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Abstract: This paper presents a multi-feature integrated algorithm incorporating a particle filter and the incremental 
linear discriminant models for face tracking purposes. To solve the drift problem, the discriminant models 
are constructed for colour and orientation feature to separate the face from the background clutter. The 
colour and orientation features are described in the form of part-wisely concatenating histograms such that 
the global information and local geometry can be preserved. Additionally, the proposed adaptive confidence 
value for each feature is fused with the corresponding likelihood probability in a particle filter. To render 
the face tracking system more robust toward variations in the facial appearance and background scene, the 
LDA model for each feature is updated on a frame-by-frame basis by using the discriminant feature vectors 
selected in accordance with a co-training approach. The experimental results show that the proposed system 
deals successfully with face appearance variations (including out-of-plane rotations), partial occlusions, 
varying illumination conditions, multiple scales and viewpoints, and cluttered background scenes. 

1 INTRODUCTION 

Visual tracking is an important requirement in many 
machine vision applications, particularly those 
associated with surveillance and human-computer 
interaction. However, the implementation of 
effective visual tracking schemes requires a number 
of important issues to be resolved, including (1) the 
need to detect the target object under varying 
illumination conditions, degrees of occlusion, out-
of-plane rotations, and so on; (2) the need to 
separate the target object from the background; and 
(3) the need to predict the position of the target 
object as it moves in a non-linear fashion. 

Previous studies have shown that the separation 
of an object from its background can be improved by 
utilizing a multi-feature (multi-cue) method based 
on the colour and orientation information within the 
frame (Maggio et al., 2007; Moreno et al., 2008; 
Tang et al., 2007). Multi-feature methods benefit 
from a complementary characteristic. That is, when 
one feature is unreliable as a result of occlusion or 
heavy shadow, for example, the tracking system can 
utilize other features of the image to accomplish the 
separation or tracking function. However, 
constructing a robust feature-based model capable of 
representing the object of interest under all possible 

appearance variations is a highly laborious and 
challenging task. Accordingly, the literature contains 
many proposals for updating the object 
representation model on an on-line basis in order to 
accommodate appearance variations. The most 
notable proposals include the EigenTracking method 
(Black et al., 1996), the condensation-conditional 
density propagation scheme (Isard et al., 1998), and 
the WSL tracker (Jepson et al., 2003).However, such 
methods have only a limited success in updating the 
object representation model since they neglect the 
background information and therefore induce a drift 
problem (Tang et al., 2007). Accordingly, more 
recent studies (Avidan, 2007; Grabner, et al., 2006; 
Moreno et al., 2008; Tang et al., 2007) have 
attempted to achieve a more robust tracking 
performance by incorporating the background 
information into the updating process and treating 
the tracking problem as a classification problem in 
which the aim is to distinguish the pixels within the 
target object region of the image from those within 
the background region. The updated background 
information obtained during the tracking process is 
then used to update the classifiers utilizing either an 
on-line boosting algorithm (Avidan, 2007; Grabner, 
et al., 2006) or an on-line support vector machine 
(SVM) method (Tang et al., 2007). However, despite 
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the improved ability of the schemes in (Avidan, 
2007; Grabner, et al., 2006; Moreno et al., 2008; 
Tang et al., 2007) to update the classification models 
on an on-line basis, the temporal information within 
the image sequence is ignored.  

To address the deficiencies of the various 
schemes discussed above, this study proposes an 
efficient integrated face tracking system in which the 
colour and orientation feature information of the 
target object (face) are processed in the particle 
filter. As shown in Table 1, the proposed tracking 
system consists of two modules: the initial tracking 
process at the first frame (t=1) to construct the 
discriminant models and the online process using 
adaptive multi-feature particle filter to track the 
target object in the following frames (t>1). In 
particle filter, the observation probability of each 
particle sample is calculated by combining the 
likelihood probabilities provided by different 
features (cues) with the corresponding feature 
confidence values. Note that the feature confidence 
values are automatically and adaptively assigned for 
each feature with different background scenes in the 
tracking process. In addition, linear discriminant 
analysis (LDA) models are used for each feature to 
separate the object from and background regions. To 
render the face tracking system robust toward 
variations in the face appearance and background 
scene, the LDA models are updated on a frame-by-
frame basis using target object information selected 
in accordance with a co-training approach. 

