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Abstract: In this paper we give some different surface generation methods starting out from prescribed boundary curves.

If the boundary control points are known it is natural to think of Coons patches, a popular solution of the prob-

lem of finding a surface given its boundary curves. We have developed three methods to generate triangular
patches given the boundary curves. First we give a discrete version of the triangular Coons patch. A second
method lets us to find the extremals of a functional as a solution of a linear system of the control points. That

functional is the one that minimizes the Coons patch. The third method makes it possible to béia B
triangle by means of a mask deduced from the characterization of cubical extremals of the functional.

1 INTRODUCTION 2 BACKGROUND ON COONS
RECTANGULAR PATCHES

One of the oldest surface problems in CAGD is the

following: given the boundary curves, find the para- ¢,qnq first described this type of interpolant in
metric surfacex with these as boundary curves with (Coons, 1967). It is assumed that four boundary

no o_ther restriction. A popular solution of this prob- curves are given, which it is convenient to think of
lem is the Coons_ patch. . . . as coming from a surface denot&gl and so the nota-
One of the aims of this paper is to _flnd the ex- tion %3 (u,0), % (u,1), %3 (0,v) and X (1,v) is used
tremals ofafunct_|onal as_asolut!on of.a lig€ar Sygtem, ., represent these boundary curves. The bilinearly
of the control points. This functional is the one that blended Coons patch that interpolates to the given

minimizes the Coons patch. bound is defined bv:
Some other work about finding extremals of a oundary curves 1 defined by:

functional was already done. For rectangular patches . _

in (Monterde, 2003), (Monterde, 2004) and (Mon- X (uv) = (1= u)%6 (0,v) +u%5 (1,v)

terde and Ugail, 2004), the functional they work with ~ + (1—V)Xg (u,0) +vXg (u,1)
is the Dirichlet functional. The Dirichlet functional )< @(0,0) @(071) ) ( 1_v )
X (1,0) % (1,1) v '

is related with the theory of minimal surfaces due to

the fact that is a linear functional having the same )

extremals as the area functional. For the triangu- |Nhe Coons rectangular patch interpolates four bound-

lar Bézier case (Arnal et al., 2003) worked with the &y curves and in addition is an extremal of the func-

Dirichlet functional too. When the geometric prob- tional

lem is get Eezier approximations to constant mean

curvature surfaces the study of the appropriate func- 7 (X) :/ [[Xavl|2dudy (1)

tional appears in (Arnal et al., 2008). Finally, in a U

more general way, for rectangular patches in (Mon- where U = [0,1] x [0,1], over all patches, X €

terde and Ugail, 2006) a general quadratic functional ¢*[u,v], with a prescribed boundary. The Coons

was studied. patch was described in (Nielson et al.,, 1978) as

Before we present our study about triangular the unigque interpolant that minimizes the functional

Coons patches, let us describe the more conventional# (X).

rectangular Coons patch and its properties. In general if a surfacéx, is an extremal of a func-
tional, then it satisfies the associated Euler-Lagrange
equation, which, for this functional, is the PDE

—(1-u u
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7uuvv =0 (2)

Therefore the Coons patch can be considered as
a PDE surface, since it is a solution of the equation

above.

Instead of working with the general problem of
finding extremals of the functionat , we will con- Figure 1: A representation of a triangular Coons patch.
sider a restricted problem, namely that of finding
the polynomial patch that minimizes the functional  some differences with respect to the rectangular
among all polynomial patches with the same bound- Coons patch must be pointed out. First let us remark
ary. that if we consider the border curves to be polyno-

Some work related with rectangular Coons mial curves of degres, then the associated triangu-
patches was carried out in (Farin and Hansford, Jar Coons patch is a degreer 1 polynomial surface.
1999). While the boundary curves (u,0), X (u, 1), This increase in degree does not happen in the rectan-
%o (0,v) andXg (1,v) may be totally arbitrary, in the gular case.
early days the boundary curves were considered as |n contrast to the rectangular case we find two
discretized curves with many points on them. In fact, more differences. First since the triangular patch is
in (Farin and Hansford, 1999) these boundary poly- not linear in both variables, theR yuw# 0. On the
gons are treated aseBier border control points and a  other hand the Triangular Coons patch is not an ex-
discrete version of the Coons patCh is given. The inte- tremal of the functiona_l}' . It can be proved that for
rior control pointsP, j are defined in terms of bound-  the triangular case, being an extremal of such a func-
ary points by the discrete Coons patch: tional is not equivalent to satisfying the associated

