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Abstract: This paper presents an alternative method to predict the temperature profile in a spatial point of the interior 

of a refrigerated container with the aim of improving the logistics of perishable goods. A SISO gray-box 

model in which the organic heat is represented by a non-linear feedback system and the cooling process 

represented by a linear system is proposed. Parameter adaptation and prediction algorithms for the model 

are modified to reduce the matrix dimensions, implemented in Matlab and applied to experimental data for 

validation. Apart from being  highly accurate, the predictions comply with the desired figures of merit for 

the implementation in wireless sensor nodes, such as high robustness against quantization and enviromental 

noise. Simulation results concludes that if the cargo emits organic heat, the proposed model is faster and 

more accurate than the linear models.  

1 INTRODUCTION 

Research has been done in the past to estimate the 

temperature profile inside refrigerated containers. 

Several options have been investigated: 

mathematical approaches as presented in (Shaik, 

2007), K-ε models as proposed in (Rouaud, 2002), 

and several numerical models as reviewed in 

(Smale, 2006). With the exception of 

(Moureh,2004), in which the effect of the pallets is 

considered; usually the focus is put on the cold air 

flow as the main factor governing the temperature 

pattern inside a container and the effects due the 

cargo presence is sub estimated. 

 

To take into account the effect of the cargo in the 

temperature, in (Babazadeh, 2008) it is proposed the 

use of wireless sensor nodes (WSN) to measure the 

ambient parameters in the surroundings of a spatial 

point of interest and the use of system identification 

to estimate the parameters of a linear Multi-Input 

Single-Output (MISO) system. It concluded that in 

order to have a good estimation, it is necessary to 

have a high number of training samples and many 

inputs to the system. 

 

In this paper an alternative Single-Input Single-

Output (SISO) grey-box model is presented to 

predict the temperature inside the container under 

the presence of perishable goods with the aim of 

reducing the complexity and preserving the 

accuracy. The proposed model provides a 

meaningful description of the factors involved in the 

physical system including the effect of transporting 

living goods such as fruits and vegetables. The 

starting point is based on the physical relations; 

subsequently, a tuning parameter for the specific 

case of bananas is found by simulations. 

2 MODEL OF THE SYSTEM 

The factors affecting the temperature distribution 

inside a refrigerated container are illustrated in 

Figure 1. The cold air flows from bottom to top 

through the gratings in the floor and through the 

spaces between the pallets, and eventually it is 

drawn off the channel between the pallets and the 

container ceiling.  

 

A naive representation of the container can be 

done by a SISO linear dynamic system in which the 

input is the air supply and the output is the spatial 
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point of interest. However, in reality it is only a 

simple model of the main contributor to the 

temperature pattern, the air flow.  Several other 

factors affect the speed of the cooling down.  

 

To improve the accuracy of the model, other 

contributors are considered as well: first is the heat, 

produced by respiration of living goods such as 

fruits and vegetables; second is the thermal loss, 

affecting the correct cooling of the goods; finally, 

unpredictable temperature variations due to highly 

changing external climatic conditions during 

transportation. 

 

 

 

 

 

 

 
 

 

 

Figure 1: Factors affecting the temperature inside a 

refrigerated container. 

The linear SISO black-box model representing 

the air flow is represented mathematically by  a 

linear dynamic system H, which in the discrete 

domain is given by the Equation 1.             

𝐻 𝑞−1 =  
𝑞−1𝐵 𝑞−1 

𝐴 𝑞−1 
 (1) 

 

Where 𝑛𝑎  and 𝑛𝑏  are the orders of the system 

polynomials, 𝑏1 …𝑏𝑛𝑏
, 𝑎1 …𝑎𝑛𝑎

 are the polynomial 

coefficients, and 𝑞 is the delay operator in discrete 

domain. 

 

An attenuator, α ,models the isolation loses of 

the air supply temperature and is modeled to affect 

the input of the dynamic system.  The external 

climatic conditions are unknown in advance, 

therefore considered a statistical process. The output 

of the Moving Average (MA) process, which is in 

fact white noise (WN) filtered by the filter C 

represented in Equation 2 added to the output of the 

dynamic system, models them. 

  

𝐶(𝑞−1) = 1 + 𝑐1𝑞
−1 +  …+ 𝑐𝑛𝑐

𝑞−𝑛𝑐  (2) 

 

To model the organic heat, it is necessary to use 

experimental data. Figure 2 (Mercantila, 1989) 

shows a family of curves for organic heat in the case 

of bananas. A proportional relationship between of 

the organic heat and the rippening state is observed.  

