
AN ARTIFACT-BASED ARCHITECTURE FOR A BETTER
FLEXIBILITY OF BUSINESS PROCESSES

Mounira Zerari and Mahmoud Boufaida
Mentouri University, LIRE Laboratory, Constantine, Algeria

Keywords: Process flexibility, Underspecification flexibility, Process mining, Artifacts, Context execution.

Abstract: Workflow management Technology has been applied in many enterprise information systems. Business
processes provide a means of coordinating interaction between workers and organization in a structured
way. However, traditional information systems struggle with requirement to provide flexibility due to the
dynamic nature of the modern business environment. Accordingly, Adaptive Process Management Systems
(PMSs) have emerged that provide some flexibility by enabling dynamic process change during run time.
There are various ways in which flexibility can be achieved. One of these kinds of flexibility is flexibility by
underspecification. This kind of flexibility is not supported (except YAWL) by current products. In
addition, all approaches that currently exist not consider the context of execution of business process
management. In this paper we propose an approach that supports flexibility by underspecification and
consider context of the business process execution in runtime environment. The main idea is to consider
activities as independent part of process. Each activity is encapsulated in an entity (artifact). The decision of
which activity (module, component) will be executed depends on context environment and conditions
execution. We will reason about the decision taken. We are motivated by make business processes easy to
put together from reusable components and to reason on context execution.

1 INTRODUCTION

Today, most enterprise applications include a
Workflow management technology. It is clear that
the economic success of an organisation is highly
dependent on its ability to react to changes in its
operating environment. So, it is increasingly
necessary for enterprises to streamline their process
to improve performance.

Current systems are based on models which they
tend to be rigid in format and are not able to easily
include either foreseen or unforeseen changes in the
context of environment in which they operate.

To this end, the notion of flexibility has emerged
as a pivotal research topic in Business Process
Management (BPM). In this context, process
flexibility can be seen as the ability to deal with both
foreseen and unforeseen changes, by varying or
adapting those parts of the business process that are
affected by them (Schonenberg, H et. al., 2008). Or,
in other words, flexibility denotes the capability to
reflect externally triggered change by modifying
only those aspects of process that need to be

changed, while keeping the other part stable (Mulyar
N.A et .al.,2006).

Different kinds of flexibility are needed during
the BPM life cycle of a process. A range of
approaches to achieve process flexibility have been
identified. These approaches have been described in
the form of taxonomy (Schonenberg, H et. al.,
2008).In this paper we propose an approach that
focuses on one kind of flexibility. It is flexibility by
under specification. This category of process
flexibility is the ability to execute an incomplete
process model by completing it at runtime, via
selection from a pre-defined set of process
fragments. The idea is to encapsulate these
fragments into entities or components. These
components possess interface for communication
and a manual or operating instructions. This notion
is inspired from artefacts in coordination systems in
System multi-agent SMA. The different components
of this artefact will be detailed in the following of
paper. Based on information collected from the
runtime helped by techniques of process mining a
decision will be taken to execute one of process
fragment. A knowledge base is updated when a

359Zerari M. and Boufaida M. (2010).
AN ARTIFACT-BASED ARCHITECTURE FOR A BETTER FLEXIBILITY OF BUSINESS PROCESSES.
In Proceedings of the 12th International Conference on Enterprise Information Systems - Databases and Information Systems Integration, pages
359-365
DOI: 10.5220/0002870503590365
Copyright c© SciTePress

Table 1: Evaluation product.

 ADEPT1 YAWL FLOwer Declare
Flexibility by design + + + +

Flexibility by Deviation - - + +

Flexibility by underspecification

Late biding - + - -

Late modelling - + - -

Static, before placeholder - - - -

Dynamic before placeholder - - - -

Static, at placeholder - - - -

Dynamic, at before placeholder - + - -

Flexibility by change + - - +

decision is taken. This approach permits the
consideration of information collected on trace (log)
execution. Also, it makes business processes easy to
put together from reusable components.

The remainder of this paper is organised as
follows. Section 2 provides background information
on taxonomy of process flexibility, process mining
and problem statement. In section 3 we present some
definitions of preliminaries concerned several
notions used in the proposed approach. Section 4
describes the overall of the proposed approach.
Section 5 presents in more details the components of
architecture. Finally, we conclude the paper and
identify opportunities for future work in section 6.