2 INITIAL TRACKING PROCESS  

The initial tracking process is shown in Table 1. The 
proposed tracking system localizes the target object 
in each frame i  with a rectangular window centred 
at (u, v) with an orientation θ and a width and height 
(w, h). Utilizing these parameters, the state of the 
object at time t is defined as 

( , , , , )x u v h wt t t t t tθ=  (1)

The state of the object in the 1st frame, 1x , is 
obtained either via a manual labelling process or by 
an existing detection algorithm such as Adaboost 
(Viola et al., 2004). 
 
 
 
 
 

Table 1: The multiple-cue face tracking system. 

Input: Test video frames { }TIII ,..., 21   
Output: Estimated object state { }txxx ,...,, 21  
Initial Tracking Process (t=1):  
1. Acquire object state x1 in I1. 
2. Obtain Np positive (face) particle samples 

pN
i

ix 11}{ =  and Nn negative samples nN
i

ix 11 }{ = . 
3. Crop the corresponding frame region for each 

particle and obtain the colour and orientation 
feature vector i

tc  and i
tg , respectively.  

4. Create colour-based LDA model Φt=1 and 
orientation-based LDA model Ψt=1   

On-line Tracking Process (t>1):  
For t=2 to T 
1. Generate particle samples sN

i
i
tx 1
 
 }{ =  and calculate 

the likelihood probability )|( i
ttf xzp  using the 

corresponding LDA models Φt and Ψt. 
2. Estimate the adaptive confidence value: color

tλ  
for colour feature using { c

tV , c
tE  } and 

norientatio
tλ   for orientation feature using 

{ o
tV , o

tE  } (Eq. (19)) 
3. Calculate the weight i

tw  for each particle (Eq. 
(9)) and estimate the object state xt at current 
frame (Eq. (6)) 

4. Update validation sets (Eqs. (13) and (14)) and 
evaluation sets  (Eqs. (15) and (16)). 

5. Select new data sets c
tS  and o

tS   (Eqs.(20) and 
(21)) 

6. Update LDA models:  Φt+1 and Ψt+1 
End 

2.1 Colour and Orientation 
Histogram-based Feature 
Description 

Each particle sample is represented using colour and 
orientation information expressed in the form of a 
histogram. To preserve the local information, the 
sample is divided into semi-overlapped parts and 
each part is represented by a colour and orientation 
histogram, respectively. Then the colour feature 
vector i

tc  and orientation feature vector i
tg  of the ith 

sample i
tx  at frame t are encoded by concatenating 

part-wise histograms such that both global and local 
target information and the spatial relations between 
parts can be preserved in the concatenated histogram 
(Maggio et al., 2007). 

Having transferred the RGB image to the HSV 
domain, the H channel is separated into NH bins and 
the S channel into NS bins. The colour feature vector 
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of the sample i
tx  is then described by concatenating 

all part-wise colour histograms as 

{ },
1

N Nr ci uic ct t u

×
=

=
 (2)

where u is total number of bins, the sample is 
divided into Nr parts and each part is represented by 
one colour histogram with Nc = NH + NS bins.  

For orientation feature, Sobel mask is applied to 
each part of sample. The orientation range 
[ ]2/,2/ ππ−  is quantized into NO  bins and the 
magnitude of the gradient is accumulated on the bin 
corresponding to its orientation. The orientation 
feature vector of the sample i

tx  is described by 
concatenating all part-wise orientation histograms as 

{ },
1

N Nri ui Og gt t u

×
=

=
 (3)

Note that each part-wise orientation histogram is 
normalized to one as well as each part-wise colour 
histogram. 

2.2 LDA Model Creation 

In order to create the discriminant models to 
separate the target object from background, Linear 
Discriminant Analysis (LDA) (Lin et al., 2004; 
Belhumeur et al., 1997) is applied in the proposed 
tracker. To emulate possible variation of the target 
object class, Np positive (face) samples pN

i
ix 11}{ =  are 

generated by adding small Gaussian random noise to 
the state 1x  and cropping the corresponding image 
regions. On the contrary, with large Gaussian noise, 
Nn negative samples nN

i
ix 11 }{ =  of background class are 

generated. Note that each negative sample is treated 
as a different class because of the diversity of the 
background class, while all the positive samples are 
assigned to a single class. As a result, a total of Nn+1 
classes exist for each feature. Thus, for each feature f 
(i.e. colour or orientation feature), the between and 
within scatter matrices f, i.e. SB,f and SW,f, can be 
formulated as follows (Lin et al., 2004): 

