
INTEGRATING AND OPTIMIZING BUSINESS PROCESS
EXECUTION IN P2P ENVIRONMENTS

Marco Fernandes, Marco Pereira, Joaquim Arnaldo Martins and Joaquim Sousa Pinto
Universidade de Aveiro, Campus Univ. Santiago, 3810-193 Aveiro, Portugal

Keywords: Business process reengineering, Emerging technologies, Distributed networks.

Abstract: Service oriented applications and environments and peer-to-peer networks have become widely researched
topics recently. This paper addresses the benefits and issues of integrating both technologies in the scope of
business process execution and presents proposals to reduce network traffic and improve its efficiency.

1 INTRODUCTION

Service oriented computing has been a popular
research topic and one of the main drivers for the
software industry (Bichler & Lin, 2006). The basic
principle behind service orientation is that
distributed, modular, autonomous and interoperable
services available in the network can be used to
enhance or extend application capabilities or even to
perform some of its core functionalities. Several
concepts based on service orientation have surfaced
in recent years:

- Service-oriented architectures (SOA) –
infrastructures in which business processes are
implemented through distributed services (Erl,
2005) (Marks & Bell, 2006);

- Software as a service (SaaS) – a model of
software licensing in which services are provided
on demand (Bennett, 2000).

- Cloud computing – the availability of services
and resources on the internet, which can be
consumed (and meshed) in a variety of
applications. Cloud computing is commonly
thought as collections of services which can also
be consumed for personal use (Gruman, 2009).
Properly managing and consuming a wide range

of available services presents a problem of
standardization of those services. Even in the case
where all services are SOAP Web Services, a
standard and widely adopted technology, it is
required to define the methods, data structures and
interactions a priori. In the simplest case, consumers
may use only a few services to add extra
functionality or perform a very specific task, and in

this case developers can easily perform a service call
or create a service proxy. However, service
orientation advantages are only being partially
explored in this scenario.

Service orientation allows creating complex,
composite services which are logical aggregations of
other services in a flow – the business process.
Orchestration and choreography languages allow
defining information flows and creating these
composite services. A combination of SOA,
business process choreography and Web Services
can bring numerous advantages for businesses
(Zimmermann, 2004) such as higher automation and
process integration.

1.1 BPEL

The Business Process Execution Language for Web
Services (WS-BPEL or simply BPEL) is the
standard for business process execution. It originated
from the merger of two proprietary orchestration
languages (IBM’s WSFL and Microsoft’s XLANG)
and makes use of several XML standards: WSDL
1.1 and XML Schema 1.0 (data model), and XPath
1.0 and XSLT 1.0 (data manipulation).

1.2 P2P Networks

A Peer-to-peer (P2P) application is a networked
system whose architecture does not (usually) rely on
dedicated servers; instead, each network node (the
peers) acts as both client and server.

The most common advantages of a P2P based
network are (Taylor, 2005):

171Fernandes M., Pereira M., Arnaldo Martins J. and Sousa Pinto J. (2010).
INTEGRATING AND OPTIMIZING BUSINESS PROCESS EXECUTION IN P2P ENVIRONMENTS.
In Proceedings of the 12th International Conference on Enterprise Information Systems - Information Systems Analysis and Specification, pages
171-177
DOI: 10.5220/0002872601710177
Copyright c© SciTePress

- It can operate at the edges of the Internet, behind
firewalls and NAT systems;

- It supports highly transient connections;
- It can take advantage of unused resources of

connected nodes.
Most P2P applications are very file oriented:

peers are usually limited to index, search and
transfer files.

1.3 BPEL and P2P

If we can properly integrate BPEL and peer-to-peer
networks, a great number of advantages inherent
from P2P will become available for the execution of
business processes:

- Services located in computers behind firewalls
and NAT systems could become reachable;

- Service availability can be largely increased by
replicating in several peers;

- Previously unused machines can host services to
be used in an orchestration; idle times could
potentially be reduced;

- Dynamic service discovery and assignment in the
P2P network can increase the flexibility and
fault-tolerance of the process;

- Delegating part of the orchestration to other
engines can help reduce the data transferred in
the network.
The scope of this work is about analyzing how

each of these characteristics and behaviours could be
used to improve the efficiency of a service oriented
environment.