Euler-Lagrange equation, as was true for the rectan-
i i i j gular Coons patch: An extremal of the functional,
P= (1— ) Po,j+ —=Pmj+ <l— ) Po+=Pn described in Equation (4), would coincide with the
m m m n \ . : :
. solution of its associated Euler-Lagrange equation,
B i Poo  Pon 1-4 X uuw= 0, only under certain conditions on the con-
( 1- m m ) R q
Pno Pmn i trol points.
Now, analogously to what was done in (Farin and
Hansford, 1999) for rectangular patches, we have ob-
tained the discrete version of the triangular Coons
patch.

for 0<i <mand 0< j < n. These control points de-
fine the discrete Coons patch which is the same patch
as if Coons interpolation was applied to thézser
curves associated to the boundary polygons. o ) ) ] o
The discrete Coons patch also minimizes the dis- Definition 1. The interior points Pjx with i+ j +
crete version of the functional . In fact, the discrete K= N+ 1, of the Triangular Discrete Coons patch are
Coons patch is a PDE&ier surface satisfying the ~defined by
discrete version o = 0.

k
R.jk=—= (Pon-i+Pojn-j—Poon)

n+1
3 TRIANGULAR COONS A Pt R i Pong) @
PATCHES i
_ _ _ +——= (Ph—kok+Pn-j,jo—Pnoo)-
Now after introducing all these topics for rectangular nt1

surfaces, let us come back to triangular patches. TheThe triangular Bezier surface with the previous in-
triangular Coons patch we will define first appeared o rior control points coincides with the triangular

in (Nielson et al., 1978). Similar to the rectangular . .
Coons patch we consider the border cun@éu, 0), Coons patch _that would be obtained from tm;zlzer
curves associated to the boundary control points.

X5 (0,v) and g (u,1—u), (or X5 (1—V,v)), to denote
the boundary curves and define the patch as In the following proposition we give a formula to

R _ - express the functional of a&ier triangular patch,
X (V) = (1 - u—V) (36 (6,0) + 55 (0,v) — 5 (0,0)) P gHare
+ V(X5 (0,u+V) +X5 (u,1—u) — %5 (0,1)) 7(7):/ %/ 2dudy (4)
+u(Xg( T

% U+V,O)+X—>o(1*V,V)*%(l,O)).
defined now in the regiomr = {(u,v) € R?:0 <
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And now, we compute the first derivative from Equa-

tion (4):
0F (X
o / g [Rldudv
Figure 2: Three discrete triangular Coons patches. —/ 2< axauv, Xy > dudv
u,0 < v,u+v <1}, in terms of the control points = /T 2 < (B} )uv, Xuv > dudy

B = (X|1,X|2,Xi3). wherel = (Iﬂ Jak)

Proposition 2. The functional,7 (X), of a triangu-
lar Bézier surface can be expressed by the formula

Let us denote by = (1,0,0), &2 = (0,1,0), e3 =
(0,0,1). Then, the second derivative is given by:

= Z Z z lol1 Mgy ( ) aXll 0

a=1lo|=nlly[=n

where[l| =i+ j +k, and with —2/ (B uvs B|l)uv>dudv
_ 2

(In)(n) _Z/I n (n_l ) Blofelfez_Bpofelfe3
CIO'l :2n(2n—1) (0 )( (b +b +b +b ) _BP0762763+BP0—263) (B:117e:L7e2

lo+l1

B! o B! o o +B! 5 )dudv
—b13— 033+ b33+ b3 — b3 b33, o e es(n)<|;)ez & T Bl 2;)

o/\i) 112 193 23 133
where the coefficients!bsatisfy the symmetry relation =2n(2n—-1) (02n 1) (5 (b13 + by3+ b3+ b33)
bl = b, = bl = bll,, and are defined by lo+11

—bi3 — b33+ b33+ b2 — b33 — b33),
16181111 +11131615 P | where we have computed the integral of the Bernstein
g HDUGHD Mo+ (o1 -1) polynomials with the formula:
S - +151505-1) t—
0+ (3 (I HH (1L+1T—1) 7 , 1
B n—2 - -
215181010 N / gty (1Y) dudv (3n—2)(3n—3)’
o+ I+ -5 (I5+11-2) ) and we have performed some simplifications like the
bl = 20505 DIL(1E-1) & following:
(|5+|')(|5+| —DOF+HH A+ -1 U
IS5 1)+ 95151 . /qB,”D LBl e FBUL B . dudv
15+ ASHID) G+ -5+ -2) /( 2 ) ("2 ) () (L)
_ '09162'16183 l1-e—ep/ \lg—€; €3
2lp(Ip—D13(1-1) "y (o 2?7 '
I (G =D 5+ —2) 15+ —3) oriiTE TS o s "
r=s=t=I. lo+11-2e; ~ex—e3
7) B (| )(.1) 1312123 + 1413102
. . - ) () O )(|2+|2)(|1+|1 (I3 +13)
Proof: The functional¥ is a second-order func- o
tional and, therefore, in order to obtain the coeffi- _ m@n-1 D (o)) s
cientsCy,;, we compute its second derivative, first : (“’1) (11,)
from Equation (5): Therefore
27 (7) 92 3 — = ny/n
. Cox B (lo)( ) 1 53
DEE O 0 ;szzn Cigiy =2n(2n—1) (7 )( (bi3 -+ br3+ b33+ b33)
o™il
o]
=@ > x5 =2C, . —bi3 —bi3+bi3+ b3 — b3 — b33)
11 |J[=n
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whereb}, are defined in Equation (7).