( )( ),
N Np n TS N C m m m mnB f f f f f fN Np n

= + − −
+

 (4)

and 

fpfW CNS =,  (5)

Where mf  is the mean of  feature calculated from the  

feature vectors pN
i

i
tf 1}{ =  of samples pN

i
i
tx 1}{ = ; i.e. 

i
t

i
t cf =  for colour feature or i

t
i

t gf =  for orientation 

feature; while fm  and fC  are mean and covariance 
matrix calculated from the corresponding feature 
vectors of the negative samples nN

i
i
tx 1}{ = . Then the 

projection matrix Φ and Ψ for colour-based and 
orientation-based LDA models (spaces) can be 
solved as the generalized eigenvalue problem with 
corresponding between and within scatter matrices, 
respectively. 

3 ONLINE TRACKING  
PROCESS USING ADAPTIVE  
MULTI-FEATURE PARTICLE 
FILTER 

Particle filter has been applied in the online tracking 
process, as shown in Table 1. We embed 
incremental LDA models into particle filter 
framework to form a robust tracking system. The 
observation probability of a particle sample is 
evaluating by fusing the likelihood probabilities of 
both feature information with the corresponding 
feature confidence values. At the end of each 
incoming frame, the feature confidence values are 
adaptively adjusted, while LDA models are 
incrementally updated using the object information 
selected in accordance with a co-training approach. 

3.1 Likelihood Probability Fusion in 
Particle Filter 

The particle filter (Arulampalam et al., 2002) estimates 
the object state tx  based on the previous to current 

observations tz :1  using a weighted sample set 
sN

i
i
t

i
tt wxO 1},{ == , in which 

∑ = −== sN
i

i
tt

i
ttt xxwOEZxp 1

  
:1 )(][)|( δ  (6)

where i
tw  is the weight associated with the sample 

(particle) i
tx  and ∑

=
=

sN

i

i
tw

1
1 . i

tw  is defined by the 

observation probability (likelihood) of observation 

tZ  at the state i
tx , as  

)|( i
tt

i
t xzpw ∝  (7)
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In order to obtain samples sN
i

i
tx 1
 
 }{ = , a drift step is 

performed in which { } sN
i

i
t

i
tt wxO 1111 , =−−− =  is re-sampled 

according to the weight sN
i

i
tw 1
 

1}{ =−  by Monte Carlo 
method (Isard et al., 1998). Then, in a diffuse step 
the re-sampled set sN

i
i
t

i
t wx 1

  }','{ =  is then propagated to 
the new set sN

i
i
tx 1
 
 }{ =  in accordance with the state 

transition model )|( 1
i
tt xxp − as 

B
h
w
v
u

A

A

A

I
h
w
v
u

t

t

t

t

t

t

t

t

t
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 (8)

where A1, and A2 are two diagonal 2 by 2 matrices 
and the element of matrices represents the different 
ratio of object centres (u, v) and object size (w, v) 
between consecutive frames, respectively; the A3 
represents the angle variation between frames and 
vector B is a multivariate Gaussian random variable. 

Finally, the estimation of the weight for each 
sample (Eq. 7), the multi-feature algorithm proposed 
in this study considers the likelihood probability of 
both features. The overall likelihood probability 

)|( i
tt xzp  for each sample can be thought of as a 

mixture of the likelihood probabilities of each 
feature with the corresponding feature confidence 
value as 

∑
∈

=
featuresf

i
ttf

f
t

i
tt xzpxzp )|()|( λ  (9)

where f
tλ  is defined as the confidence value of 

feature f at time t, f
tλ = color

tλ  for colour feature and 
norientatio

t
f
t λλ =  for orientation feature, and 

1=∑
∈ featuref

f
tλ . Note that norientatio

t
color
t λλ =  is set to  

0.5 for initialization.  
For each sample i

tx 
 , the feature vectors of colour 

and orientation information are projected via the 
projection matrix Φ onto the colour-based LDA 
space and Ψ onto the orientation-based LDA space, 
respectively. The likelihood probability )|( i

ttf xzp  is 
weighted by a prior probability and defined as 

),,,|()()|( fff
i
tt

LDA
f

i
t

i
ttf Ummxzpxpxzp −+=  (10) 

where )( i
txp  is given i by  

1)( −−−
∝ t

i
t xxi

t exp  (11) 
The sample with larger difference of object 

motion from the previous target object state xt-1 is 
given lower prior probability and the term 

