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Abstract: In this paper, the minimization of a weighted total variation regularization term (denotedTVg) with L1 norm
as the data fidelity term is addressed using the Uzawa block relaxation method. Numerical experiments show
the availability of our algorithm for salt and pepper noise removal and its robustness against the choice of the
penalty parameter. This last property is useful to attain the convergence in a reduced number of iterations
leading to efficient numerical schemes. The specific role of the functiong in the weighted total variation
term is also investigated and we show that an appropriate choice leads to a significant improvement of the
final denoising results. Using this function, we propose a whole algorithm for salt and pepper noise removal
(UBR-EDGE) that is able to handle high noise levels at a low computational cost.

1 INTRODUCTION

In many image processing problems, a denoising
step is required to remove noise or spurious details
from corrupted pictures. Variational approaches have
gained a wide popularity these years due to the possi-
ble addition of well-chosen regularity terms. Among
the most influential models, we can cite the total vari-
ation minimization framework introduced by Rudin
and Osher (Rudin and Osher, 1994) and Rudin, Osher
and Fatemi (Rudin et al., 1992). In this framework,
given a noisy image f(x), they propose to recover the
original imageu(x) by minimizing the total variation
underL2 data fidelity:

E(u) =
∫

Ω
|∇u(x)|dx+λ

∫

Ω
(u(x)− f (x))2dx, (1.1)

whereΩ⊂R
2, is the image domain andλ a positive

scale parameter.
Such a minimization allows the recovery of a simple
geometric description of the imageu while preserv-
ing boundaries. This framework is then very efficient
when denoising images with flat zones but fails in pre-
serving texture details. It also fails in removing con-
trasted and isolated pixels in images corrupted by a
salt and pepper noise. For such images, theL1 norm

is better adapted due to its link to median filtering. It
has been used by (Alliney, 1997) and by (Nikolova,
2004; Fu et al., 2006; Bar et al., 2005; Chan et al.,
2004; Chan et al., 2005; Cai et al., 2008; Cai et al.,
2009) for efficient image denoising algorithms.

In this paper, we choose to investigate the rel-
evance of theL1 norm for salt and pepper noise
removal through the minimization of the following
functional where the regularization term is a weighted
total variation:

E(u) =
∫

Ω
g(x)|∇u(x)|dx+λ

∫

Ω
|u(x)− f (x)|dx,

(1.2)
whereg : Ω→ R+ is a function independent ofu.
Such a criterion has been first investigated in (Bres-
son et al., 2007) for shape denoising. The function
g was chosen as an edge indicator function of the in-
put image (e.g.,g(x) = 1/(1+ |∇ f |)), which allows
a better preservation of corners and sharp angles for
shape denoising in images corrupted by a Gaussian
noise. In order to use such a criterion for salt and
pepper noise removal, we have to consider two main
issues: the minimization scheme and the choice of an
appropriate functiong.

Concerning the first issue, let us remind that the
minimization of the functional (1.2) is not trivial due
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its non differentiability. Recent papers addressed the
minimization ofTV+L1 using various numerical al-
gorithms. For example, standard calculus of varia-
tions and Euler-Lagrange equations can be used to
compute the PDE that will drive the functionalu to-
wards a minimum (Bar et al., 2005; Nikolova et al.,
2006; Bresson et al., 2007). This method requires
a smooth approximation of theL1 norm and a small
time step much be chosen so as to ensure the con-
vergence. This often leads to a large number of it-
erations as mentioned by (Bresson et al., 2007). In
(Chambolle, 2005), the MRF (Markov Random Field)
model is based on the anisotropic separable approxi-
mation (i.e.|∇u|= |Dxu|+ |Dyu|whereDx andDy are
the horizontal and vertical discrete derivative opera-
tors). This approximation is also used in (Darbon and
Sigelle, 2006a; Darbon and Sigelle, 2006b) where the
authors proposed an efficient graph-cut method. In all
the approaches mentioned above, an approximation or
a smoothing of theL1 norm is required. Recently, in
(Bresson et al., 2007), following the works of (Chan
et al., 1999; Chambolle, 2004; Aujol and Chambolle,
2005) and more particularly (Aujol et al., 2006), an
elegant fast minimization algorithm based on a dual
formulation is proposed. Thanks to such approaches,
they do not need any approximation or smoothing of
theL1 norm, they rather take benefit of a convex regu-
larization of the criterion which was first proposed by
(Aujol et al., 2006).

