
A TEACHING SCHEMA FOR MULTI-CORE PROGRAMMING

Yun Gao1 and Xuejie Zhang1,2
1 High Performance Computing Center, Yunnan University, No.2 North Cuihu Road, Kunming, China

2 School of Information Science and Engineering, Yunnan University, No.2 North Cuihu Road, Kunming, China

Keywords: Multi-core programming, Teaching schema, Positivity, Instance.

Abstract: As multi-core processors become more and more widespread, multi-core programming attracts attention of
the entire society. On this background, the multi-core programming curricula have been opened to the senior
undergraduate students in many universities. At present, the teaching schemas about multi-core
programming are scarcely mentioned. In this paper, we present a teaching schema on the specific
characteristics of multi-core programming curriculum, combining our teaching practice. The schema pays
attention to arousing students’ enthusiasm and positivity, showing instance demos and improving students’
consciousnesses of optimizing multi-core programs. During our practical teaching, the schema has obtained
a better teaching effect.

1 INTRODUCTION

With the rapid development of computer hardware
technologies and the increase of modern society
requirement to the information processing speed,
multi-core processor emerges as the times requires.
It is named multi-core processor that two or many
processing cores are integrated on a processor chip,
abbreviated as CMP. But the improved hardware
performance can not be transformed into high
software execution performance by the traditional
programming (Shameem and Jason, 2006) (LIU and
LIANG, 2007) (HE and WANG, 2007). The multi-
core programming on CMP has aroused general
concern of the entire society. On the background, the
correlative curricula have already been opened to the
senior undergraduate students in many universities.
However, which teaching schema should be taken to
effectively improve teaching efficiency and impel
students to understand the kernel of multi-core
programming?

Multi-core programming should be in the
programming category. In the recent years, many
teaching methods of traditional programming based
on one or more single-core processors have been
proposed, such as task driving method (REN and LI,
2008), practice teaching method (SUN, 2008), and
so on (Christopher Haynes, 2009) (Christoph W.
Kessler, 2006). These methods can be used by multi-
core teaching for reference. Multi-core programming
on CMP is different from traditional programming in

nature, so we should take special teaching schema.
At present, the teaching schemas about multi-core
programming are scarcely mentioned.

In the following sections, by analyzing the
specific characteristics of multi-core programming
curriculum, we present a teaching schema on its
specific characteristics and our teaching practice,
aiming at the senior undergrduate students, and then
show its practical effects. The schema pays attention
to arousing students’ enthusiasm and positivity,
showing instance demos and improving students’
consciousnesses of optimizing multi-core programs.

2 SPECIFIC CHARACTERISTICS

It is useful and necessary to analyze the curricular
specific characteristics for selecting teaching schema.
The multi-core programming curriculum has mainly
several following characteristics distinguished from
other programming.

2.1 Stronger Previous Foundations

It is well known that traditional programming in
C/C++ or Java hardly needs any curricular basis.
But, for designing a reasonable multi-core multi-
thread parallel program, it is helpful and necessary
to know the hardware frame of CMP, the scheduling
mechanism of operating system (OS), the basic

195
Gao Y. and Zhang X. (2010).
A TEACHING SCHEMA FOR MULTI-CORE PROGRAMMING.
In Proceedings of the 2nd International Conference on Computer Supported Education, pages 195-198
DOI: 10.5220/0002857401950198
Copyright c© SciTePress

theory concerning design and analysis of algorithms
and to master a programming language.
Consequently, there are several necessary previous
curricular foundations for multi-core programming
curriculum, including Computer Composition
Principle, Operating System, Compiler Principle,
Design and Analysis of Algorithms, C language, and
so on. Multi-core programming curriculum is
usually offered to senior undergraduate or
postgraduate.

2.2 Non-figurative Theory

The theories of multi-core programming are more.
Multi-core program is mainly realized by a multi-
thread way on CMP. When realizing multi-core
programs, there are four questions or challenges
faced by parallel programming designers, and they
are multi-thread synchronization, multi-thread
communication, load balance and programming
scalability, which are also the kernel of multi-core
programming. (Shameem and Jason, 2006)
Nevertheless, students often mention that it is bald
and abstract to understand its theories and that it is
especially difficult to apply them during factual
programming. By this phenomenon, we must arouse
their enthusiasm and positivity in an example style,
which will be explained in the next section.

