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Abstract: The distributed nature of services poses significant challenges to building robust service-based applications. A
major aspect of this challenge is finding a model of service integration that promotes ease of dynamic recon-
figuration, in response to internal and external stimuli. Centralized models of composition are not conducive
for data-intensive applications such as those in the scientific domain. Decentralized compositions are more
complicated to manage especially since no service has a global view of the interaction. In this paper we iden-
tify the requirements for dynamic reconfiguration of data-intensive composite services. A hybrid composition
model that combines the attributes of centralization and decentralization is proposed. We argue that this model
promotes dynamic reconfiguration of data-intensive service compositions.

1 INTRODUCTION

A system is a set of interrelated components that are
interacting in an interdependent manner to accom-
plish a common goal. A service can be defined as the
function performed or the behavior exhibited by a sys-
tem. Service Oriented Architecture (Bichler and Lin,
2006) provides service based computing which deals
with the interactions between loosely coupled, au-
tonomous and replaceable components that are avail-
able over a heterogeneous network. The Web Service
paradigm (Kreger, 2001; Gottschalk et al., 2002) is
one realization of the Service Oriented Architecture.

With Web services, distributed applications can
be encapsulated as self-contained, discoverable and
Internet-accessible software components that can be
integrated to create other applications. Web services
are characterized by a precise separation of service in-
terface description, implementation, and binding, as
well as standardized and declarative message-based
interactions. The family of specifications that make
up the Web service standards includes a specifica-
tion for composition (Andrews et al., 2003; Kavantzas
et al., 2005) of existing services to create new higher-
level services. These composition languages define

abstractions in the form of workflows (Becker et al.,
2002) that represent composite services. The exe-
cutable abstractions model the interaction between
the integrated services. Service composition lan-
guages are either general-purpose (Andrews et al.,
2003; Kavantzas et al., 2005) or domain-specific,
as typically seen in scientific applications (Yu and
Buyya, 2005)

The distributed nature of services poses signifi-
cant problems to building robust service-based appli-
cations. Addressing issues concerning dynamic re-
configuration of services collaborating in multiple ap-
plication scenarios, to make them more dependable, is
a challenging task. This is because the integration of
multiple services introduces new levels of complex-
ity in management. Due to the autonomy of services
involved in a composition, the management of com-
posite services cannot extend into the administrative
boundaries of individual services (Vogels, 2003; Di-
alani et al., 2002). Thus the composed service has no
influence over the factors affecting quality of service
provision at the level of the atomic service. This con-
tributes to the transiency of services, which may fail
due to problems in their environment such as faults
and resource starvation. Also, since services interact-
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ing in a composition are distributed, there is the added
problems concerning the unmanaged nature of the In-
ternet.

The increasing use of software as a service (Zhang
et al., 2004; Benslimane et al., 2008; Armbrust et al.,
2009; Grossman, 2009) has also lead to increasingly
complex and data-intensive service aggregations. The
highly available nature of some of these applications
demands that they remain operational and rapidly re-
sponsive even when failures disrupt some of the nodes
in the system (Birman et al., 2004; Deelman and Gil,
2006; Lindholm, 2007). Thus, there is a need to
deliver reliable service compositions with attributes
that cover functional correctness, performance and
dependability (Ouzzani and Bouguettaya, 2004; Gil
et al., 2007), especially since current Web services
standards provide limited constructs for specifying
exceptional behavior and recovery actions. It is dif-
ficult for developers of composite services to antici-
pate and account for all the dynamics of such interac-
tions. This is especially true for data-intensive service
compositions where data movement and management
is particularly problematic. There is therefore a need
for service compositions that are dynamically recon-
figurable to make them more robust and dependable.
Addressing these challenges calls for the development
of novel techniques to modeling and management of
composite services.

In this paper, we identify the some key require-
ments of adaptive data-intensive service composition.
We also propose a model of service composition that
supports dynamic reconfiguration. The rest of this pa-
per is structured as follows. Section 2 provides an
overview of service composition models. In Section 3
we discuss the requirements for dynamically recon-
figurable service composition. Finally, some conclud-
ing remarks are provided in Section 4.

2 COMPOSITION MODELS

Composite services are an aggregation of two or more
services. The composite service is modeled as a graph
where the nodes represent tasks and the edges repre-
sent some composition constraints in the form data
flow or flow control dependencies between tasks. Fig-
ure 1 shows the object-relational model of service
composition. In this model, the composite service
is an aggregation of tasks and the tasks may be im-
plemented by the integrated services. The composite
service itself is a service.

The composite services are described and pub-
lished as service aggregators which are service
providers themselves. The service aggregates model

Composite Task

*

implemented-byis-a

Consumer Serviceis-a

is-a

Provider

Figure 1: Object relationship for service composition.

and coordinate the interactions between the con-
stituent services. The two main service composition
models are orchestration and choreography (Peltz,
2003). In orchestration, the interaction between ser-
vices is coordinated in a centralized manner by a pro-
cess with captures the logic of the interaction between
the services. The logic of the interaction (control and
data dependencies) is encapsulated within the com-
posite service in the form of a workflow. The work-
flow is executed in an orchestration engine which ex-
poses the workflow (composite) as a service. As il-
lustrated in Figure 2, the order of execution of the in-
tegrated services is controlled by the composite via
control messages (invocations). Data interchange be-
tween the integrated services also passes through the
composite. This model presents some advantages
in that management of the integration is centralized,
however this centralization presents significant chal-
lenges to data-intensive compositions and scalabil-
ity (Liu et al., 2002)

Composite

Service Service Service

data flow control flowdata flow control flow

Figure 2: Service Orchestration Model.