Following this very interesting work, we propose
a new numerical scheme for the minimization of (1.2)
using dual methods. From the criterion (1.2), an aug-
mented Lagrangian formulation (Fortin and Glowin-
ski, 1983) with a penalty term is introduced and
solved using the block relaxation method of Uzawa.
Our algorithm (named UBR) presents the advantage
to be more robust to the choice of the penalty param-
eter than the algorithm proposed by (Bresson et al.,
2007). This parameter can then be chosen so as to de-
crease the number of iterations and consequently the
computational cost.

The second contribution of this paper lies in the
proposition of a novel algorithm for salt and pepper
noise removal. Taking benefit of the weighted total
variation termTVg, we propose to study the influ-
ence of well-chosen functionsg in order to improve
the denoising results. An efficient algorithm, denoted
UBR-EDGE, is finally proposed for salt and pepper
noise removal. Thanks to the nice properties of UBR
applied to the weighted TV, our algorithm is able to
handle high noise levels at a low computational cost.
Experimental results are provided to attest the avail-
ability of our 3-steps algorithm.

The paper is organized as follows. In Section

2, we present theTVg + L1 model and the Uzawa
block relaxation method. The role of the weighted TV
for salt and pepper removal and the algorithm UBR-
EDGE are presented in section 3 and illustrated with
some experimental results.

2 EFFICIENT MINIMIZATION
OF TVg+L1-NORM

Let Ω be a two-dimensional bounded open domain
of R

d with Lipschitz boundary. We consider the
following convex energy functional defined, for any
f ∈ L1(Ω), anyg : Ω→ R+ and any positive param-
eterλ :

E(u) =
∫

Ω
g(x)|∇u(x)|dx+λ

∫

Ω
|u(x)− f (x)|dx

(2.1)
Our aim is the minimization of the energy functional
E, i.e.

min
u∈BV(Ω)

E(u), (2.2)

whereBV(Ω) is the subspace of functionsu∈ L1(Ω)
of bounded variations.

2.1 An Augmented Lagrangian Method

In order to approximate (2.1) by an augmented La-
grangian and to present our dual method of resolu-
tion, we need to transform the convex minimization
problem into a suitable saddle-point problem by in-
troducing an auxiliary unknown. Let us introduce the
auxiliary unknownp = f − u and rewrite the func-
tionalE as

E(u, p) =
∫

Ω
g(x)|∇u(x)|dx+λ

∫

Ω
|p(x)|dx (2.3)

The unconstrained minimization problem becomes

min
(u,p)∈K

E(u, p). (2.4)

where K = {(u, p) ∈ X×X | u+ p− f = 0 in X},
with the Euclidian spaceX = R

NxN equipped with
the L2 scalar product(u,v). To problem (2.4), we
associate the augmented Lagrangian functional (see
(Koko and Jehan-Besson, 2009) for details) defined
by:

Lr(u, p;s) = E(u, p)+ (s,u+ p− f )

+
r
2
‖ u+ p− f ‖2 , (2.5)

wherer > 0 is the penalty parameter ands the La-
grange multiplier. This minimization problem can be
solved using Uzawa block relaxation methods which
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have been used in nonlinear mechanics for operator
splitting and domain decomposition methods (Fortin
and Glowinski, 1983; Glowinski and Tallec, 1989;
Koko, 2008). Applying the block relaxation method
to the problem defined above, we obtain the following
algorithm:

Minimization process of TVg+L1

Initialization. p−1, s0 andr > 0 given.

k≥ 0. Compute successivelyuk, pk andsk as follows.

