, some parts of topology and convex 
analysis have been utilized in order to state some 
characteristics of defining hyperplanes of CRS 
technology in DEA. These characteristics enable us 
to recognize whether a hyperplane obtained by the 
optimal solution of multiplier form of CCR model is 
a defining hyperplane. Some of the characteristics 
are conceptual and some of them can be easily 
utilized in practice. An illustrative example has been 
considered, in order to show the truth of 
characteristics stated in this paper.  

We suggest as a future research, introduction of 
an algorithm to recognize all defining hyperplanes of 
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CRS technology based on characteristics presented 
in this paper. Also, we look for similar 
characteristics in the case of variable returns to scale 
technology as a future research. 
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