u Po1j1ki2P1jkra P1jrik Bo1ji2k1

Let us remark that the formula we give in Equa-
tion (5) translates the functiona#, , into a function

of the control points. This fact, will allow us to com-

pute compute the gradient of the functiomalwith Pzj-1k-1

respect to the coordinates of a general control point this condition relates the points on the grid in such a
2 way, that the interior point can be expressed in terms

_ (1 3 i
F_)io - (X'O’X'O’X'O) tc.> obtain an ex'FremaI of the func- of the boundary control points. The mask is then con-
tional among all Bzier surfaces with the same border gjqyered to be a stencil for the central point.
as a solution of a linear system. Some previous work related to masks can be
Proposition 3. A triangular control net, » = found in (Farin and Hansford, 1999). The rectan-
{Pi }}11=n, is @an extremal of the functiona¥; , among  gular Coons patch, as well as the associated discrete
all triangular Bezier surfaces with a prescribed Coons patch, satisfiesRermanence Principle Let
boundary if and only if: two points(up,vp) and (uz,v;) define a rectangle R
in the domain U of the Coons patch. The four bound-
CaPy=0 forall [lo=(13,13,13)|=n (8) aries of this subpatch will map onto four curves on the

Ri—1k+1 Pjk Pjrik-1
Pigj1kPijk1

|9=n Coons patch. The Coons patch for those four bound-
with |& |§ |g > 0, where G are the coefficients de- &1y Curves is the original Coons patch restricted to
fined in Equation (6). the rectangle R.

Moreover, as we said before, the rectangular
Coons patch is a PDE surface satisfyimguy = 0
and the discrete version of this partial differential

Proof: The gradient of the functional with respect
to the coordinates of an interior control poiRf =

(X|107X|20,X|30> is given by equation is verified exactly by the discrete Coons
patch. Farin and Hansford, in the previously cited
a7 (X) a7 (X) a7 (X) a7 (X) paper, (Farin and Hansford, 1999), deduced the fol-
aR, = o o lowing rectangular mask from this discrete PDE.
0 o] 0
1 5 1 -1 2 -1
=2 C|0JXJ7 C|0JXJ7 ; C|0‘JX\:]3 H,j = —X 2 * 2
=n f=n f=n 4 12 1
=2 Z CioaPs. In that work, the authors generalized it by defining
|9=n what they called permanence patches: A permanence
[ ] patch is obtained from a control net
Equivalently, a triangular control nete = a B a
{P}}i|=n; is an extremal among all control nets with P B« B
prescribed border control points if and only if b o B a
(n) 1 with 40+ 4B = 1.
0= x (5 (b13+b}3+ b33+ b33) This kind of mask suggests the possibility of dif-
[l]=n (|O+|) ferent choices formx and 3, so in this sense Farin
7b57 bﬁ + bf% - b{%— b?%* b%%) P and Hansford, show how some choices of these val-

ues give different masks which are also the discrete

1112 13| — H 1123 H
forall |lo= (I5,15,15)| = nwith I, 15,15 > O, with the  ¢5\"o¢ 2 PDE, as the discrete version of the Euler-