Step 1. Finduk ∈ X such that

Lr(u
k, pk−1;sk)≤Lr(v, p

k−1;sk), ∀v∈ X.
(2.6)

Step 2. Find pk ∈ X such that

Lr(u
k, pk;sk)≤Lr(u

k,q;sk), ∀q∈X. (2.7)

Step 3. Update the Lagrange multiplier

sk+1 = sk+ r(uk+ pk− f ).

The algorithm UBR corresponds to the generic
block relaxation algorithm ALG2 (see, e.g., (Fortin
and Glowinski, 1983; Glowinski and Tallec, 1989)).
Let us now detail the explicit solutions of the different
steps (proofs are given in (Koko and Jehan-Besson,
2009)).

Proposition 2.1 The solution of Step 1 can be given
by:

uk = f − pk−1+
1
r
(∇ ·v∗− sk)

where v∗ is the solution of:

−∇(∇ ·v∗− p̃k−1)+
1
g
|∇(∇ ·v∗− p̃k−1)|v∗ = 0.

(2.8)
with p̃k−1 = sk+ r(pk−1− f ).
For solving (2.8), we can use the fixed-point proce-
dure of Chambolle (Chambolle, 2004), v0 = 0 and for
anyℓ≥ 0

vℓ+1 =
vℓ+ τ∇(∇ ·vℓ− p̃k−1)

1+(τ/g)|∇(∇ ·vℓ− p̃k−1)|
, (2.9)

whereτ > 0.

The solution of Step 2 is detailed in (Koko and Jehan-
Besson, 2009) and reminded below in the whole de-
scription of the algorithm:

Algorithm UBR

Initialization. p−1, s0 andr > 0 given.

Iteration k≥ 0. Compute successivelyuk, pk andsk

as follows.

Step 1. Setp̃k−1 = sk+ r(pk−1− f ) and compute
vk with (2.9).

Computeuk

uk = f − pk−1+
1
r
(∇ ·vk− sk)

Step 2. Computepk

pk =











0 if |sk+ r(uk− f )|< λ ,

f −uk− 1
r

[

sk−λ sk+r(uk− f )
|sk+r(uk− f )|

]

if |sk+ r(uk− f )| ≥ λ .

Step 3. Update the Lagrange multiplier

sk+1 = sk+ r(uk+ pk− f ).

We iterate until the relative error inuk andpk be-
comes sufficiently “small”. The convergence of the
algorithm UBR is checked using the following con-
vergence criterion:

√

||uk−uk−1||22+ ||p
k− pk−1||22

√

||uk||22+ ||p
k||22

≤ εup.

The discrete divergence and gradient operators are
given in (Chambolle, 2004).

Note that, each iteration of Algorithm UBR re-
quires the convergence of the Chambolle fixed point
procedure (2.9). The convergence of this loop is
checked using a threshold on the normalizedL2 error
onvl .

2.2 Applicability and Robustness

We first test the availability of our UBR algorithm for
salt and pepper noise removal taking classicallyg= 1
which corresponds to the minimization ofTV+ L1.
The experimental results provided in Figure 1 demon-
strate that noise is correctly removed. Moreover,
the noisy part is captured through the auxiliary un-
knownv as displayed in Figure 1.c. With the function
g(x) = 1 andλ = 1.5, we find a PSNR of 32.5 dB for
the denoising of a noise of 10%. The parameterλ is
a classical smoothing parameter. Choosing a smaller
value leads to a higher blurring of image components.
The influence of this parameter is less sensitive when
using theTVg regularization term as demonstrated in
the next section.

In a second step, we want to study the robustness
of the result against the choice of the parameterr. Our
experimental results tend to prove that the algorithm
UBR provides the same denoised images for different
values ofr. This is demonstrated by the Figure 2 that
displays the evolution of the PSNR according to the
number of iterations for different parametersr (from
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(a) Noisy image (b) Finalu (c) Finalv

Figure 1: The imagesu (PSNR= 32.5dB) andv obtained
after convergence of the algorithm UBR withg(x) = 1 (λ =
1.5, r = 20, εup = 0.0001) for the image “peppers” with a
salt and pepper noise of 10%.
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rithm for salt and pepper noise removal taking

1 which corresponds to the min-

. The experimental results

provided in Figure 1 demonstrate that noise is

correctly removed. Moreover, the noisy part is
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Figure 2: Algorithm UBR (g=1) : Evolution of PSNRFigure 2: Algorithm UBR (g=1) : Evolution of PSNR dur-
ing iterations (λ = 1.5) with r = 10,20,30,100,200 (εup =
0.0001) for the image “peppers” with a salt and pepper
noise of 10%.