1.4 Objectives

This work focuses on how to improve the
performance and robustness of the execution of
business processes in a P2P environment.

In order to design a service oriented environment
capable of properly integrate the BPEL language
with a P2P network, we established a few pre-
requisites.

On one hand, existing standards should be kept
unmodified. Namely, and unless absolutely required,
one should try to accommodate the existing BPEL
and its underlying standards. Secondly, no particular
assumptions should be made on the underlying
network. The proposal should transparently
accommodate different topologies and fallback to a
not-optimized state if peers do not offer specific
capabilities.

2 RELATED WORK

To delegate a process to multiple BPEL engines, the
orchestration must be partitioned into smaller BPEL
service sequences. Some authors have presented
possible techniques to perform such partitioning
while trying to improve the overall throughput. One
such proposal (Montagut & Molva, 2005) consists in
decentralizing the flow control and dynamically
selecting roles. The presented approach considers
only simple flows, without synchronization,
restrictions, or error handling. A stateless model is
adopted: a node, after executing an activity, transfers
all state information to the next node.

Another technique, proposed by IBM researchers
(Nanda et al., 2004), consists in partitioning a BPEL
instruction sequence into a set of distributed
processes, eventually reordered but with the same
final output. The algorithm divides activities into
fixed (receive, reply, and invoke) and portable (the
rest). Each fixed activity is aggregated with a
process service (receive/reply pair with the entry
point), while portable ones can be moved.
Parallelism is also automatically extracted from the
flow activity. The final arrangement consists in
partitions with one fixed activity and zero or more
portable ones. According to the authors, this
algorithm may increase its throughput 30% at
normal system load and by a factor of two under
high load, but it has the assumption that every node
has BPEL runtime capabilities.

Khalaf et. al (Khalaf, 2008) discusses how to
maintain data dependencies when partitioning a
BPEL process into fragments. The proposal aims to
tackle issues that arise from parallelism and shared
variables. Our work is for now focused on the
technology integration for simpler processes. While
BPEL is mainly focused on the orchestration of
SOAP Web Services, some efforts have been made
to describe REST services with WSDL (Mandel,
2008) and to compose such services using BPEL
(using extensions) (Pautasso, 2008). These
contributions may be considered in the future.

3 DYNAMIC DISCOVERY

The BPEL language is built upon Web Services and
therefore uses the Web Service Definition Language
(WSDL) extensively. In fact, both the process and
its partners (the service providers) are exposed as
WSDL services.

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

172

A simplified skeleton of a BPEL process
definition is presented in Figure 1.

Figure 1: BPEL XML process.

The process definition starts by declaring the
WSDL types, messages, portTypes and
parterLinkTypes involved in the activity execution.
Namespaces are then imported, the partner links and
its roles defined, and the variables declared. Only
then the actual process activities are defined within
the <sequence /> element.

When a service provider hosts a Web Service, it
makes its WSDL definition available at some
location. By inspecting this document, one can
locate the service URLs in the <soap:address/>
elements. A BPEL engine could however use a
discovery service to find providers hosting those
services – with identical WSDL definitions but at
different <soap:address/> elements. Such a simple
modification in the behaviour of a BPEL engine
makes the process execution more flexible, as it is
no longer tightly bound to specific providers. As a
consequence, services can be replicated and
dynamically chosen to increase the throughput.

3.1 Service Discovery in P2P

Traditionally, P2P applications were designed for
file sharing purposes. Networks such as Gnutella,
BitTorrent, and Napster are file oriented rather than
resource oriented (files, services, etc.).

To make use of a P2P network for service
discovery, we need an infrastructure which allows
publishing and indexing WSDL service definitions

and querying for peers which provide specific
WSDL services.