 

Equation 3 represents the organic heat relation 

with respect to the temperature. 𝑃𝑓𝑟𝑢𝑖𝑡  is the heat 

production in Watts, 𝛾 is a constant which is fixed 

for a certain type of fruit and rippening-state in 1/
O
C, 

𝑇 is the fruit  temperature in 
O
C, and 𝛽 is a scaling 

factor which depends of the amount of food and is 

given in kilograms. 

 

𝑃𝑓𝑟𝑢𝑖𝑡 = 𝛽𝑒𝛾𝑇  (3) 

 

 

 

 
 

 

 

 

 

Figure 2: Heat Production of bananas. 

Finally, the block diagram to represent the input-

output relations of all the factors is built. It is shown 

in Figure 3. The air flow dynamics are represented 

as a feed-forward block as it is the most important 

contributor. The isolation losses affect the correct 

cooling of the goods before the dynamic system and  

the noise effect has an additive effect on the output.  

 

The contribution of the organic heat  depends on 

the cooling temperature inside the container. 

Simultaneously, it has a small additive effect in the 

input of the linear dynamic system as the air flows 

through the pallets and is slightly warmed. It is 

represented by a static exponential feedback. The 

resulting block diagram, in which a linear dynamic 

system has a non-linear feedback corresponds to a 

Feedback-Hammerstein (FH) configuration (Guo, 

2004). 

 

Figure 3: Model of the system. 
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3 PARAMETER ADAPTATION 

ALGORITHM 

In (Guo, 2004) a Parameter Adaptation Algorithm 

(PAA) was developed to identify the parameter-set 

of a FH system. It uses an intermediate variable 𝑦  𝑡  
and converts the non-linear system into a pseudo-

linear one. Its principal advantage is that the 

conventional recursive matrix-based linear system 

identification algorithms as those presented in 

(Landau, 2005) can be applied to estimate the 

parameter matrix ϴ. The recursive form of those 

algorithm is given by Equation 4. Where 𝜀(𝑡) is the 

prediction error as described in Equation 5,  P(t+1) 

is an adaptation matrix to perform the minimization 

of ε using Recursive Least Squares method, and φ(t) 

is the observation matrix that contains the input and 

the output data.  𝑡 + 1  in Equation 6 is the so 

called Forgetting Factor (FF). 

   

(t+1)=(t)+(P t + 1 φ(t))𝑇𝜀(𝑡) (4) 

 

 
   

𝜀(𝑡) = 𝑦(𝑡) − (𝑡)𝑇φ(t-1)   (5) 

 

P(t+1)=
𝑃(𝑡)−𝑃(𝑡)φφ𝑇 (

𝑃(𝑡)

φ𝑇𝑃φ+(𝑡+1)
)

(𝑡+1)
 

(6) 

 

 

 𝑡 + 1 = 𝑜 ∗  𝑡 + 1 − 𝑜  (7) 

 

Guo considers the non-linearity as a polynomial 

of order l as shown in Equation 8; however, the 

dimensions of the matrices in the algorithm would 

be significantly too large to be applied in platforms 

where power consumption is an important figure of 

merit.  

 

𝜂 y 𝑡   =  𝜇𝑘yk𝑙
𝑘=0 (t) 

(8) 

 

To reduce the dimensions of the matrices, was 

proposed the use of the exponential Equation in 

Equation 3 instead. γ is to be determined and it 

remains constant, while β is a parameter to be 

identified as it depends on the amount of fruit being 

transported. The linear term of the Equation 8 needs 

to be extracted to be included in the polynomial 

𝐴∗ 𝑞−1  of the equivalent SISO pseudo-linear 

system. Expanding it into a Taylor series and 

rearranging, the summation of the non-linear 

coefficients of the exponential function can be 

calculated using Equation 9. The non-linear 

coefficients and an offset  are on the left hand of the 

equation. 

 

 

 
 𝛾𝑦 (𝑡) 𝑘

𝑘 !

∞
𝑘=2  +1 = 𝑒𝛾𝑦 (𝑡) − 𝛾𝑦(𝑡)  

(9) 

 

The equivalent pseudo-linear system for an 

exponential non-linearity is shown in Equation 10. 