10 to 200). Such a feature then represents an im-
provement of the method proposed in (Bresson et al.,
2007) since the convergence can be obtained without
the need to increaser to infinity. We also report the
number of iterations according tor (Figure 3). In this
case, the optimal value in terms of iterations is ob-
tained forr = 30 with 60 iterations whenλ = 1.5, and
for r = 10 with 91 iterations whenλ = 0.5. Choosing
a higher value forr increases the number of iterations
needed to attain the convergence without improving
the final result. We can then choose a small value for
r to obtain a low computational cost without decreas-
ing the quality of the result.

3 SALT AND PEPPER NOISE
REMOVAL

In this section, we first propose to take benefit of the
weighted TV regularization term and of a dedicated
functiong in order to increase the quality of the de-
noising results. Our algorithm UBR is then embedded
in a more complete process specified for salt and pep-
per noise removal and named UBR-EDGE.

ob-
tained after convergence of the algorithm UBR with

0001) for the im-
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Figure 3: Algorithm UBR (g=1) : Number of iterations for
convergence according to the parameterr with λ = 0.5 and
λ = 1.5 for the image “Peppers” with a salt and pepper
noise of 10%.

3.1 The Role of the Weighted TV

A first improvement of the denoising results can be
obtained using the fact that the dynamic range of the
noise is known. Indeed corrupted pixels take the val-
uesmin or max that correspond respectively to the
minimum and maximum values of intensity. In or-
der to embed this information in the functiong, we
introduce the following mask function:

m(x) =

{

αn if f (x) = min or max
α elsewhere.

(3.1)
We chooseαn = 1.5 and α = 0.5 in order to up-
permost smooth the corrupted pixels. We then take
g(x) = mσ (x) wheremσ (x) = Gσ ∗m(x) is a slight
regularized version ofm (G is a Gaussian of 0-mean
and varianceσ = 0.5).

Figure 4 displays the resulting images and the cor-
responding values of PSNR while settingg(x) = 1
(first row) andg(x) = mσ (x) (second row). Final
images are provided for different values of the reg-
ularization parameterλ . For each parameter, we ob-
serve a significant increase of 2 to 4dB in the final
PSNR. The best value of PSNR is 34.9 dB obtained
for λ = 1.5. The scale effect of the parameterλ is
also less visible due to the fact that we restrict the
regularization term to the extreme values of intensi-
ties corresponding to the corrupted pixels.

Moreover, these first results are obtained at a low
computational cost (from 1.6 seconds for a noise of
10% to 4.3 seconds for a noise of 70% on the image
Peppers (256x256) with a computer of 3GHzand 2Gb
of RAM). This confirms the efficiency of our numer-
ical scheme UBR and attests its availability for the
design of our 3-steps salt and pepper noise removal
algorithm detailed thereafter.
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(a) λ = 1,g= 1 (b) λ = 1.5,g= 1
PSNR= 30.3 dB PSNR= 32.5 dB

(c) λ = 1,g= mσ (d) λ = 1.5,g= mσ
PSNR= 34.3 dB PSNR= 34.9 dB

Figure 4: Experimental results with the algorithm UBR for
different smoothing values ofλ (r = 20,εup = 0.0001) for
the image “peppers” with a salt and pepper noise of 10%.
The first row displays the results obtained withg(x) = 1
while the second row displays the result obtained using
g(x) = mσ (x).