2 PROBLEM STATEMENTS

Several research works have explored the possibility
to make BPMs more flexible. Many approaches tend
to achieve adaptability, like ADEPT, WASA, or
Milano. The basic idea behind these approaches is to
deal with dynamic change to fit with changed real
world situations. More precisely, a range of
approaches to achieve process flexibility have been
identified. They can be taken to facilitate flexibility
within a process. All of these strategies improve the
ability of business processes to respond to changes
in their operating environment without necessitating
a complete redesign of the underlying process
model; however they differ in the timing and manner
in which they are applied. Moreover they are
intended to operate independently of each other

(Schonenberg, H et. al., 2008). Indeed, in one side,
each approach of those approaches is interested by
one kind of business flexibility (table 1). In another
side; they are not to use to actually learn from the
change.

In Table 1 evaluation results are depicted, which
shows whether a system provides full (+), partial(+/-
) or no support (-) for an evaluation criterion. For the
full description of evaluation criteria and detailed
evaluations for each of the offerings, we refer
readers to the associated technical report (Mulyar
N.A et .al.,2006).

We can see that all evaluation criterions are
supported by several systems. The selected systems
cover distinct area of the PAIS technology spectrum,
such as adaptive workflow (ADEPT1), case
handling (FLOWER) and declarative workflow
(Declare). However, we focus on “flexibility by
underspecification” criterion evaluation. It is
supported by only YAWL which is a more recent
initiative based on formal foundations. Flexibility by
Underspecification is the ability to execute an
incomplete process model at run-time, i.e., one
which does not contain sufficient information to
allow it to be executed to completion.

Let us notice that this type of flexibility does not
require the model to be changed at run time; instead
the model needs to be completed by providing a
concrete realisation for the undefined parts
(Schonenberg, H et. al., 2008). An incomplete
process model contains one or more so-called Place-
holders. Place-holders are nodes which are marked

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

360

 a) Before realisation b) After realisation

Figure 1: Specification by underspecification.

as underspecified (their content is unknown) and
whose content is specified during the execution of
these placeholders.
Figure 1 (a) shows an incomplete process model
with a placeholder task between A and C. Figure 1
(b) illustrates the realisation of the placeholder b a
process fragment from a linked repository of process
fragments.

The main question now is witch process
fragment is chosen for the execution of place holders
at run time? I.e. how process fragment are selected
from the repository and under which condition?
Who take this decision? And how we learn from
those decisions?
We consider that the conditions under process
models are executed are essential for the flexibility
of processes. Indeed, the selection of one process
fragment from other one depends on context of
business environment execution. In this paper we
propose an approach that considers context
information in order to execute tasks not defined
(Placeholders) in run time execution. The following
section will describe the different concepts and
notions linked to our approach. We have to use some
notions that are presented in the next section.

3 DEFINITIONS OF THE BASIC
CONCEPTS OF OUR
APPROACH

This paper is based on the integration of two existing
technologies: process mining and artifact. This
section gives background information needed to
understand the implications and leverages of their
combination.

3.1 Process Mining

The goal of process mining is to extract information
(e.g., process models, or schemas) from these logs.
Process mining addresses the problem that most
“process owners” have very limited information
about what is actually happening in their
organization. In practice there is often a significant
gap between what is predefined or supposed to

happen, and what actually happens. Only a concise
assessment of the organizational reality, which
process mining strives to deliver, can help in
verifying process schemas, and ultimately be used in
a process redesign effort (Van Dongen, B.F et. al.,
2004).
The idea of process mining is to discover, monitor
and improve real processes (i.e., not assumed
processes) by extracting knowledge from event logs
(e.g., in MXML format).

3.2 Process Log

Information systems typically log all kinds of
events. Unfortunately, most systems use a specific
format. Therefore, an XML format for storing event
logs is proposed (Gunther, C.W et. al., 2007).
The basic assumption is that the log contains
information about specific tasks executed for
specific cases (i.e., process instances).
The XML format is roughly the following:
The root element is the <WorkflowLog> element
and it has a number of <Process> sub-elements, each
encapsulating execution data of one process,
orworkflow. A <Process> element has a number of
<ProcessInstance> child elements.
A <ProcessInstance> has numerous
<AuditTrailEntry> child elements.
An <AuditTrailEntry> represents one log record and
contains an identifier of the activity, the event-type
and a timestamp.