To accommodate these requirements, we can
use JXTA, an open-source project which consists in
a group of open and generic protocols to connect
heterogeneous devices in a P2P network.

JXTA peers are known between each other
through advertisements: nodes publish information
about themselves and the resources they hold using
Peer, Peer Group, Module Class, Module
Specification, and Module Implementation
advertisements. WSDL definitions from service
providers in a P2P network can also be published
using advertisements; in the JXTA-SOAP (Amoretti,
2008) project, they are encapsulated in Module
Specification advertisements. This project provides
an add-on to the base framework, allowing Web
Service calls to be made using the P2P network
rather than regular HTTP requests. That is
accomplished by creating proxies at the peers, which
serialize and de-serialize SOAP requests and
responses into JXTA messages.

For service discovery to properly function under
JXTA-SOAP, such advertisements must include the
service WSDL, optionally with additional
information such as a service’s name, creator,
version, and description. The discovery mechanism
is outside the scope of JXTA-SOAP, and therefore
the service lookup is actually implemented by an
application, which may query any of these
properties.

There are a few valid options for choosing
which values should be in used in the service
description (publishing) and in the queries sent to
the network (discovery). Probably the most error-
resilient method would be to query services by its
WSDL hash (without the <soap:address/> element).
This could however be inconvenient both at the
provider side (as more parsing and computing
operations would be needed) and the
consumer/application end (as hashes would have to
be stored somewhere).

A simpler option consists in using the
targetNamespace attribute of the <wsdl:definitions/>
element in the service WSDL, which can easily
published by providers. On the consumer end,
discovering services using an URI rather than a hash
string is much friendlier.

There are a few disadvantages in the approach
used by the JXTA-SOAP API. Since Web Services
must be created and published with Axis , an
Apache SOAP engine written in Java, one is obliged
to only use Java based services (unlike the JXTA
framework, whose API is available in a variety of

INTEGRATING AND OPTIMIZING BUSINESS PROCESS EXECUTION IN P2P ENVIRONMENTS

173

programming languages). It is very limitative, since
it makes all existing non-Axis Web Services useless
unless an Axis proxy is made for each of them with
an identical interface.

3.2 Service Invocation in P2P

By using JXTA-SOAP, Web Service invocation is
accomplished by transmitting SOAP messages using
JXTA pipes. Thus, the relatively verbose XML
documents (Elfwing & Paulsson, 2002), which are
already serialized both at the consumer and provider,
pass through an additional serialization layer. The
P2P network is therefore introducing extra overhead
to service invocation. While this may be absolutely
necessary when service providers and consumers
cannot directly exchange messages with each other,
such as when at least one part is behind a firewall or
NAT system, in many of the cases that does not hold
true. It seems therefore apparent that applications
using this service enabled P2P network could
improve its efficiency if they knew whether a
service provided by a peer is within direct reach.

Outside a P2P network, a computer’s services
are inaccessible to other machines basically in two
situations:

- Local services – in this relatively common case,
services are published in a private HTTP server
blocking external access;

- Intranet and/or firewalled services – in this
scenario, two computers cannot connect each
other (although a service could be used by nodes
inside the intranet).
In order to design an efficient service oriented

P2P network, we can therefore work two distinct
scenarios. If a service is considered to be critical to
the proper functioning of an application and it is not
publically available at the internet, a JXTA-SOAP
proxy should always be created to guarantee its
widespread availability (we are, of course, excluding
those Web Services already created on Axis with
this framework). If not, creating a P2P proxy is a
matter of convenience – when setting up a services
network one is aware that availability could be
compromised depending on the network topology
and security policies.

There is one final issue to be addressed: with
JXTA-SOAP created services or proxies, service
advertisement is accomplished transparently. Also,
one can add a flag to these advertisements to
indicate such services are being encapsulated by this
framework. All other services, however, have no
built in mechanism to make them known and
discoverable by the other nodes. To overcome such

limitation, and to avoid having to build a proxy for
every non Axis Web Service, we designed an
extension module which will be responsible for
handling these advertisements. The behaviour of this
module consists in reading a configuration file with
the location of the WSDL definitions of the services
it should handle and publishing the advertisements
(with the URL and the WSDL of the Web Service)
on the P2P network. It will provide no serialization
or execution methods.

