

GOAL, SOFT-GOAL AND QUALITY REQUIREMENT

Thi-Thuy-Hang Hoang and Manuel Kolp
Université Catholique de Louvain, Place des doyens, 1, 1348, Louvain-La-Neuve, Belgium

Keywords: Quality requirement, Goal, Hard-goal, Soft-goal, Functional requirement, Non-Functional Requirements.

Abstract: Requirements are input for the process of building software. Depending on the development methodology,
they are usually classified into several subclasses of requirements. Traditional approaches distinguish
between functional and non-functional requirements and the modern goal-based approaches use hard-goals
and soft-goals to describe requirements.
While non-functional requirements are known also as quality requirements, neither hard-goals nor soft-
goals are equivalent to quality requirements. Due to the abstractness of quality requirements, they are
usually described as soft-goals but soft-goals are not necessarily quality requirements. In this paper, we
propose a way to clear the problematic ambiguity between soft-goals and quality requirements in goal-based
context. We try to reposition the notion of quality requirement in the relations to hard-goals and soft-goals.
This allows us to decompose a soft-goal into a set of hard-goals (required functions) and quality
requirements (required qualities of function). The immediate applications of this analysis are quality-aware
development methodologies for multi-agent systems among which QTropos is an example.

1 INTRODUCTION

Requirements engineering is usually located at the
beginning of the development process of software.
During this stage, requirements on the system-to-be
are elicited and collected from the initial description
documents, then are analyzed to define the principal
components of the system. The requirement analysis
must determine what and how the system will have
to provide in order to meet the initial needs of
building the system. As a consequence, requirements
engineering has been playing the leading role of
every software development process.

Zave and Jackson (1997) provide what may
appear to be one of the most complete definitions of
Requirement Engineering (RE):

Requirement Engineering. “is the branch of
software engineering concerned with the real-world
goals for, function of, and constraints on software
systems. It is also concerned with the relationship of
these factors to precise specifications of software
behaviour, and to their evolution over time and
across software families“.

From the above definition, one can identify all
the main components of requirements: goals,
functions and constraints. However, this does not

provide a proper classification of requirements. To
classify better requirements, traditional approaches
distinguish between functional and non-functional
requirements while modern goal-based approaches
use hard-goals and soft-goals to describe
requirements.

Functional requirements describe WHAT the
system will have to perform and non-functional
requirements describe HOW the system will do its
jobs (Sommerville 2007). It can be known that some
requirements are first considered as non-functional
but after having being detailed they appear to be
functional. And for some other requirements, it is
rather unclear whether they are functional or non-
functional. However, it will be clearer if the
system’s boundary is well-defined and functional
requirements resulted from a non-functional
requirements are considered as additional operations
carried out to satisfy additional constraints. It is,
thus, preferable to refer functional requirements to
system services and non-functional requirements to
service quality requirements such as: accuracy,
security, availability, etc. to avoid any ambiguity.

In the meantime, goal-based requirements
engineering (Yu 1995) (Chung et al. 2000) divides
requirements into hard-goals and soft-goals. Both
type of goals represent states of affairs that software

13
Hoang T. and Kolp M. (2010).
GOAL, SOFT-GOAL AND QUALITY REQUIREMENT.
In Proceedings of the 12th International Conference on Enterprise Information Systems - Information Systems Analysis and Specification, pages 13-22
DOI: 10.5220/0002872100130022
Copyright c© SciTePress

are expected to achieve. For hard-goals, there are
clear-cut criteria for whether they are achieved. But
there are no clear-cut criteria for soft-goals. It is then
usually very hard or even impossible to satisfy
completely a soft-goal. One might compare hard-
goals to functional requirements and soft-goals to
quality requirements. However, this is not an
adequate comparison since, for examples,
Availability (of system) requirement is, indeed, a
soft-goal but Happy Customers soft-goal is not a
quality requirement. As we will see, the relation
between soft-goals and quality requirements is not
simply an inclusion.

A recent approach presented in (Jureta,
Mylopoulos & Faulkner 2008) uses the notion
quality requirements to define well-defined and
measurable quality and uses soft-goals to define
abstract qualities that cannot be defined in a clear
cut way. Actually, these definitions only provide a
classification of quality requirement in to well-
defined qualities and abstract qualities and they do
not take into account other soft-goals than qualities.
Although this approach uses a very interesting
analysis, i.e. analysis of speech acts in
communicated content between stakeholders, to
ground its concepts, its applicability is still open and
depends on future applications.