),,,|( fff
i
tt

LDA
f Ummxzp −+  measured in each LDA 

space, is defined as 

)exp(),,,|(
f

tfft
T
ff

fff
i
tt

LDA
f

fUmfUm
Uxzp

σ
μμ

++−
−+

−−−
∝  

                                   (12) 

where ft is the corresponding feature vector of 
sample i

tx  (i.e. i
tc  or i

tg ) and fm  ( fm ) is the 
corresponding mean vector of the object 
(background) class, Uf is the project matrix (Uf =Φ 
for the colour-based LDA space while Uf =Ψ for the 
orientation-based ne), f

T
ff mUm =+  and f

T
ff mUm =−  

represent the centres of object class and background 
class in the LDA space, and fσ  is the noise 
measurement for each feature, which is determined 
experimentally based on that the orientation feature  
is more affected by noise than colour feature 
(Maggio et al., 2007). 

3.2 Adaptive Confidence Value 
Estimation 

The idea for the estimation of the feature reliability 
is motivated by Adaboost (Freund, 1995) in which the 
contribution of each weak classifier is weighting 
according to its classification error. Similarly, at 
each frame t, four data sets, two validation sets c

tV , 
o

tV  and two evaluation sets c
tE  and o

tE , are 
collected for each feature in order to evaluate the 
classification error that the samples from 
background is classified as the target object class in 
the LDA space. The validation sets are composed of 
ground-truth feature vectors of samples belonging to 
the target object (positive) and background 
(negative) class, and c

tV  contains the colour feature 

vectors while o
tV  contains the orientation ones. We 

take the colour (or orientation) feature vector of the 
object at the first frame, i.e. 1c  (or 1o ), as the 
ground-truth positive data and include the feature 
vectors belonging to the background classes at t-1 
frame as the negative data to evaluate the feature 
confidence value at time t, 

{ }2111111 )|()(| γγ ><∪= −−−−
i
tt

LDA
f

i
t

i
t

c
t xzpandxpccV  

                                    (13) 

VISAPP 2010 - International Conference on Computer Vision Theory and Applications

376



 

where 1r  and 2r  are the thresholds. Note that the 
negative data consist of those feature vectors which 
most generated from the background classes that 
gives the lower prior probability (Eq. (11)) but 
appears to be like the object class in the colour-
based LDA space. Similarity, the validation set for 
orientation feature, o

tV , is defined as: 

{ }2111111 )|()(| γγ ><∪= −−−−
i
tt

LDA
f

i
t

i
t

o
t xzpandxpooV  

                    (14) 

where 1o  is the orientation feature vector of the 
object at the first frame and the feature vectors of 
most likely background class are included. 

The evaluation sets c
tE  and o

tE  are constructed 
for colour and orientation feature at each frame t, 
respectively, as 

⎭⎬
⎫

⎩⎨
⎧ >>= 43 )|()(| γγ i

tt
LDA
f

i
t

t
i

c
t xzpandxpcE  (15) 

and 

⎭⎬
⎫

⎩⎨
⎧ >>= 43 )|()(| γγ i

tt
LDA
f

i
t

t
i

o
t xzpandxpgE  (16) 

where 3r  and 4r  are the thresholds and hence the 

vectors in c
tE  and o

tE  contain the colour or 
orientation feature vectors of samples from the 
predicted object state at time t. If most of the feature 
vectors in evaluation sets are close to the 
background class in the LDA space, this feature has 
a lower confidence value and therefore plays a 
diminished role in the prediction process. 

Then the feature confidence value can be 
measured in the LDA space via matrices Φ (or Ψ) 
and the error of colour (or orientation) feature is 
obtained by 

∑
=

=
n

i

ii
ttf

f xzp
1

)|( ηε  (17) 

where 

⎪⎩

⎪
⎨
⎧ −Φ>−Φ=

otherwise
fffif f

i
t

Ti
t

T
i

                ,0
 )()(     ,1 1 μη  (18) 

where index f represents colour or orientation feature. 
i

tf  is the feature vector (as in Eq. (5)), f1 is the 
ground-truth feature vector (f1= c1 for colour feature 
vector and f1= g1 for colour feature); fμ  is the mean 
vector of the background classes in the 
corresponding validation set f

tV , and n is the number 

of feature vectors in f
tE . After measuring the error 

for each feature, the confidence value f
tλ  for each 

feature f is defined as 

∑
∈

+
−=

featuresf

f

f
f
t

    )(
   1

τε
ελ  

(19) 

where τ  is a small constant used to prevent a zero 
denominator. Fig. 1 shows an example of the 
confidence value of colour feature in the tracking 
process while the subject undergoes a 360° out-of-
plane rotation. Note that when the head turns, the 
reliability of the colour feature decreases due to the 
significant change from the initial colour 
distribution. 