2.3 Needing Programming Practices

The theory must be applied finally in the practice,
and the theory is improved only by the practice.
According to this principle, for understanding the
nonfigurative theory of multi-core programming
concretely, it is necessary to adopt a practice way.
During the actual teaching, explanation in an
instance way can promote students’ intellect, and
programming practice by students themselves can
enhance students’ operating ability. Ultimately,
students can master the kernel of multi-core
programming in a high effective style.

2.4 Support of Hardware and Software

Multi-core programming must be developed based
on multi-core hardware and corresponding software
environment. Therefore, the support of experimental
environments is necessary to multi-core
programming curriculum. But multi-core computer
is not popularized to each senior undergraduate
student. So, many universities have built multi-core
labs for further promoting the laboratorial conditions
of multi-core teaching at present.

3 A TEACHING SCHEMA

In this section, we present a teaching schema of
multi-core programming curriculum on its specific
characteristics and our teaching practice, aiming at
the senior undergraduate students having learned
previous curricula. Our expectant teaching purpose
is that students can be interested in multi-core
programming, master its kernel, and establish multi-
core programming foundation for their future work
or study. Our schema detailed in the following pays
attention to arousing students’ enthusiasm and
positivity, showing instance demos and improving
students’ consciousnesses of optimizing multi-core
programs.

3.1 Arousing Students’ Enthusiasm
and Positivity

To whatever curriculum, including multi-core
programming, students’ study enthusiasm and
positivity is closely relative to the final study
efficiency. For multi-core programming curriculum,
we must firstly make students know its necessity and
importance before they study the concrete content.
In our schema, it is reached by answering two
following questions.

 Is it to study multi-core programming?
 Can the efficiency of application be improved

by multi-core programming?

3.1.1 Studying Multi-core Programming is
Necessary

Many questions can certainly be preferably solved
by single-thread programs. But some questions do
exist and must be solved by multi-thread parallel
programs. Students can cognize that multi-thread
parallel programming is necessary under some
circumstances by correlative examples. The
following is an example playing two pictures in a
mosaic style synchronously in a dialog window.

When realizing it with a single-thread program,
there are two visible disadvantages. One is that user
messages can not be responded in good time, and the
other is that two pictures can not be played
synchronously (see Figure 1). That is to say, the
requirement can not be reached by single-thread
program. If realizing it with a multi-thread program,
two foregoing disadvantages can be avoided and the
application requirement can be achieved perfectly.
Two picture can be played in a mosaic style in left
and right synchronously (see Figure 2).

CSEDU 2010 - 2nd International Conference on Computer Supported Education

196

Figure 1: When left played, right must wait until left is
finished.

Figure 2: Picture is played synchronously in left and right.

3.1.2 Efficiency of Application can be
Improved

Firstly, the executing time of multi-core program is
less than that of single-thread for a same multi-core
platform and a same question. Secondly, on multi-
core platform, genuine parallel can be achieved. So
the executable efficiency of application can be
improved in a genuine sense. The following is an
example calculating the pi value in an integral style
(Michael J. Quinn, 2003). The hardware
configuration of platform is dual-core CPU, Genuine
Intel(R) CPU T2080 1.73GHz.

The single-thread code and its executing result
are as follows.

num_steps = 1000000;
step = 1.0/(double)num_steps;
start = clock();
for (i=0; i<num_steps; i++) {
 x = (i + 0.5)*step;
 sum += 4.0/(1.0+ x*x);
}
pi = sum*step;
stop = clock();

The pi value is 3.141592653590.
The executing time is 0.109 seconds.

The dual-thread code and its executing result are
as follows with OpenMP.

num_steps = 1000000;
step = 1.0/(double)num_steps;
start = clock();
omp_set_num_threads(NUM_THREADS);
#pragma omp parallel for

reduction(+:sum) private(x)
for (i=0; i<num_steps; i++) {
 x = (i + 0.5)*step;

 sum += 4.0/(1.0+ x*x);
}
pi = sum*step;
stop = clock();

The pi value is 3.141592653590.
The executing time is 0.063 seconds.

From the results, multi-thread program takes less
time and obtains a higher efficiency than single-
thread program, and speedup ratio is approximately
1.73, that is to say, the performance of this program
is increased by 73%.

3.2 Showing Instance Demos

Multi-core programming can be realized on
multiform OS and in multiform programming
languages. In the limited curriculum hour, it is
almost impossible to explain all involved grammars
or functions. It is also useless all the same if these
grammars or functions can not be used in factual
programming. Therefore, in our schema, we only
explain some representative grammars or functions
to make students master the kernel of multi-core
programming. For the grammars or functions not
taught, students can completely master them in a
self-study way.