In order to give quality requirements a new role
that is qualifier on hard-goals and soft-goals, we
propose, in this paper, a new definition for the three
most important notions: hard-goals, soft-goals and
quality requirements. We also propose the analysis
with this new definition to keep track of quality
requirement from early requirements until the final
products. As a result, quality requirements will play
a much more active role in the development process
than being just criteria for comparing design
alternatives. Goal decompositions with quality
requirements will be easy to be derived. The paper
will also reveal a clearer connection between hard-
goals/soft-goals and functional/non-functional
requirements.

From the analyses proposed by the paper, quality
requirements can be seen as an additional dimension
to the goal dimension. Goals elicit quality
requirements and qualities constrain goals in a
reinforcing relationship.

We start this paper by giving an overview, in the
Section 2, of goal-based requirements engineering.
In Section 3, we will reposition quality requirements
inside this framework in order to introduce the
quality-aware goal analysis. QTropos, a quality-
aware agent-oriented software development process
that keeps track of quality requirements from the
requirement analysis to the final products will be

briefly presented in Section 4. We will end this
paper with some concluding remarks.

2 GOAL-BASED REQUIREMENT
ENGINEERING

In software requirements engineering, goals have
become promising tools for requirements eliciting
and elaborating. Goals whose satisfaction criteria
can be formally described and correctly checked are
hard-goals; otherwise they are soft-goals. We can
satisfy hard-goals but only satisfice soft-goals
(Chung et al. 2000). Satisficing a goal is a weaker
notion of satisfaction where goals are only partly
satisfied. In practice, the term goal is used
extendedly for hard-goals in contrast to soft-goals.
This is sometimes very misleading. We will
explicitly use the terms hard-goal and soft-goal and
the term goal will used to specify the general
concept containing both hard-goals and soft-goals.

In the remaining part of this section, we will
outline some essential points that make goals really
attractive in requirements engineering.

First, goals are objectives that developers expect
the system-to-be to achieve. By definition, a goal
describes only a state of the world that the system
should bring about. Usually, a high level goal does
not contain any detail of what and how the system
should do to obtain it. Examples of such goals are
Market Share Increased, Happy Customer, etc.
These high-level goals can be found quite easily in
preliminary documents, interviews of stakeholders,
etc. Lower-level goals are then elicited through the
analysis of higher-level goals or through the
subsequent interactive communications between
developers and stakeholders. A common mistake is
to consider goals as function designs or algorithmic
sketches. Indeed, a goal is usually a description of
the outcome of an operation (posterior conditions),
while a function design is a plan of how to carry out
an operation. Given a goal, there can be zero, one or
more than one ways (plans or function descriptions)
to completely achieve it. It can be said that using
goals to model requirements can reduce the gap
between the stakeholders’ desires and the outcomes
of the system by starting directly from the needs and
imposing minimally, a priori, on the choice of
structure and technique to be used.

Second, goals provide a greater expressibility,
the ability to express, than functional and non-
functional requirements. Goals can be divided into
two classes based on their satisfiability. Compared
to traditional approaches, every functional

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

14

requirement, defining a function or a component of
software system, such as Turn on a Printer, Print a
Document can be described by hard-goals but
Patient Examined hard-goal is not a functional
requirement of a hospital management system.
Likewise, every non-functional requirement such as:
Security, Availability can be represented by means
of soft-goals, but Market Share Increased soft-goal
cannot be represented by a non-functional
requirement. This proves that hard-goals and soft-
goals are richer than functional and non-functional
requirements. Up till now, non-functional
requirements are considered as a sub-class of soft-
goals. However, this position can be revised, as done
later in this paper, while preserving the richness of
goal-based paradigm.