In contrast to the orchestration model, service
choreography (Figure 3) involves two or more ser-
vices participating to provide a service, in peer to peer
manner. This model is characterized by decentralized
control and data flow. Here, each service is aware of
its role in the interaction and its immediate partner.
This presents significant advantages to scalability and
more efficient data flow. However, this model is dif-
ficult to manage especially in exceptional conditions.
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Dynamic reconfiguration is difficult since no service
has a global view of the overall integration.

Service Service Service

data flow control flow

Figure 3: Service Choreography Model.

To overcome some of the limitations of orches-
tration, some service orchestration platforms do em-
ploy decentralized data flow techniques, as illustrated
in Figure 4. This approach is typically utilized for
data-intensive composition which is often seen in sci-
entific workflow application. In this model, integrated
services also encapsulate data movement and man-
agement logic to facilitate the movement of data in
a peer-to-peer manner. Control flow logic is retained
by the composite thus issues with scalability persist.
Also the composite service constitutes a central point
of fail. Besides, dynamic reconfiguration is still a
problem since the composite cannot easily be modi-
fied to react to changes in the environment of the in-
teraction.

Composite

Service Service Service

data flow control flow

Figure 4: Service orchestration with decentralized data
flow.

3 REQUIREMENTS FOR
ADAPTABILITY

Good examples of data-intensive applications are
those found in the domain of scientific work-
flows (Jaeger et al., 2005; Ezenwoye et al., 2007).
Here service integration is achieved through compos-
ite services which are used to create applications for
coordinated problem solving. Scientific applications
are both data intensive and computational intensive.
These applications require a number of systems work-
ing together, accessing large amounts of data and an-
alyzing the data in parallel. Scientific applications
analysis takes long time to complete. Thus it is neces-
sary that the application runs successfully in spite of
changes in execution and the execution environment.

The adaptability of the architecture of such applica-
tions is required to enable reconfiguration of the sys-
tem. Below we identify the major requirements for
adaptive service composition.

3.1 High-level Composition

Key to the realization of the benefits of service-
oriented computing is the ability to integrate basic
services to create higher-level applications. These
higher-level applications will provide the right level
of abstraction for the non-computer scientists. Thus,
allowing them to concentrate on their domain spe-
cific work instead of the technical issues of underly-
ing layers. Workflow languages permit such aggre-
gation of services to create coarse-grained processes
that constitute a number of related functions. With
such languages, higher-level application can be mod-
eled as graphs where the nodes represent tasks while
the edges represent inter-task dependencies, data flow
or control flow.

Although complex processes can be developed
with general-purpose languages such as Java and
C++, such languages do not provide high-level con-
structs to easily define processes that represent com-
posite services. High-level composition tools make
it possible for domain specialist to deploy flexible
service-oriented applications. However, current com-
position tools are too cumbersome and complex to al-
low for easy service composition. High-level tools
need to have support for separation of concerns that
would permit aspect-oriented (Kiczales et al., 1997)
techniques, so that aspect weaving capabilities that
address quality of service concerns can be introduced.
This is important so that users can for instance, spec-
ify failure handling policies at a higher level of ab-
straction without having to entangle them within the
application logic.

For higher level service compositions there are
many aspects that need to be incorporated in order to
provide more flexibility, adaptability and reliability in
the system. Some other requirements for higher-level
composition are to provide coordination methods, dy-
namic models and automated service integration and
composition (Papazoglou et al., 2007; Ezenwoye and
Sadjadi, 2006).

3.2 Extensible Recover Mechanisms

Due to the heterogeneous nature of the application
context, failure recovery mechanisms should support
a wide range of failure handling strategies includ-
ing user-defined exception handling. Flexible fail-
ure handling mechanism should allow multiple fault
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tolerance techniques and strategies (e.g., retry, mi-
gration, restart and checkpointing) This would permit
each task to select an appropriate fault tolerance tech-
nique among alternatives depending on the character-
istics of the task or the underlying execution environ-
ment (Hwang and Kesselman, 2003) Support for ex-
tensible failure handling mechanisms should be pro-
vided so that it is possible to specify at a high-level,
such diverse failure handling strategies within a re-
covery policy that can be modified at runtime. Such
an approach would permit a user to define specific
exceptions and exception handling since the recovery
mechanism is extensible. However, such mechanisms
should not prevent the developer of the application
from specifying specific exception handling. Tasks
for which exception handling has been defined within
the application, may be left untouched by the adapta-
tion mechanism, if so desired.