3.3 LDA Model Updating 

Having obtained the estimated object state, the LDA 
model is updated in accordance with the target 
object information in the current frame in order to 
render the tracking system more robust to 
appearance variations. As shown in Table 1, at t 
frame the updating process commences with the 

updating of validation, c
tV 1+  and o

tV 1+ , and evaluation 

sets, c
tE 1+  and o

tE 1+ , to the estimation feature 

confidence value at the following frame t+1 
accroding to Eqs. (13) and (15), and Eqs. (14) and 
(16), respectively. 

 
Figure 1: The evolution of the confidence value for colour 
feature while the subject undergoes a 360° out-of-plane 
rotation. 

Before updating the LDA models, the co-training 
approach (Tang et al., 2007) is applied to select the 
discriminant feature vectors. The new data set c

tS  
used for updating colour-based LDA model consists 
of the discriminant colour feature vectors defined as 

⎭⎬
⎫

⎩⎨
⎧ <∩>∩<= == 221 )|()|()(| γγγ i

tt
LDA

colf
i
tt

LDA
orif

i
t

i
t

c
t xzpxzpxpcS   

      (20)
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where the first condition is based on the prior 
probability to make sure the sample is mostly from 
background class. The second and third conditions 
pick out the samples which can’t be separated from 
background class in the orientation-based LDA 
space and thus the system need colour-based LDA 
space to deal with these samples, i.e. to reduce the 
likelihood value in the colour-based LDA space and 
thus to reduce the overall likelihood probability for 
rescuing from the confusion case. Similarly, the new 
data set o

tS  used for updating orientation-based 
LDA model can be defined as 

⎭⎬
⎫

⎩⎨
⎧ >∩<∩<= == 221 )|()|()(| γγγ i

tt
LDA

colf
i
tt

LDA
orif

i
t

i
t

c
t xzpxzpxpcS  

(21) 

Finally, for each feature type f, the mean vectors 
fm  and fm  for the object and background classes 

are updated by the SKL (sequential Karhunen-
Loeve) algorithm (Levy et al., 2000) using the new 
data sets c

tS  (or o
tS ) and the new LDA projection 

matrix Φ (or Ψ) is then calculated using the 
Incremental Fisher Linear Discriminant Model as in 
(Lin et al., 2004). 

4 EXPEREIMENTAL RESULTS 

The effectiveness of the proposed tracking system 
was evaluated using three different tracking 
sequences, namely two noisy real-world video 
sequence (H1, H2) captured from YouTube.com, a 
head target sequences a (H3) taken from a 
benchmark data set (Birchfield, 1998). Table 2 
summarizes the variation property of each test 
sequence. The tracking system was initialized by 
using Np=150 object feature vectors and Nn =400 
background feature vectors to create LDA models Φ 
and Ψ, respectively. In the tracking process, the 
particle filter uses Ns =150 samples (Eq. (6)) and the 
5-dimensional vector B (Eq. (8)) is a multivariate 
Gaussian random variable with zero mean and the 
standard deviation of 10 pixels, 10 pixels, 8 pixels, 8 
pixels, and 5 degrees, respectively. Note that the 
thresholds used in building the validation sets and 
evaluation sets were set experimentally as γ1=γ3=0.8, 
γ2=γ4=0.7.  

The accuracy of the tracking results obtained 
from the AMF-PFI system was quantified using the 
tracking error )(te , defined as the discrepancy 
between the estimated target object state (estimated 

target window) at time t and the manually labelled 
ground-truth state (ground-truth target window), i.e. 

Table 2: Description of the test sequences. 