Third, representing requirements as hard-
goals/soft-goals can make use of the very efficient
goal decomposition analysis (Van Lamsweerde
2001) to break down the requirements. AND-
decomposition breaks a goal into a set of sub-goals
in which the satisfaction of the parent goal is met
only when all the sub-goals are satisfied. On the
other hand OR-decomposition defines a set of sub-
goals such that the satisfaction of only one sub-goal
is sufficient for the satisfaction of the parent goal. In
the literatures, the two above decompositions are
applied only for goals where the satisfaction can be
defined in a clear-cut way. For soft-goals, above
AND/OR links are not applied since, in most cases,
we can only satisfice soft-goals. Instead, one can use
contribution links by which sub-goals and/or sub-
soft-goals can contribute positively or negatively
with some degree to the parent soft-goal. Other types
of analysis are introduced by Tropos project (Castro,
Kolp & Mylopoulos 2002) using the i* framework
(Yu 1995) as modelling language. In such analysis,
requirements are modelled by dependencies (hard-
goal, soft-goal, task and resource) between system
stakeholders and between system agents.

Forth, conflicts between requirements can be
negotiated and cleared by weighing the potential
risks produced by each option. For example, Non-
Functional Requirement Framework (Chung et al.
2000) provides a way to propagate the
positive/negative effect up through the
decomposition tree in order to evaluate the risk
factor produced by an analysis option. The winner
will be the one that could produce less damages.

Fifth, at the lowest level, all hard-goals and soft-
goals can be exactly or approximately
operationalized. This will results in the functional
design of the system-to-be where hard-goals and

soft-goals are replaced by future functions of the
system.

Further implications of goal-based requirements
engineering can be found in (Castro, Kolp &
Mylopoulos 2002) (Letier 2001) (Hoang 2008). In
the following section, we present a way to separate
quality requirements from soft-goals in order to
emphasize the use of quality dimension in the
requirement engineering.

3 QUALITY REQUIREMENT
REPOSITIONING

To reposition quality requirements in the software
development process, we first consider the software
development in agent-oriented framework with its
typical quality requirements.

3.1 Quality Requirements in Reality

Being a promising development trend that can
replace traditional development techniques such as
structured and object-oriented, agent-oriented
software development has become a modern trend in
software engineering. Software agents are expected
to substitute human agents in a lot of tasks. To play
some human roles, they are given certain autonomy
and intelligence. Moreover, they are designed to live
in a virtual society in which agents interact with
each others to exchange their knowledge, to reason
about the environment and to act towards individual
goals as well as social goals. On the one hand, this
offers the flexibility and the extendibility to the
system, but on the other hand, the liberty of agents
may harm the integrity and the coherence of the
system. The security flaws will be also among the
principal concerns if such systems are deployed in a
large scale. These potential problems are probably
one of the main reasons why the agent-oriented
structure has not been widely used. To gain the
popularity, quality requirements such as: flexibility,
extensibility, integrity, etc. of the system as a whole
and of services of the system must be addressed.

Quality requirements describe not WHAT the
system will do but HOW the system will do its job.
For example, if Promptness is the only quality
requirement that have to be satisfied, then between
two systems that can do the same job, the one that
accomplishes the job in less time, given the same
condition, is normally chosen. Our objective is not
just using the quality requirements to compare
between already-built systems but to develop new

GOAL, SOFT-GOAL AND QUALITY REQUIREMENT

15

software systems that conform to the given quality
requirements. To do so for multi-agent systems,
when the overall behaviour depends on the atomic
interactions between agents, quality requirements
must be taken into account at both the system level
and agent level. This is crucial since traditional
approaches such as (Chung et al. 2000) often treat
the quality requirements only at the system level and
use quality requirements only as the criteria in
selecting the right option among alternatives. And
this seems not sufficient for multi-agent system.
Quality requirements must play more active roles
during the development process, especially in the
requirement analysis. This is the reason why we opt
not to analyze quality requirements as a sub-class of
soft-goals in order to pay sufficient attentions in the
quality aspects. In this new goal-based analysis, we
should redefine the roles of and the relations among
the three entities: hard-goals, soft-goals and quality
requirements.

3.2 Quality Requirements in Focus

We consider again the similarity between functional
requirements and hard-goals, between quality
requirements and soft-goals. This similarity is
strengthened by the fact that it is usually impossible
to define the satisfaction criteria of a quality, which
makes quality requirements similar to soft-goals.
However soft-goals are definitely not quality
requirements. One of the reasons is that quality
requirements are defined as attributes and/or
properties of system functions and are concerned
with the quality of services offered by the system,
while a soft-goal is a state that the system should
achieve. Soft-goals can, thus, describe indirectly
functions of a system but neither do quality
requirements (1).