3.3 Robust Data Management

The inherent nature of the infrastructure and envi-
ronment for distributed composite applications means
that the management of data comes with challenges.
The successful execution of applications is depen-
dent on the availability of necessary data. However,
moving an application close to the data may not al-
ways be practical due to insufficient computational
resources at the storage site (Kosar and Livny, 2005),
so data needs to be moved to the applications that
need them and in some cases cleanup operations are
required after application execution. Also, deployed
composite services may be unable to execute due to
the lack of the disk space, requiring that data move-
ment be scheduled and monitored. Thus, the manage-
ment of data is essential through the entire lifecycle
of such distributed applications from creation to ex-
ecution, and result management (Deelman and Cher-
venak, 2008)

Although data is a key component, a lot of em-
phasis is not placed on providing fault tolerance for
tasks related to data requirements. For instance, data
staging tasks are often embedded in computation-
related tasks and reliability efforts are then focused
on the computation tasks even though data access
presents the main bottleneck for data-intensive ap-
plications (Kosar and Livny, 2005) Thus improving
the reliability calls for the decoupling of data stag-
ing and computation activities, and each aspect needs
to be addressed separately (Ranganathan and Foster,
2002; Ezenwoye et al., 2009) Also, infrastructure for
distributed data-intensive composite services needs to
consider data movement as part of the end-to-end per-
formance of the system. Techniques for dynamic

scheduling, caching and data replication should be
used to ensure availability of date. Care must be taken
to make sure they complete successfully and without
any need for human intervention (Kosar and Livny,
2005) Since services are often composed by domain
specialists that are not particularly familiar with per-
formance and fault-tolerance issues of the underlying
layer, constructs for data management need to be sep-
arated from business logic of the composite applica-
tion during development time.

3.4 Modularization

Data-intensive service compositions have a tendency
to be large and complex with multiple cross-cutting
concerns. Facilitating reconfiguration calls for modu-
larization of composite services into pluggable pieces
that encapsulate various concerns. For instance, re-
covery mechanisms should enable the separation of
failure handling policies from application codes. This
requirement is driven by the dynamic nature of the en-
vironment, and would permit the adaptation of failure
handling policies to changing environments by modi-
fying the high-level policy description. Recovery pol-
icy specification, monitoring, exception handling and
data management logic should be modular and exter-
nalized to keep the service composition uncluttered.
This separation also ensures that components are able
to evolve separately.

Also, coding manually various cross-cutting con-
cerns within the application is not a viable solu-
tion because it makes the development much more
complicated. Therefore, generative programming
techniques should be used to apply software pat-
terns (Buschmann et al., 2007) which constitute ab-
stract reusable concepts that can be configured for a
range of situations. The reuse of these abstract con-
cepts is facilitated by the fact that applications in the
same domains are similar and carry out comparable
functions (Sommerville, 2006).

3.5 A Hybrid Composition Model

In this Section we propose a model of service com-
position to support dynamic reconfiguration. This
model is a combination of orchestration and chore-
ography models, and overcomes some of the limi-
tations orchestration and choreography. The model
has a composite service, which we will referred to as
the monitor ( Figure 5). The monitor is a compos-
ite which models the logic of the interaction between
the services participating in the choreography. Thus
the monitor has the global view of the interaction be-
tween the interacting services. This component mon-
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itors the interactions and intervenes only if necessary
to provide required adaptability to the system. This
monitor node observes the data and control-flow of
the choreography. In case of failure, the monitor in-
tervenes and for instance, assigns the load to another
service and provides it with the information to resume
the task to be performed. This monitor would encap-
sulate the behavioral and recovery policies that allow
for the choreography to be reconfigured.

Monitor

Service Service Service

data flow control flow

Figure 5: A hybrid service composition model.

Compositeis-a
Monitor

is-a

Update( )

*

Service

Notify( )

Figure 6: Object relationship for hybrid composition.

Figure 6 shows the object-relational model for hy-
brid composition. The data stored by the monitor
reflects the state of the choreography, therefore the
relationship is the Observer pattern. The Observer
design pattern allows for dependency between object
to be specified so that when one component changes
state all dependent components are notified and up-
dated (Gamma et al., 1995) This pattern of behav-
ior is especially important in distributed environments
where services are statefull and long-running. Ser-
vices provide notification interfaces that allow for ob-
servers to be updated about state change. In Figure 6,
Monitor is the observer and registers for state change
notification with the monitored services in the chore-
ography. Note that the observer in this case does not
constitute a single point of failure since multiple ob-
servers can be used.

4 CONCLUSIONS

In this paper, we presented the orchestration and
choreography service composition models, and
pointed out their limitations. In orchestration, a cen-
tral point of control for both control messages and
data exchange becomes a bottleneck for data inten-
sive applications. While in choreography, the lack of
global view of the system fails to incorporate dynamic
reconfiguration in the system.

We identified the requirements for dynamically
reconfigurable service compositions for data inten-
sive applications. A hybrid composition model that
combines the positive attributes of orchestration and
choreography is also present. The hybrid model of
service composition supports the dynamic reconfigu-
ration for data-intensive applications. This model in-
cludes a monitoring node that has a global view of the
choreography and observe the behavior of services in-
volved in choreography. Reconfiguration is achieved
through the monitoring component.
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