Figure 2 depicts the two distinct service
invocation methods in a P2P network. LAN A has
two leaf nodes and a rendezvous node (allowing
connections to other networks), which is publically
addressable from any computer. A node in LAN B
wishes to invoke two services available on the first
intranet: the first (1) is hosted by the rendezvous
peer in a public HTTP server while the second (2) is
in a leaf node.

Figure 2: P2P service invocation.

After the initial discovery process, the consumer
node finds service 1 to be located at a public URL
location and can therefore invoke it using HTTP as
the transport protocol.

Now let us consider Service 2 to be publically
available to computers in LAN A. In that case, both
our advertising module and a proxy could be in use,
allowing for both HTTP calls and P2P calls. The
consumer peer, unaware of whether the provider is
in the same LAN, may try to call the “public” Web
Service and, in case of error or network timeout,
invoke it using the P2P proxy. If our extension
module was not installed at the provider, only the
later operation would be available and therefore

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

174

performed initially.

3.3 Service Replication

One extra optimization layer can be set up on top of
this service network. It is apparent that services
could be replicated on a P2P network to increase
availability and eventually responsiveness. Such
concept does not differ much from file replication,
which is implemented by several file-sharing P2P
applications. The requirements and dependencies
make it however a lesser trivial issue to address.
Many services may need more complex
dependencies (such as installed programs or
libraries) or even have specific hardware
requirements.

Describing and managing software (and
hardware) dependencies is a difficult task, and
several issues and possible conflicts must be taken
into account. For now, let us consider the simpler
cases: self contained executables or folders with no
installation or environment modifications
(CLASSPATH, registry, etc.) required. For such
components, one could think of replication as yet
another service available at some peers (a service
“push”), which could be published and discovered as
any other. The input parameters of such service are
the required resources (executables, WSDL, and
dependencies).

It then becomes a matter of deciding if and when
to replicate a given service. We propose that a
simple metric is applied: if the provider implements
a service queue, a replication request could be
triggered so that it is broadcast to the network
whenever a waiting threshold is reached. If, on the
other hand, the provider simultaneously responds to
incoming requests (threaded work), an internal
mechanism would have to trigger the request when
the number of simultaneous threads passes the
threshold.

4 OPTIMIZING
ORCHESTRATION

While the previously proposed modifications in the
P2P layer can be seen as independent to any specific
service environment, one must think in terms of a
business process management and execution
application to fully take advantage of them.

As discussed in the previous section, a P2P
aware BPEL engine can take advantage of the

available distributed (and eventually replicated)
services to dynamically discover and invoke them.

The advantages are not limited to dynamic
discovery. Traditionally, BPEL execution is a
centralized process, in which service calls are
dispatched to partner links and state is centrally
managed. However, distributing the orchestration
process by the service providers has several
advantages, especially in high load scenarios and/or
when there is a large amount of data being
transferred between service providers and
consumers. A careful partitioning process can reduce
the number of messages and amount of data
transferred and increase throughput.

4.1 Process Delegation

Previous work assumes all partner nodes have BPEL
capabilities, which may not be convenient in most
enterprises. We can however fall back to an always
working solution.

Lets us consider our initial (starting point) engine
is capable of dynamically discovering services.
Before the execution starts, the runtime can find not
only the service providers but also which nodes offer
BPEL execution – since BPEL is seen itself as a
Web Service, our advertising module could as easily
publish this service in the network. If no other
engine is found, process management will proceed
as usual – in a centralized fashion. If, however, one
or more engines are found, the BPEL process
definition can be partitioned and parts of the process
delegated to those peers. If any of those engines are
P2P aware, this procedure could eventually be
further partitioned.