To be more specific, soft-goals can be divided
into two classes based on their main concerns. When
a soft-goal describes a state related to services inside
of the system, it, in fact, describes directly or
indirectly some system functions (often with some
quality requirements on them). When a soft-goal
describes a state related to external actors of the
system, it should actually be reflected by some hard-
goals or soft-goals inside the system because this is
the only way the system can achieve that soft-goal.
For example, Happy Customer is a soft-goal that
acts on the external actor to the system (i.e.
Customer) while Transaction Treated in Security
and Reliability is a soft-goal related to services of
the system for which Security and Reliability are two
important qualities. And the latter together with
some others hard-goals and soft-goals can be the

reflection of the former, i.e. Happy Customer soft-
goal, inside the system. In other words, Transaction
Treated in Security and Reliability can make
Customers Happy.

As pointed out earlier that, a function (or object)
can be ascribed with some attributes or possesses
some properties that represent qualities of that
function (or object). This is to say that quality
requirements should act on a function (or an object)
inside/outside of the system-to-be. Or at least, they
act on the whole system, hence everything in the
system. As a consequence, it is improper to consider
quality requirements as states of the world without
specifying on which they act on (2).

The points (1) and (2) show us that the definition
of soft-goals and quality requirements, in which
quality requirement is a sub-class of soft-goal, that
we usually see in the literatures are no longer
applicable. We come to the following set of
definitions:

Definition 1. a hard-goal describes state of some
specified objects that the system wants to achieve for
which the satisfaction criteria are precisely defined.

Definition 2. a soft-goal describes a state of some
specified objects that the system wants to achieve for
which the satisfaction criteria are not defined in a
clear-cut way.

Definition 3. a quality requirement describes
constraints or perfection levels independent on
objects that are constrained to satisfy or satisfice it.
When a quality requirement constrains a hard-goal
(or soft-goal), it, in fact, constrains the means to
achieve that hard-goal (or soft-goal).

The term object in the above definitions is
referred to entities that can be ascribed with
attributes and/or can possess properties. Popular
objects in the context of software system are:
stakeholders of the system, system functions, system
resources, etc.

By examining the above definitions, we can
identify the following differences between these
definitions and other definitions in the literature:

• A hard-goal (or soft-goal) must be
associated with some specific objects. This
condition does not allow a quality
requirement to be goal.

• Quality requirements stay outside of hard-
goals and soft-goals and influence the way
that hard-goals and soft-goals to be
achieved.

We can illustrate this by some examples:

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

16

• Security is a quality requirement but not a
soft-goal.

• Secured Banking Transaction is a soft-goal
since it describes a state of banking
transaction of being secured.

• The Web Pages Served hard-goal is
constrained to have High Availability. Here
High Availability is a quality requirement
constrains the web server that serves web
pages.

In our point of view, the reason for which it is
difficult to define the satisfaction criteria of a soft-
goal is the presence of one or more quality
requirements inside the soft-goal, i.e. Security in
Secured Bank Transaction soft-goal. Moreover,
these quality requirements are abstract or implicitly
and indirectly stated, in general. Examples are: soft-
goals representing the state related to external actors
that the system-to-be must achieve, e.g. Happy
Customer soft-goal. Viewing this soft-goal in this
state, it is not clear how to relate this soft-goal to any
system functions and their quality requirements. In
these cases, the following observation can help to
draw a direction that guides our analysis of goal.

Observation. It is always possible and preferable to
transform any stand-alone soft-goal into hard-goals
of the system-to-be (on which none or some qualities
are required) and these derived qualified hard-goals
satisfy or at least satisfice the soft-goal. However,
this transform can be indirect in the sense that a
soft-goal can be transformed into sub-soft-goal
before being transformed into qualified hard-goals.

In this observation, we treat only stand-alone
soft-goals in order to rule out any possibility of
conflicts between soft-goals of which may hurt the
soft-goal satisfaction. More on conflict negotiation
technique will be discussed in the next section in
which several analyzing techniques are revised to
help developers to deal with the new quality
requirement concept. Now let us point out some
other important remarks that can be drawn from the
above definitions and observation:

• The notion of soft-goal does not play a
persistent role in the development process
since it is possible to transform into qualified
hard-goals. And we should do so since hard-
goals are clearer notions for describing the
system-to-be. Ideally, at some stages of the
development process, there will be no more
soft-goal. This allows us to have better
operationalizations.