4 AN ARCHITECTURE BASED
ON ARTIFACT FOR BUSINESS
PROCESS FLEXIBILITY

Process flexibility by underspecification raises a
number of interesting questions, as indicated in the
previous section. In this paper we propose an
approach in order to reach process flexibility by
underspecification. We focus on the manner that a
process fragment will be chosen in order to execute
a place holders in run time environment. Our
objective is to take into account the information, on
the one hand, from context execution. On the other

A C A C

AN ARTIFACT-BASED ARCHITECTURE FOR A BETTER FLEXIBILITY OF BUSINESS PROCESSES

361

Figure 2: Overview showing three types of process mining: (1) Discovery, (2) Conformance, and (3) Extension (Gunther,
C.W et .al., 2007).

Information Action
component

Context
execution
component

Process activity
component

Global

 Local

Figure 3: Different views of system.

hand we must learn from this decision in order to
apply it to other situations (Static, dynamic before
place holders). In a run time environment, several
execution contexts exist. Each context execution
requires a specific task under specific condition. We
started our discussion by this. Indeed, the actions
that comprise an activity of a business process are
always the same and do not change. However what
is changing is the execution context under which the
decision to perform a particular activity should be
execute.

The basic idea is to encapsulate the activity
actions executed in reusable translucent boxes with a
"manual". Those boxes are considered as entities
used by manager service to achieve the goal of an
activity (place holder). Each entity is characterized
by: interface to use (actions and perceptions),
function (description of services rendered), its
attributes (parameters and internal variables
exhibited) and Operating instructions (instructions).

Let us consider the system with two viewpoints
(figure 3):

 The local: the view of the action
It is the set of instructions that compose an

activity. It acts directly and at exact moment without
any vision of the future.

 The global: the view of the context activity
It is the position of the activity in its context.

Communication local-global: local sent to global
information perceived by the action.

The system architecture is constituted of several
components:

 Process activity component: instruction of a
process activity is encapsulated in the artifact
as mentioned above.

 Information Action component: we can
consider it as a management service. The
decisions of what activity will be executed are
taken by this component. A knowledge base is
update in order to learn from the situation.

Supports/control

Event logs (Process)
model

« World »
business processes
people machines
components
organizations

Information
system

Specifies
configures
implements
analyzes

Discovery

Conformance

extension

Models
analyzes

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

362

Figure 4: Architecture of the proposed system.

 Context execution component: the decision
taken by precedent module is taken according
to information context execution. The objective
of this entity is the perception of condition
context. That information is communicated to
action information in order to consider theme
when the process activity module is chosen
(place holder).

Each component is itself composed of several
modules and each has its own task. Those modules
are more described in the next section.

5 DESCRIPTION OF DIFFERENT
COMPONENTS

Figure 4 illustrates the position (layout) of different
modules of architecture. The functional description
of each one will be presented in this section.
• Trace Collector: it is a monitoring module. It

permits us to capture different situation on
execution of processes. Here our support is event
log of the execution of process activity. Event
log are created, which record the sequence of
activities executed for each case.

• Trace Transformer: in order to use this event logs
XML format, called the Mining XML (MXML)
format that could be used as input to the different
tools could be exploited. By converting
simulated or real-life logs to the MXML format,
one could use the mining techniques in multiple
contexts. The result will be saved in Trace Base
(TB).

• Analyzer: Process mining targets the automatic
discovery of information from an event log.

This discovered information can be used to deploy
new systems that support the execution of business
processes or as a feedback tool.

• Process activity component: we mentioned above
that the activity of a process is encapsulated in an
entity considered as a component. This
component is largely inspired by artifact in
Coordination in MAS (Dinont C. et. Al., 2006)

Thus, this entity has:

 Use interface: defined as a set of operations. Two
kinds of operations: execution of an action and
the perception of the end of an action (figure 4).

 Function: it describes the service proposed by the
entity. Aim of activity. Specification: formal
description of the behaviour of the activity.