Without the “BPEL in every peer” assumption,
the partitioning mechanism proposed in related work
is no longer valid. Nevertheless, some principles
remain true: when there is parallel execution (a flow
activity), an entire branch can still be partitioned if
the first invoke activity exists at a BPEL-capable
peer.

Furthermore, information about the services
themselves could be used to try to infer the best
tasks to be delegated. Process delegation can greatly
reduce the amount of data being transferred by
eliminating the round trips in the invocation calls.
We are therefore interested in those services whose
transmitted messages/variables are predictably large,
particularly in the response message. While there is
no standard way to know a priori which those
services are, a few assumptions could be made.

The return type of a service, for instance, can
provide hints on the extent or size of the response

INTEGRATING AND OPTIMIZING BUSINESS PROCESS EXECUTION IN P2P ENVIRONMENTS

175

message. It is safe to assume that the efficiency gain
will likely be much smaller when delegating the
process to a service returning an integer than the
gain when doing so on a service returning an array
of bytes. We suggest the enforcement of a simple
rule: perform no process delegation if the next
service returns messages with simple types
(numeric, Boolean, and strings or complex types
based on these types).

4.2 Limitations

Inner process delegation does present some
difficulties when trying to achieve some common
features such as process monitoring. While keeping
track of this progress is simple in a centralized
scenario, doing so in a decentralized orchestration
environment is not as trivial. While this is a non-
critical issue and one which only occurs for those
engines enhanced to support BPEL delegation, one
should be aware of this limitation.

5 CASE STUDY

Let us consider a digital newsstand website which
allows registered users to view a range of
newspapers as they were published. The website
receives PDF files from publishers, which are
converted into an image format (JPEG) to be shown
in a viewer, and whose texts are extracted for
searching purposes. As part of the submission
process, several services are invoked:

- Image conversion/resizing
- Automatic image whitespace cropping
- PDF text extraction
- Optical character recognition (OCR)
- Storage (whose response is the new system

identifier)
Figure 3 depicts a functional diagram of how this

process is implemented. The input to this process is
a PDF file and a XML document with the metadata.
The process starts with two parallel branches. In the
first one, the text from the PDF file is extracted. In
the second, the PDF is converted to an array of PNG
files, whose white space is then cropped. The
resulting images are then used to make an OCR
(whose service input must be in TIFF files) and to
convert to the final, screen resolution, JPEG images.
The final activity consists in sending all non-
intermediary files to a storage service.

Assuming each of the blocks in the diagram
represent a service in a different peer (the worst case
scenario), there is a large amount of data being

passed back and forth through the wire. With
centralized orchestration, one expects the total
amount of data to be:

T = 3SPDF + 5SPNG + 2STIF + 2SOCR + 2STXT +
2SJPG + SXML + SID

where Sx represents the message size of the
transmission of X.

Figure 3: Cross functional diagram of a document
submission process.

The simplest improvement one can do in
branched processes is to delegate an entire branch of
activities. Let us suppose the image conversion
service is available at a BPEL-capable node. In that
case, a BPEL process can be made with the activities
in the “OCR” band from the diagram. By doing so,
the PNG to TIFF conversion call is replaced with a
process start call and, since the TIFF files don’t have
to be returned to the original caller, those response
messages no longer have to be transmitted through
the wire. In this particular digital newsstand
application, the intermediate TIFFs generated are
about 3MB each, and so this modification would
reduce close to 120 MB of traffic in a 40 page
newspaper.

This procedure could be repeated and, in the
optimal scenario where all peers can run BPEL
processes, the partitioning algorithm could be
identical to those used in the related work. However,
some delegation could prove to be counter-
productive: consider there were services just before
the storage stage dedicated to provide unique

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

176

identifiers, produce checksums, or calculate hashes
based on the metadata of the new document.
Delegating the orchestration of one those services
and the storage to those providers would actually
increase network usage: instead of invoking the first
service, receiving the id/checksum and sending all to
the StoreDoc, PDF and image files would have to go
to the first service and from there to the StoreDoc
provider. Therefore, instead of

Tfinal = 2SXML + 2SID + SPDF + SJPG

we would have

Tfinal = 2SXML + SID + 2SPDF + 2SJPG

which represents one less SID but one more SPDF
and SJPG. By using our proposed criterion, and
since the id/checksum service has a predictably
small (numeric) response message, no delegation
would take place.