3.2 The 3-steps Algorithm UBR-EDGE

The use of the weighted TV provides a significant in-
crease of the quality of the final results. However,
even if the algorithmTVg+L1 well performs for low
noise values, it gives very smoothed results for higher
noise values. Indeed, in order to remove large noisy
patches, we must decrease the parameterλ and so
increase the smoothing of the whole image. In or-
der to circumvent such a problem, we propose both a
pre and post-processing to UBR. As a first step (pre-
processing), we propose to decrease the size of un-
known values (corrupted pixels) using a median filter
(of half-size 1). The pixels that are still corrupted after
this first pass are estimated by computing a mean on
the known 4-connexity neighbours (i.e. we only take
the known values to compute the mean). The aim of
this first pass is to correct the bias introduced by the
extreme intensity values of the noisy pixels (min or
max) in the variational process. This first estimation
is then corrected using theTVg+L1 algorithm which
is able to smooth differently noisy pixels from uncor-
rupted ones through theg function. This function is
chosen to bemσ (x) detailed in section 3.1. The cor-
rupted pixels are computed from the input image but
the functionf used in UBR is the result of step 1. At
the end of the process, we apply a very simple edge
smoother also known as EDDI (De Haan and Lod-
der, 2002) usually used in de-interlacing process for

electronic devices. In this efficient edge smoother,
the unknown intensity values are estimated by com-
puting the mean between the two opposite pixels that
share the nearest intensity in a 8-neighborhood. We
apply this simple filtering scheme only on the initial
corrupted pixels.

Algorithm UBR-EDGE

Step 1. Pre-processing
f1← median-filter( f ,1)
if f1(x) = min or f1(x) = max then

f1(x) =
1

∑w( f (xi))
∑

xi∈V4(x)

w( f (xi)) f (xi)

with w( f (xi)) = 0 if f (xi) = minor max.

Step 2. Algorithm UBR
run UBR with f1 as the input image andg(x) =
mσ (x) defined in (3.1) and computed using the
initial image f .

Step 3. Edge smoother
if f (x) = min or f (x) = max then

u= 0.5∗ (u(xi + l ,x j + k)+u(xi− l ,x j − k))

where

(l ,k) = argmin
(l ,k)∈{−1,1}x{−1,1}

di f f (l ,k)

with di f f (l ,k) = |u(xi + l ,x j + k)−u(xi − l ,x j −
k)|.

Let us remark that the first functionalf1 only acts
as an initial condition of the algorithm UBR in order
to give a first rough estimate for the corrupted pix-
els. The last edge smoother is applied only on the
corrupted pixels as well.

In Figure 5, final results of the different steps of
our process are given for the restoration of the image
“Lena” corrupted by a salt and pepper noise of 70%.
The Figure 5.(b) displays the image obtained after the
pre-processing step (median filter + mean). This im-
age is processed as an input of our algorithm UBR
usingg(x) = mσ (x) and the result of our UBR algo-
rithm is given in Figure 5.(c). The EDGE smoother
EDDI is then applied which gives the final image of
Figure 5.(d).

3.3 Experimental Results

Some visual results are provided in Figure 6 for
“Lena” (512x512) and in Figure 7 for “Peppers”
(256x256). Thanks to these visual results and to the
associated PSNR values and computational costs re-
ported for all the noise levels in Table 8, we can con-
clude that our algorithm provides good visual results
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(a) Input image (70%) (b) Step 1
PSNR= 19.6 dB

(c) Step 2: UBR (d) Final : UBR+EDGE
PSNR= 30.1 dB PSNR= 30.6 dB

Figure 5: Salt and pepper noise removal using the algorithm
UBR-EDGE for the image Lena corrupted by a noise of
70%. The result is given for each step of the process. The
image obtained after the pre-processing (median+mean) is
given in (b). This image is used as an input of the algorithm
UBR and the result is given in (c). A last post-processing is
applied to the image which yields to the final result given in
(d).