 Manual: it’s a set of formal instructions witch
describe the manner that other component
(decision maker and reasoner) use this entity.
Those instructions are described by a formalism
based on process algebra. For more details you
can refer to (Viroli, M., Omicini, A, 2007).
Nevertheless a short description of principles can
be presented. An Instruction is:
I ::= 0 |!α |?π | I; I | I + I |

(I||I) | D(t1, . . . ,tn)

I can be an atomic Instruction: Behaviour ZERO
(0), execution of the action !α , and the perception of
the end of the action ?π. I may also be structured
using different operators: “;” for the sequential
composition, “+” for the choice and “| |” for parallel
composition. The concept of recursive can be
assured by the invocation of D (t1, . . . ,tn) of
another basic instruction. We can consider the
following manual as:

((!a ; ?end_ a) + (!b ; ?end_ b)) || (!c ; ?end_c)
….(i)

We have to define the use interface of our entity.
It’s a basic interface. We have two kinds of
operations: Action and perception. Those operations
are derived from the precedent component (i.e.
analyzer).

Action

Perception

Decision Reasoner

KB

Trace Collector

Trace
Transformer TB

A
na

ly
se

r

AN ARTIFACT-BASED ARCHITECTURE FOR A BETTER FLEXIBILITY OF BUSINESS PROCESSES

363

Those actions are extracted and inspired from
events of a process activity logged whenever an
activity is executed. For example this sequence is
logged whenever an activity is executed without any
exceptions or complication:

Shedule—Start—Complete.

Furthermore, there are a lot of different special
cases. For example, an activity may be cancelled
while being in state “Scheduled”. The order of
events is:

Schedule––Withdraw.

An activity may be cancelled while running, i.e.,
it is in state Active. Such a sequence is mapped into

Schedule––Start––Abort.

We can resume all this in a FSM (Fig. 5 shows
this FSM Dinont, C and Mathieu, P, 2006)).

Suspend

Completed

New

Terminated

Schedule

Start

Complete

Withdraw
Abort

Suspend

ActiveScheduled

Figure 5: A FSM describing the event type.

So, we can deduce action operations and
perception ones. Possible action operations are:
start(input data), suspend, resume, complete,
and possible perception operations are:
completed(result), Terminated,
suspended.

The next step now is the description of the
manner that this entity will be used by the reasoner.
Hence, we describe the manual that will be executed
in order to use this entity. (i) is an example of a such
manual.

The different activities of a business process are
expressed by this manual. For example:

Simple_staffware:=
((!registration ; ?end_registration) ;

(!send_questionnaire;
?end_send_questionnaire);!receive_quest
ionnaire;
?end_receive_questionnaire);(!evaluate
;?end_evaluate) ;simple_staffware..(ii)

This manual or operating instruction is used in
order to be exploited by reasoner and decision maker
for reasoning. It’s more detailed in a next point.
• Reasoner and decision maker:

The essential element necessary for programming
the using of the entity (artifact) is how to use the
artifact (the operating instructions) as in the previous
example. In order to assure the semantic link with
knowledge base (KB) of reasoner the operating
instructions given alone are of no utility. We need
additional information to enable it to decide what
actions they will launch on artifacts and understand
the perceptions that it will receive in return. This is
done using semantics associated with mental actions
and perceptions (Dinont, C and Mathieu, P, 2006). It
is defined in a table which indicates for each action
the mental state in which the component must decide
to initiate this action and for each charging the
changes in mental status. For illustration we take the
manual (ii) mentioned above. We have to indicate to
decision maker when he may decide to perform the
action:

Action Precondition Perception Effect

Registration ¬

registration
End_registration registration

The effects permit to update the knowledge base.
This principle will be applied to all the operating
execution. The module decision maker will be
referred to analyser to know what the operating
instruction for this artifact is.