• Quality requirements might not be stated
explicitly in the high level hard-goals/soft-
goals. But they can be elicited from the
transform from soft-goals to qualified hard-
goal.

• Quality requirements exist thorough the
development process and play the role of
qualifiers or constraints on goals. They may
constrain also soft-goals at the beginning of
the analysis process.

As we will keep the notion of quality
requirement along side with hard-goals and soft-
goals as an additional layer constraining hard-goals
and soft-goals, we will use the following graphical
notion for quality requirements in our analysis. We
call the link from quality requirements to goals
Qualification Link. In textual form, we use the
following predicate to show the qualification link:

QUALIFY([Quality], [Goal]).

in which, the name of goals and qualities are written
inside a pair of square brackets [.]. The link types
are in upper case. A set of elements are written
inside a pair of curly brackets {.} and are used as
abbreviations of individual link. In a link predicate,
the order of parameters defines the direction of the
arrow in the corresponding graphical representation.
Here we omit all the node predicates that specify the
node type, i.e. QUALITY(.), HARDGOAL(.) and
SOFTGOAL(.).

Figure 1: Quality on goal and soft-goal.

In the remaining part of the section, we present
how to deal with quality requirements in standard
techniques of goal analysis (Van Lamsweerde 2001).
Hard-goals and soft-goals are usually decomposed
using the goal refinement graph on which two basic
operations are: AND decomposition and OR
decomposition can be applied to goals and the
contribution analysis can be applied in cases where
soft-goals can only be approximated. Quality
requirements are propagated from the parent node to
the sub-nodes following the refinement tree and the
type of decomposition.

GOAL, SOFT-GOAL AND QUALITY REQUIREMENT

17

3.3 Goal Analysis with Quality
Requirements

With the presence of quality requirements, we will
introduce several new analyses such that:
qualification link, quality elicitation and quality
contribution together with the standard goal-based
operators: AND and OR decomposition.

Figure 2: OR decomposition with quality requirement.

3.3.1 OR Decomposition

OR decompositions represent alternatives to fulfil a
goal. In Figure 2, the Invitation Sent hard-goal is
satisfied by either the Invitation Sent By Email hard-
goal or Invitation Sent by Post hard-goal or
Invitation Communicated By Telephone hard-goal.
Since the parent goal is required by Promptness
quality, all the alternatives should be also required
Promptness. In textual form, we write

OR (

{
[Invitation Sent by Email],
[Invitation Sent by Post],
[Invitation Communicated by Telephone]

},
[Invitation Sent]

).

QUALIFY(

[Promptness],
{

[Invitation Sent By Email],
[Invitation Sent By Post],
[Invitation Communicated by Telephone]

}
).

3.3.2 AND Decomposition

In AND decompositions, a goal is satisfied if and
only if all the leaf nodes of the decomposition tree
are satisfied. In Figure 3, the Music Played hard-goal
with the Legality requirement is satisfied if and only
if Source File is found and downloaded legally.
Then the downloaded Music File is opened to send

Figure 3: AND decomposition with quality requirement.

sound to speakers. Textually, we write:
AND(
 {

[Source Found],
[File Downloaded],
[Music File Opened]

},
 [Music Played]
).

QUALIFY([Legality], [Music Played]).

QUALITY(

[Legality],
{[Source Found], [File Downloaded]}

).

Notice that, in this example, the hard-goal Music
File Opened is not required to have the Legality
quality since it can be completely satisfied by the
two other goals. In general case, when the quality Q
itself can be decomposed into several sub-qualities
(i.e. Q1, Q2, …), see, for example (Chung et al.
2000), for a taxonomy of quality requirements. The
AND decomposition can be rewrite differently if all
the sub-qualities are correctly distributed among the
leaf nodes.

Figure 4: AND decomposition and extended quality
requirement.

Figure 4 presents the extended version of AND
decomposition. The quality Economic is
decomposed in the two sub-qualities: Efficiency and
Reusability. To have Software Developed
Economically, it must (i) be designed by using old
and creating new reusable components, (ii) be
provided with an efficient bug management system.
The coding activities do not affect much the
development cost of the software. We then can
rewrite the decomposition of Software Developed
hard-goal as follow:

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

18

AND(
 {[Efficiency], [Reusability]},

[Economic]
).
QUALIFY([Economic], [Software Developed]).
AND(

{
[Software Designed],
[Software Coded],
[Bug Managed]

 },
 [Software Developed]
).