A final optimization could consist in trying to
merge activities in peers providing multiple
consecutive services. Although this could greatly
reduce network traffic, it would be difficult to
analyze the improvements of this strategy if factors
such as throughput were to be weighed. The case of
the last service called (storage) is however a
particular one – if the P2P network were to be used
also as the storage medium, this service could be
directly executed by the caller peer.

6 CONCLUSIONS

In this paper, the advantages of integrating peer-to-
peer networks, service orientation and process
execution orchestration were discussed.

Based on existing frameworks and on the
previous related work from other authors, we made
some architectural analyses and presented proposals
to improve the overall efficiency which covered the
P2P network framework (dynamic discovery,
invocation, and replication) and the way BPEL
engines function (dynamic discovery, partitioning,
and delegation). The proposed enhancements can
easily fall back when the network does not support
such optimizations.

ACKNOWLEDGEMENTS

This work was funded in part by FCT – Portuguese
Foundation for Science and Technology – grant
number SFRH/BD/23976/2005.

REFERENCES

Amoretti, M. e. a., 2008. Enabling Peer-to-Peer Web
Service Architectures with JXTA-SOAP. In IADIS e-
Society. Carvoeiro, 2008.

Bennett, K. e. a., 2000. Service-based software: the future
for flexible software. In Proc. Seventh Asia-Pacific
Software Engineering Conference, APSEC’00., 2000.

Bichler, M. & Lin, K.-J., 2006. Service-oriented
computing. Computer, pp.99-101.

Elfwing, R. & Paulsson, U., 2002. Performance of SOAP
in Web Service environment compared to CORBA
[master thesis]. Sweden: Blekinge Institute of
Technology.

Erl, T., 2005. Service-oriented Architecture: Concepts,
Technology, and Design. Prentice Hall.

Gruman, G.a.K.E., 2009. What cloud computing really
means. [Online] Available at:
http://www.infoworld.com/article/08/04/07/15FE-
cloud-computing-reality_1.html [Accessed March
2009].

Khalaf, R. K. O. L. F., 2008. Maintaining data
dependencies across BPEL process fragments.
International Journal of Cooperative Information
Systems, 17(3), pp.259-82.

Mandel, L., 2008. Describe REST Web services with
WSDL 2.0. [Online] Available at:
http://www.ibm.com/developerworks/webservices/libr
ary/ws-restwsdl/ [Accessed March 2009].

Marks, E. A. & Bell, M., 2006. Service-Oriented
Architecture (SOA): A Planning and Implementation
Guide for Business and Technology. New York: John
Wiley & Sons, Inc.

Montagut, F. & Molva, R., 2005. Enabling pervasive
execution of workflows. In International Conference
on Collaborative Computing Networking, Applications
and Worksharing. San Jose, CA, EUA, 2005.

Nanda, M.G., Chandra, S. & Sarkar, V., 2004.
Decentralizing execution of composite Web Services.
In Proceedings of the 19th annual ACM SIGPLAN
conference on Object-oriented programming, systems,
languages, and applications. Vancouver, 2004. ACM.

Pautasso, C., 2008. BPEL for REST. In 7th International
Conference on Business Process Management
(BPM08). Milan, Italy, 2008. SpringerLink.

Taylor, I., 2005. From P2P to Web Services and Grids:
peers in a client/server world. London: Springer-
Verlag.

Zimmermann, O. e. a., 2004. Service-Oriented
Architecture and Business Process Choreography in an
order management scenario: rationale, concepts,
lessons learned. In Object-Oriented Programming,
Systems, Languages and Applications Conference.
Vancouver, 2004. ACM.

INTEGRATING AND OPTIMIZING BUSINESS PROCESS EXECUTION IN P2P ENVIRONMENTS

177