Seq. Property 

H1 Noisy, low-quality, real-world video 

H2 Clutter, noisy, low-quality, real-world video 

H3 Out-of-plane rotations, scale changes, clutter, 
occlusions 

 

)()(
)(21)(

tAtA
tOte

eg +
−=  (22) 

where   

∑
∈

−
+

−
=

TruePixelsyx g

gi

g

gi

ii h
vy

w
ux

tO
),(

22 )
2/

()
2/

()(  (23) 

where )(tO  sums the importance of the true positive 
pixels utilizing distance as an importance measure. 

),( ii yx  is the x- and y- coordinate of the true 
positive pixel, wg, hg, (ug, vg) are the width, height, 
and centre of the ground-truth target window, 
respectively. )(tAg  and )(tAe  are normalized 
terms, which sums up the importance of all pixels 
within the ground-truth and within the estimated 
target, respectively. 

The performance of the proposed system (names 
as AMF-PFI) was compared with that of two other 
systems, namely a system without adaptive feature 
confidence value, denoted MF-PFI, and a system 
without an incremental LDA model, denoted as 
AMF-PF. Note that each test sequence was tested 10 
times for each framework (Maggio et al., 2007). 
Table 3 summarizes the mean and standard deviation 
of the error metric for each of the three frameworks 
when applied to the three test sequences. The results 
confirm that the proposed system achieves a better 
tracking performance than either the MF-PFI or 
AMF-PF systems. The performance improvement is 
particularly apparent for test sequences H1 and H2, 
in which the targets exhibit significant appearance 
changes over the course of the tracking sequence. 
Fig. 2 shows the tracking results obtained by the 
proposed system for test sequences H1 and H2. The 
sequence H1 is simple case that the colour feature of 
target object is much different from background but 
in H2 the target object is cluttered by background. In 
both sequences, the target object has out-of-plane 
rotation. The results confirm the robustness of the 
proposed system toward out-of-plane rotations. Fig. 
3 shows the object tracking results (first row) for the  
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Table 3: Performance evaluation results (average mean and standard deviation of error metric) for MF-PFI, AMF-PI and 
AMF-PFI systems for test sequences H1 to H3. 

Error H1 H2 H3 
MF-PFI: colour feature only 0.43±0.15 0.38±0.08 0.31±0.03 

MF-PFI: orientation feature only 0.38±0.10 0.45±0.09 0.25±0.04 

MF-PFI: fixed λ=0.5 for both features 0.39±0.09 0.38±0.05 0.25±0.02 

AMF-PF: without incremental LDA model 0.44±0.07 0.43±0.03 0.23±0.02 
AMF-PFI (the proposed system) 0.31±0.06 0.28±0.05 0.23±0.03 

 

 
Figure 2: Representative results obtained using proposed system. First row: H1 sequence (frames 3, 7, 38, 51, and 60). 
Second row: H2 sequence (frames 9, 18, 34, 61, and 97). 

sequence H3. The tracking result as target object 
class accompanied with new data sets c

tS  and o
tS  

(second and third row in Fig. 3), selected in each 
frame as background class, are used for updating 
LDA models. The results show that the system can 
still track the target object (female) even partial 
occlusions and would not cheated by another similar 
object (male) even the object has similar skin colour 
feature to the target object. Overall, the evaluation 
results presented confirm the ability of the proposed 
system to successfully track the target face and 
facial appearance conditions.  

5 CONCLUSIONS 

This study has presented a multi-cue integrated 
algorithm based on a particle filter for object (face) 
tracking purpose. The proposed system incorporates 
an incrementally updated LDA model for each 
feature in order to render the tracking performance 
more robust toward variations in the object 
appearance or background scene, respectively. In 
addition, the co-training approach is applied to select 
discriminant feature vectors for LDA model 
updating.  Moreover, the likelihood probabilities 
calculated from each feature are fused in the particle 
filter with the corresponding feature confidence  
value. Note that the feature confidence value is 
adaptively updated on a frame-by-frame basis 
according to different background scenes. The 

experimental results have shown that the proposed 
algorithm can successfully track objects 
characterized by various out-of-plane rotations, 
partial occlusions, scales or viewpoints, and 
background scenes. In a future study, the algorithm 
will be extended to the tracking of multiple objects 
of the same class. 
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Figure 3: The first row shows the estimated object state at 
time t, which is added into the new data set as the target 
object class. The second and third rows show the 
corresponding new data ( c

tS  and o
tS ) selected as the 

background class for updating the colour and orientation 
LDA models, respectively. 
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