QUALIFY([Efficiency], [Bug Managed]).
QUALITY([Reusability], [Software Designed]).

3.3.3 Quality Elicitation

As we have assumed that qualities can be implicitly
contained in soft-goals, it is possible that at some
stages, some quality requirements are elicited.

In Figure 5, the soft-goal Email Confidentially
Sent is decomposed into the Email Sent hard-goal
with the quality Confidentiality. Formally we write:

ELICIT(

[Email Confidentially Sent],
[Confidentiality]

).

AND([Email Sent], [Email Confidentially Sent]).
QUALIFY([Confidentiality], [Email Sent]).

Remarks. The three refinements above reveal the
link between the notions of functional/non-function
(quality) requirements and the notions of hard-
goals/soft-goals. This link can be summarized as
follow:
• A functional requirement can be represented by

a hard-goal. And every hard-goal at the lowest
level (right before the operationalization) can
be considered equivalent to a functional
requirement.

• A soft-goal is defined by a sub-tree of the
refinement tree. Starting from a soft-goal and
taking only the leaf nodes in the corresponding
sub-tree, one can extract all the possible
combinations of hard-goals and quality
requirement that can satisfice the soft-goal.

• Hard-goals and soft-goals tend to appear at the
root of refinement trees while functional and
quality requirements tend to be at the leaf
nodes.

• At the leaf nodes, there should not be any soft-
goal left. Instead, there should be only hard-
goals and quality requirements on them.

These allow us to reconfirm that hard-goals/soft-
goals are the better choice for requirement
engineering (compared to functional/non functional
requirements). Moreover, they provide a higher
degree of abstraction and expressibility and can be
used to capture the preliminary requirements only

from the very early intentions of the system’s
stakeholders.

Figure 5: Quality requirement elicitation.

3.3.4 Quality Requirement Fulfilment

To depict the fulfilment of a quality requirement
using a goal, we use the contribution link and the
following contribution labels (Chung et al. 2000): --
(break), - (hurt), + (help) and ++ (make).

Figure 6: Quality requirement fulfilment.

Figure 6 shows that the Message Encrypted hard-
goal sufficiently contributes in the fulfilment of the
Confidentiality quality requirement. Textually, we
can write:

QUALIFY(

[Confidentiality],
[Banking Information Sent]

).

AND(
 {[Account No. Sent], [Message Encrypted]},
 [Banking Information Sent]
).

CONTRIB<Make>(
 [Message Encrypted],
 [Confidentiality]
).

3.3.5 Conflict Negotiation

As pointed out earlier, quality requirements can
sometimes create conflicts. We take a simple
example of an online shop where the Online
Payment Offered hard-goal (pay for an online
purchase) is required to satisfy both Security and
Easy To Use quality requirements, as showed in
Figure 7. We have two possibilities to realize that
that hard-goal by either: In-House Service Built or
Third-Party Service Used.

GOAL, SOFT-GOAL AND QUALITY REQUIREMENT

19

In the one hand, with the option In-House
Service, the shop is free to design its own payment
service including the interface to simplify and
facilitate the customers’ payment. The accounting
data is also kept and easily controlled. However,
credit card process and management are very
complex and often very vulnerable to attacks.
Building and maintaining a secured payment system
solely for the store are very expensive.

Figure 7: Quality conflict negotiation.

In the other hand, existing third-party services
are very well built and maintained. Although it still
cannot provide a full guarantee for the security issue,
it can be considered a better choice than a self-
developed service. The inconvenient side of this
service is that it makes the payment process a more
complicated. The customers may need to jump back
and forth between the shop’s website and online
payment website to complete a payment.

To resolve conflicts among quality requirements,
one possible way is to define the priority of quality
requirements as a numerical value in an open scale.
A quality requirement that has a higher priority will
be fulfilled before other lower-priority ones are
fulfilled. In the above example, when issuing a
payment, the Security requirement is surely more
important than the fact that it is Easy to Use. We set,
for example, the priority of Security requirement
equal to 2 and of Easy to Use to 1. Then the tie is
broken as shown in Figure 8.

Figure 8: Priority or quality requirement.

Figure 9: Secured payment example.

3.4 All-in-one Example

To illustrate all the above analysis of goals in one
example, we consider, the soft-goal Secured
Payment Sent taken from a test case of an online
shop.