6 CONCLUSIONS AND
ENGOING WORK

In this paper, we presented architecture of a system
for increasing flexibility of business process
management. We focused on flexibility by
underspecification. This kind of flexibility is not
supported by the entire product except YAWL.
YAWL use worklet to achieve process flexibility.
They also not consider execution environment of
processes. Our approach uses the notion of artifact to
encapsulate the functionalities of activities of
business process. It permits us to consider activities
first-class programming abstractions. They can also
be instantiated, modified, and disposed dynamically.
Our approach integrates the notion of semantic due
to process algebra. We also reason on this artifact
and on execution environment. The informations are
extracted from the context of execution using

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

364

process mining techniques. Process mining permit to
transform execution log to Mining XML format.
This format will be exploited to take the decision
witch artifact will be executed. Our approach is also
a new way to look to BPMs specially environment
of execution of them. In this paper we have outlined
a system that would need prototyped his different
components. Our ongoing works will be: first,
implementing different components applied to a case
study. We have also to complete and extend the
basic model of artifacts. An extension of reasoning
mechanism can be developed. A mapping between a
Petri net (MXML by process mining tool) and
process algebra will be interesting.
Finally, we mention that the main advantages of this
approach are the exploitation of the formal side of
the process algebra and Petri nets for verification
and validation purpose.

REFERENCES

Alves de Medeiros, A., Guzzo, A., G, G. Greco, Wil M. P.
van der Aalst, A. J. M. M. Weijters, Boudewijn F. van
Dongen and Saccà, D. ,2007. Process Mining Based
on Clustering: A Quest for Precision. Business
Process Management Workshops 2007: 17-29

Dinont, C., Mathieu,P., Druon, E., and Taillibert, P., 2006.
Artifacts for time-aware agents. AAMAS 2006: 593-
600.

Dinont, C., Mathieu, P., Druon, E., 2006. Les artifacts de
calcul Une solution aux délibérations longues. JFSMA
2006.

Gunther, C. W., Rinderle-Ma, S., Reichert, M., van der
Aalst, W. M. P. and Recker, J. (2007) ‘Using Process
Mining to Learn from Process Changes in
Evolutionary Systems’, Int. J. Business Process
Integration and Management, Vol. 1, Nos. 1/2/3,
pp.111–111.

Mulyar N. A., M. H. Schonenberg, R. S. Mans, N. C.
Russell and W. M. P. van der Aalst. Towards a
Taxonomy of Process Flexibility (Extended Version).
BPM Center Report BPM-07-11, BPMcenter.org,
2007.

Rozinat, A., van der Aalst, W. M. P.2006, Decision
Mining in ProM. Business Process Management 2006:
420-425.

Rubin,V., Günther, C. W., Wil M. P. van der Aalst, Ekkart
Kindler, Boudewijn F. van Dongen, Schäfer,W.,2007.
Process Mining Framework for Software Processes.
ICSP 2007: 169-181.

Schonenberg, H., Mans, R., Russell, N., Mulyar, N., and
Wil M. P. van der Aalst, 2008. Process Flexibility: A
Survey of Contemporary Approaches. CIAO! /
EOMAS 2008: 16-30.

Viroli, M., Omicini, A., and Ricci, A., 2007. Agent &
Artifact (A&A) ARTIFACT-BASED

ENVIRONMENT FOR MAS. Seminar at LIP6 Paris,
March 2007.

Viroli, M., Omicini, A. 2007. ReSpecT Nets: Towards an
Analysis Methodology for ReSpecT Specifications.
Electr. Notes Theor. Comput. Sci. 180(2): 123-144
(2007).

Van Dongen, B. F., Wil M. P. van der Aast, Multi phase
Process mining : building instance graph. ER 2004,
LNCS 3288, pp. 362–376, 2004.

Wil M. P. van der Aalst, Boudewijn F. van Dongen,
Joachim Herbst, Laura Maruster, Guido Schimm, A. J.
M. M. Weijters 2003. Workflow mining: A survey of
issues and approaches. Data Knowl. Eng. 47(2): 237-
267 (2003).

Wil M. P. van der Aalst, Adams, M., Arthur H. M. ter
Hofstede, Pesic,.M., Helen Schonenberg, H., 2009.
Flexibility as a Service. DASFAA Workshops 2009:
319-333.

Weber, B , Reichert, M., Rinderle-Ma, S., Wild, W., 2009.
Providing Integrated Life Cycle Support in Process-
Aware Information Systems. Int. J. Cooperative Inf.
Syst. 18(1): 115-165 (2009).

AN ARTIFACT-BASED ARCHITECTURE FOR A BETTER FLEXIBILITY OF BUSINESS PROCESSES

365