coefficientsbly given in Equation (7). Lagrange PDEX yuw = 0, gave the first rectangular
maska = Z*.
Moreover Farin and Hansford extended the per-
4 COONS MASKS AND manence patches concept to the triangular case just
TRIANGULAR PERMANENCE by cqnsidering the analogous triangular mask.
PATCHES Given a mask of the form
a B B a
In general a condition that relates some control points B * B
can be written by means of a mask only if (consider- Rik= B B ©)
ing a 3x 3 triangular grid), a
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with 3a + 6B = 1 the triangular patch formed with We will consider the triangular control net of a tri-
such a control net is called a triangular permanence angular Coons patch of degree 3, instead of the gen-
patch. eral case of degree n,
Now, let us come back to rectangular patches and
show how thear = ! mask was deduced from the Poos Po12 Poz21 Pozo
Euler-Lagrange PDEX yyy = O.
The discrete version o yuw = 0 is given by Pio2 Pi11 Pi2o
A?2P j =0, where
P01 P10
AR j=Pigj— R
AO’lF’,,j =F’|,j+1—|:’|7j. |:)300
Then The interior control pointPy11, is defined, by Equa-
tion (3), in terms of the boundary control points of
- a grid of degree 2. Moreover, the boundary con-
0=A""Rj=Ri2jr2—2R2j4+1—2P1j42 trol points on the degree 3 control net are the con-
+4P 1j41—2P41j— 2R j11+PR2j+Pj2+PR trol points of the degree elevation of degree 2 border
; curves.
gives

To obtain a triangular mask grenerating a perma-
nence patch we will use the following result that gives

-1 us a version of Proposition 3 for the case: 3.
Rj=— (Rijr1— 2P — 2P 11— 2R 1 p 5
4 Proposition 4. A triangular control net of degree 3,
—2P_1j+PRugj1+PRo1ja+PRogjo1) ? = {R }} /=3, is an extremal of the functionat, (?),
) (10) among all triangular control nets with a prescribed
that is the rectangular mask= ‘Tl. boundary if and only if

This mask could also be deduced as a consequence
of the permanence principle. Let us show this. We

will determine for which value oft andp, with 4a + Pi11= > (Po12— Po21+ P1o2+ Pr20— P201+ P210) -

43 = 1, a permanence patch satisfies the permanence 2

principle. From this condition, given the exterior control
This principle implies that the control poil ; points in the case of degrae we can generate the

can be obtained with the discrete Coons formula, whole triangular net by solving a linear system where
Equation (2), from the boundary control points on a the equations are:
n x mgrid or instead one can apply this formula to

any 3x 3 grid included in the global grid, 2Pk =P_1jk1—P1jrik+ P 1kt

Raj1 P Poiju +Rjrik-1—Pi1j-1k+Pisjk1
Rj-1 R.j R+ - R.j x being a interior control point. This equation can
Pigji-1 Ry Riaja be expressed by the following mask:
Therefore if we consider that any point in the
equation 0 1 -1 0
Rik= ! X ! * 1 (11)

Pj=a(Pirj+1+Ps1j-1+P-1j-1+P_1j1) 2 -1 1
+B(PyLj+PR 1P 1+P 1)), 0

Then if we consider that any interior or border

can be written in terms of the boundary control points, L .
control point in the equation

as we said by means of Equation (2), it leads us to the
valuea = 21

The permanence principle is not verified by trian- P111= o (Pooz+ Pozo+ Ps00)
gular Coons patches so the previous reasoning cannot | g (Po12+4 Po214 Pio2+ P2o1+ Pi2o+ P210)
be followed in order to obtain a mask describing the
Coons triangle. Anyway we will introduce a mask, can be written, thanks to Equation (3), in terms of
which generates a permanence patch, since it is of thecontrol points of a degree 2 control net, we find that
kind defined in Equation (9), and which is related to equality is only attained for the values= - and

the triangular Coons patch. B= %
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Therefore the triangular permanence patch for this characterization we have developed two meth-
o= %2 gives the triangular Coons patch of degree 3, ods to generate triangular patches given the boundary
although in general a mask cannot be used to obtain acurves. The first method is to find the extremals of
Coons triangle of degrae the functional as a solution of a linear system of the

control points. The second method makes it possible

to build a Bezier triangle by means of a mask deduced

from the characterization of cubical extremals.
5 GRAPHICS EXAMPLES On the other hand, we have defined the Triangu-

. lar Discrete Coons patch and we have compared the

Now, let us show some examples of the triangular shapes of the surfaces obtained by these three surface
Bézier surfaces we can obtain, given a boundary, by generation methods. We have observed that better re-
means of the three different methods we have pre- gyits are obtained for the extremals of the functional

sented in this work: Coons interpolation, minimiza- and for the triangular Coons patch, but the Coons
tion of the functionalr and with the use of the mask  patch implies an increase of degree.

defined in Equation (11).
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Figure 3: Three Bzier surfaces with the same border. On CY:II'-rgfa\rlwvtol{/lthlt/?ZSOt())S?f 4%%6[{68%/2?85.ported by DGI-

the left the triangular Coons patch. The one in the middle
is a Bezier extremal of the functionat . The figure on the
right is obtained by means of the mask in Equation (11).
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