Figure 9 shows a part of the analysis of the soft-
goal Secured Payment Sent. Based on the defined
operations, the analysis of this soft-goal is carried
out through the following steps:
• Secured Payment Sent soft-goal is decomposed

into Payment Sent hard-goal and elicits
Security quality requirement. Payment Sent
hard-goal is then constrained by Security
requirement.

AND([Secured Payment Sent], [Payment Sent]).
QUALIFY([Security], [Payment Sent]).

• Security quality requirement is AND-
decomposed into Confidentiality and Integrity
quality requirements.

AND({[Confidentiality], [Integrity]}).

• Payment Sent hard-goal is AND-decomposed
Authentication Sent, Balance Checked,
Payment Ordered and Receipt Received.

AND(

{
 [Authentication Sent],
 [Balance Checked],
 [Payment Ordered],
 [Receipt Received]

},
[Payment Sent]

).

QUALIFY([Security], [Authentication Sent]).
QUALIFY(

[Integrity],
{[Balance Checked], [Receipt Received]}

).

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

20

• The Balance Checked hard-goal is OR-
decomposed into Credit Card Checked hard-
goal and Debit Card Checked hard-goal.

OR(
 {[Credit Card Checked], [Debit Card Checked]},
 [Balance Checked]
).

QUALIFY(
 [Integrity],
 {[Credit Card Checked], [Debit Card Checked]}
).

• The Receipt Received hard-goal is AND-
decomposed into Receipt Received 1 hard-goal
and Checksum Checked hard-goal, where
Checksum Checked fulfils sufficiently the
Integrity quality requirement.

AND(
 {[Receipt Received 1], [Checksum Checked]},
 [Receipt Received]
).

QUALIFY([Integrity], [Checksum Checked]).
CONTRIB<Make>([Checksum Checked], [Integrity]).

At the end of the goal refinement process, the
satisficing tree of Secured Payment Sent can be
summarized by the following two alternatives:

AND(
 {
 [Authentication Sent],
 [Credit Card Checked],
 [Payment Ordered],
 [Receipt Received 1],
 [Checksum Checked]

},
[Secured Payment Sent]

).

QUALIFY([Integrity], [Credit Card Checked]).
CONTRIB<Make>([Checksum Checked], [Integrity]).

or

AND(
 {
 [Authentication Sent],
 [Dedit Card Checked],
 [Payment Ordered],
 [Receipt Received 1],
 [Checksum Checked]

},
[Secured Payment Sent]

).

QUALIFY([Integrity], [Debit Card Checked]).
CONTRIB<Make>([Checksum Checked], [Integrity]).

Note that the above two possibilities of
satisficing Secured Payment Sent soft-goal does not
contain any OR-combination since all the OR-
decomposition in the refinement tree will be
translated into the alternative possibilities as done
for Balance Checked hard-goal.

One can argue that the bottom part of Figure 9 is
somewhat similar to the diagram of hard-goals/soft-
goals integration presented in (Mylopoulos et al.
2001). However, in their approach, soft-goals are
mainly quality requirements and hard-goals and soft-
goals are analyzed separately and are only correlated
very lately in the analysis process. Compared to this,

our approach offers the developers with a top-down
analysis of hard-goals, soft-goals and quality
requirements in an integrated scheme from the
earliest requirements to the latest design with a
sound reasoning procedure.

4 QTROPOS

The presented idea was applied successfully to the
Tropos methodology (Castro, Kolp & Mylopoulos
2002) to derive the Quality-Aware Tropos
(QTropos).

Tropos has become very popular. It uses i*
modelling framework introduced by (Yu 1995) as
the underlying analysis tool through its four phases
of software development, namely Early
Requirement, Late Requirement, Architecture
Design and Detailed Design. The process is often
completed with the implementation step using agent-
oriented programming languages among which
JACK agent would be the best suited.

i* uses the notion of distributed intentionality to
model the overall intention of a group of individuals
called actors. The connecting links are the
dependencies between these actors. A dependency is
formed if an actor (called depender) depends on
another actor (called dependee) to acquire a
dependum. There are four types of dependum: hard-
goal, soft-goal, task and resource.

A resource is a physical or informational entity
that can be delivered by the depender to the
dependee. A task is a list of operations that the
depender wants the dependee to carry out. Hard-
goals and soft-goals are exactly what we have used
in this paper but are put in the context of depender
and dependee.