As an example, barrier is one of the effective
means to realize multi-thread synchronization, and a
thread meeting barrier can not continue until all
threads in the same parallel area reach the same
barrier. (Shameem and Jason, 2006) If this is
explained only by language, it is difficult for
students to use barrier. On the contrary, instance
demos can help students not only to master its usage
but also to sense the synchronization mechanism.
The following is an example calculating variable y
and z synchronously.

#pragma omp parallel shared(x,y,z)
num_threads(2){

int tid = omp_get_thread_num();
if (tid == 0) {
 y = fn70(tid);
}
else {
 z = fn80(tid);
}
#pragma omp barrier
#pragma omp for
for (k=0; k<100; k++) {
 x[k] = y+z+fn10(k)+fn20(k);
}

}

A TEACHING SCHEMA FOR MULTI-CORE PROGRAMMING

197

3.3 Improving Students’ Consciousness
of Optimizing Multi-core Programs

Multi-core program is an effective way to exhibit the
multi-core hardware performance. But it must be
mentioned that the efficiency of multi-core program
on CMP can be worse than serial program if multi-
core program is not designed in a better thinking.
Therefore, in our schema, we think much of
cultivating students’ consciousness to optimize
realized multi-core programs, a very important habit
to a software designer. In our factual teaching, we
can compare several different realizations for a same
problem.

As an example, for there is no relativity between
the data of the first “for” circle block and that of the
second “section” code block, one thread can
continue to run directly witout waiting. Under the
circumstance, we can import a “nowait” clause to
remove the hidden barrier (Michael J. Quinn, 2003),
and so the waiting time for synchronization is saved.

#pragma omp parallel {
#pragma omp for nowait
for (int k=0;k<m;k++){
 fn1(k);

fn2(k);
}
#pragma omp sections private(y,z)
{
 #pragma omp section {

y = sectionA(x);
fn7(y);

}
 #pragma omp section {

z = sectionB(x);
fn8(z);

}
}

}

4 CONCLUSIONS

In this paper, we present a teaching schema of multi-
core programming curriculum on its specific
characteristics and our teaching practice, aiming at
the senior undergraduate students. The schema pays
attention to arousing students’ enthusiasm and
positivity, showing instance demos and improving
students’ consciousnesses of optimizing multi-core
programs. During our practical teaching with the
schema, it is proved that students’ positivity can be
aroused, students’ practical ability can be enhanced
and students’ consciousness to optimize programs
can be improved.

As multi-core programming is a newly arisen
technique, both its theory and its teaching schema
need further to be perfected all the same. In our
future work, we will further explore more effective
teaching schemas about multi-core programming by
our teaching practices.

ACKNOWLEDGEMENTS

The authors thank Intel-Yunnan University Multi-
core Technology Lab and High Performance
Computing Center of Yunnan University for
experimental support. This work was also supported
by the Project of Building up Characteristic
Disciplines under Grant No. TS11135 from Ministry
of Education of China and by Innovation Group
Project from Yunnan University of China.

REFERENCES

Shameem Akhter and Jason Roberts, 2006. Multi-core
Programming Increasing Performance through
Software Multi-threading, Intel Press.

Liu Jin-guang and Liang Man-gui, 2007. The Development
and the Software System Architecture of Multi-core
Multi-threading Processor. Microprocessors.

He Jun and Wang Biao, 2007. Research on Architecture
Design of Multi-core Processor. Computer
Engineering.

Ren Jing-ying, Li Ying, 2008. Application of Duty
Actuation Teaching Method in C++ Language
Programming, Combining Curricula with Infomation
Technologies.

Sun Geng, 2008. Project Teaching Method in C++
Programming, Computer Education.

Michael J. Quinn, 2003. Parallel Programming in C with
MPI and OpenMP, McGraw Hill Higher Education.

Christopher Haynes, 2009. Experience with an Analytic
Approach to Teaching Programming Languages,
Proceedings of the 29th SIGCSE Technical
Symposium on Computer Science Education.

Christoph W. Kessler, 2006. Teaching Parallel
Programming Early, Proceedings of Workshop on
Developing Computer Science Education.

CSEDU 2010 - 2nd International Conference on Computer Supported Education

198