at a low computational cost. The PSNR values ob-
tained for the image “Lena” can be compared with
the PSNR values reported in (Chan et al., 2004; Chan
et al., 2005) for many different algorithms. Compared
to the values computed in this paper, our algorithm
gives comparable PSNR results to the best algorithm
(i.e. algorithm III) even for a high noise level. For
completeness, we report the values given by (Chan
et al., 2005) for the denoising of Lena (512x512) with
a noise of 70%. With the classical Median filter, the
PSNR is 23.2dBand with an improved switching me-
dian (ISM) filter, the PSNR is 23.4dB. Using the al-
gorithmIII proposed in (Chan et al., 2005), the PSNR
is 29.3dB. We find a PSNR of 31.4 dB using our algo-
rithm. For a noise of 90%, they find a PSNR of 25.4
dB while our algorithm gives a PSNR of 26.6 dB. We
also run our algorithm on the input noisy images pro-
vided in the web page of R. Chan1. Experimental
results reported in (Koko and Jehan-Besson, 2009)
show that our algorithm gives good quality results
with a PSNR value that is a little smaller than the one
found by the algorithm III (Chan et al., 2004)(with
a difference of less than 1 dB). More precisely, for
the denoising of the first image in Figure 6.a (noise
of 70%), they find a PSNR of 23.07dB while our

1http://www.math.cuhk.edu.hk/ rchan/paper/impulse/

(a) Noise: 10% (b) PSNR=43.5 dB

(g) Noise: 70% (h) PSNR=31.4 dB

(i) Noise: 90% (j) PSNR=26.6 dB

Figure 6: Salt and pepper noise removal using the algorithm
UBR-EDGE for the image Lena (512x512). The input im-
ages are given with the associated results.

PSNR is 22.2dB. For the image 6.b, they find a PSNR
of 34.16dB while our is 33.3dB. For the image 6.c,
they find a PSNR of 26.78dB while our is 26.0dB. So
their algorithm gives better PSNR for these images
but with a difference of less than 1dB. As far as the
computational cost is concerned, it is difficult to com-
pare the two computational costs since the algorithm
III is programmed using Matlab. However, our al-
gorithm seems to provide a lower computational cost
especially for a high level of noise (see Table 8).

4 CONCLUSIONS

In this paper, our contribution is twofold. First,
we propose a new efficient and robust minimization
scheme for the minimization of aTVg+ L1 criterion
using Uzawa Block Relaxation (UBR) method. We
more particularly study the robustness of the algo-
rithm against the penalty parameterr. Secondly, we
investigate the role of the weighted TV to improve
salt and pepper noise removal and we embed our al-
gorithm in an efficient 3-steps process dedicated to
high noise levels. Our algorithm gives comparable
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(a) Noise: 30% (b) UBR-EDGE
PSNR=34.5 dB

(c) Noise: 70% (d) UBR-EDGE
PSNR=27.7 dB

Figure 7: Salt and pepper noise removal using the algorithm
UBR-EDGE for “Peppers”. For the result obtained in (b),
λ=2 and for the result in (d),λ = 1.5.

Algorithm UBR-EDGE
Lena (512x512) Peppers (256x256)

Noise PSNR time(s) PSNR time(s)
10 43.4 2.7 40.6 0.4
20 39.7 3.9 37.3 0.7
30 37.1 5.3 34.5 1.1
40 35.3 6.6 32.2 1.4
50 33.9 8.1 30.6 1.7
70 31.4 17.1 27.7 2.3
90 26.6 41.4 23.1 20.1

Figure 8: PSNR according to the salt and pepper noise level
for the image “Peppers” (256x256) and “Lena” (512x512)
using the algorithm UBR-EDGE (r = 200, εup = 0.0001).
For a noise level between 10% and 50%, we choose the
same value ofλ = 2. For a noise level of 70%,λ = 1.5 and
for 90%,λ = 0.7.

PSNR values to one of the best denoising algorithm
available in the literature and at a lower computational
cost. However, we can mention that choosing auto-
matically the value of both the scale parameter and
the penalty parameter in order to obtain the best qual-
ity result and the lower computational cost is an open
question that remains difficult to solve. Our on going
research is directed towards this issue.

(a) PSNR=22.2 dB

(b) PSNR=33.3 dB

(c) PSNR=26.0 dB

(d) PSNR=29.1 dB

Figure 9: Salt and pepper noise removal using the algorithm
UBR-EDGE for different images of the Berkeley database
corrupted with a salt and pepper noise of 70%. For all the
results, we takeλ = 2.
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