In the original Tropos process, we can list here
some limitations in the quality treatment:
• Quality requirements are included in soft-goals.
• Qualities can be considered as early as in the

early requirement phase of Tropos. However,
the propagation and elicitation of quality soft-
goals from one analysis stage to the next one
are rather unclear.

• The use of social patterns at the architectural
design is not quality-aware.

• No social pattern designed for the fulfilment
and control of quality requirement.

To make it quality-aware, we have to separate
quality requirements from soft-goals in Tropos.
Since there are four different type of dependencies,
quality requirements can constrain on all the
dependency types. These dependencies can be seen

GOAL, SOFT-GOAL AND QUALITY REQUIREMENT

21

in the Strategic Dependency model whose results are
inputs for the Strategic Rationale model where the
mean-ends analysis and task decomposition take
place. These analyses can be easily adapted using
similar analyses to those in the previous section to
incorporate quality requirements. Only one
exception is that there are four different types of
nodes: Hard-goal, Soft-goal, Task and Resource.

Figure 10: Qualified dependencies.

One of the powerful features of Tropos is that the
internal element to an actor can depend or can be
depended by other elements of other actors. This
allows Tropos models to represent the overall
intentions through individuals’ intentions.

Strategic Dependency and Strategic Rationale
models are used in the early and late requirement
stages of QTropos in order to clarify both intentions
of stakeholders and of the system-to-be. From these
intentional analysis, developers will be able to take
any design and architecture options to match the
initial intentions. With the quality requirements are
added into this process, QTropos can meet the
expectations of the stakeholders in terms of both the
functional aspects and the software qualities as well.

More details about QTropos and quality-aware
social patterns can be found in (Hoang 2008) and
(Hoang & Kolp 2009). A prototype of an analyzing
tool namely QTroposCase is also being developed
that includes all the developments in this paper as
well as other analyses for QTropos. All the figures
in this paper are exported from this tool.

5 CONCLUSIONS

Knowing the importance of quality requirement in

the context of multi-agent system and of goal-based
requirement engineering, this paper proposes a way
to elicit, to analyze and to validate the quality
requirements. This is done by separating gradually
quality requirements from soft-goals, which help the
developers to keep track of quality requirements
thorough the development process.

The proposed quality-aware goal analysis can be
applied to enrich many development processes
where goal-based requirement engineering plays the
leading role, such as (Q)Tropos.

REFERENCES

Castro, J, Kolp, M & Mylopoulos, J 2002, 'Towards
requirements-driven information system engineering:
the Tropos project', Information System Journal, no.
27, pp. 365-389.

Chung, L, Nixon, BA, Yu, E & Mylopoulos, J 2000, Non-
functional Requirements in Software Engineering,
Kluwer Academic Publishers.

Hoang, TTH 2008, 'Quality-aware agent-oriented software
development', Iinternal Report, Louvain School of
Management, Université catholique de Louvain.

Hoang, TTH & Kolp, M 2009, 'Social patterns for quality
control in agent-oriented systems', ICSOFT.

Jack, AOSPL 2002, 'JACK intelligent agents - User guide'.
Jureta, I, Mylopoulos, J & Faulkner, S 2008, 'Revisiting

the core ontology and problem in requirements
engineering', Proceedings of the 2008 16th IEEE
International Requirements Engineering Conference.

Letier, E 2001, 'Reasoning about Agents in Goal-Oriented
Requirements Engineering', PhD thesis, Université
catholique de Louvain, Belgium.

Mylopoulos, J, Chung, L, Liao, S, Wang, H & Yu, E 2001,
'Exploring alternatives during requirements analysis',
IEEE Software, vol 18, pp. 92-96.

Sommerville, I 2007, Software engineering, 8th edn,
Addison-Wesley.

Van Lamsweerde, A 2001, 'Goal-oriented requirements
engineering: A guided tour', Proceedings of the 5th
IEEE International Symposium on Requirements,
IEEE Computer Society, Washington, DC, USA.

Yu, E 1995, 'Modeling strategic relationships for process
reengineering', PhD Thesis, University of Toronto.

Zave, P & Jackson, M 1997, 'Four dark corners of
requirements engineering', ACM Transactions on
Software Engineering and Methodology (TOSEM), vol
6, no. 1, pp. 1-30.

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

22