 

𝐴∗ 𝑞−1 y t =  𝑏1𝛼𝑢 𝑡  +𝑏1𝛽𝑒
𝛾𝑦  𝑡 −

𝑏1𝛽𝑦(𝑡) + 
𝐵∗ 𝑞−1 

𝑏1
𝑦  𝑡 +  𝐶 𝑞−1 𝑒 𝑡  

 (10) 

 

The resulting coeficients of the polynomials 

𝐴∗(𝑞−1) and 𝐵∗ 𝑞−1  are given by Equation 11 and 

12. 

 

𝑎𝑘
∗ = 𝑎𝑘 − (𝛽𝛾)𝑏𝑘  (11) 

 

𝐵∗ 𝑞−1 = 𝑏2𝑞
−2 +  …+ 𝑏𝑛𝑏

𝑞−𝑛𝑏   (12) 

 

And the  intermediate variable is shown by 

Equation 13. 

 

𝑦  𝑡 = 𝑏1 𝛼𝑢 𝑡 + 𝛽(𝑒𝛾𝑦 (𝑡) − 𝛾𝑦(𝑡))    (13) 

 

The choice of the forgetting factor in the 

algorithm is often critical. In theory, it must be one 

that converges. On the other hand, if it is less than 

one the algorithm becomes more sensitive and the 

estimated parameter changes quickly making the 

convergence faster. A more complex solution is to 

allow it to vary with time, lower than one at the 

beginning but tending to one.  
 

 

Figure 4: Types of forgetting factors. 

Figure 4 illustrates three different types of FF. The 

first case is obtained by making 𝑜 , and  𝑡  in 

Equation 7 equal to one. It is called Decreasing Gain 

(DG). In the second case, the Constant Forgetting 

Factor (CFF)  𝑡  is set to a value smaller than one 

and 𝑜  set to one. Finally, the Variable Forgetting 

Factor (VFF) uses a value of 𝑜  smaller than one 

and recalculates  𝑡  for each iteration. 
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Table 1: Elements of the elements in the algorithm matrices. 

Symbol Arrangement of the elements into the matrices 

φ(t)  −𝑦 𝑡  ··· − 𝑦 𝑡 − 𝑛𝑎 + 1 ,𝑢 𝑡 − 1 , (𝑒𝛾𝑦  𝑡 − 𝛾𝑦 𝑡 ), 𝑦  𝑡 − 1 . . .𝑦  𝑡−𝑛𝑏), 𝜀𝑛 𝑡 ···𝜀𝑛 𝑡 − 𝑛𝑐 + 1      

𝑇(𝑡) 

 
 
 
 

𝑎1
∗ …𝑎𝑛𝑎

∗ , 𝑏1𝛼,𝛽𝑏1 ,
𝑏2

𝑏1
 …

𝑏𝑛𝑏

𝑏1
 , 𝑐1 …𝑐𝑛𝑐

 
 
 
 

 

φ𝑝𝑟𝑒𝑑 (t)  −𝑦𝑝𝑟𝑒𝑑  𝑡  ··· − 𝑦𝑝𝑟𝑒𝑑  𝑡 − 𝑛𝑎 + 1 ,𝑢 𝑚 , (𝑒𝛾𝑦𝑝𝑟𝑒𝑑  𝑡 − 𝛾𝑦𝑝𝑟𝑒𝑑  𝑡 ),𝑦 𝑝𝑟𝑒𝑑  𝑡 − 1 . . . 𝑦 𝑝𝑟𝑒𝑑  𝑡−𝑛𝑏)    

𝑇(𝑚) 

 
 
 
 

𝑎1
∗ …𝑎𝑛𝑎

∗ , 𝑏1𝛼,𝛽𝑏1,
𝑏2

𝑏1
 …

𝑏𝑛𝑏

𝑏1
 

 
 
 
 

 

4 PREDICTION ALGORITHM 

The predictions are made using the estimated 

parameters in the model. Figure 5 shows 

experimental data sets from a container transporting 

bananas. It can be observed how the air supply  is 

kept constant after some days.  For the prediction 

algorithm, 𝑢(𝑡) is set to the value of the last sampled 

input temperature of the parameter adaptation 

process. Similarly, the initial predicted output value 

is set to the last acquired value of the output. 

Equation 14 to 17 describes the prediction 

algorithm. m is the number of iterations used for the 

PAA. 
 

𝑢𝑝𝑟𝑒𝑑  𝑡 = 𝑢 𝑚    (14) 

 

 
   

𝑦𝑝𝑟𝑒𝑑 (𝑚) =   𝑦 𝑚                      (15) 

 

𝑦𝑝𝑟𝑒𝑑 (𝑡)= 𝑇(m) φ
𝑝𝑟𝑒𝑑

 (t-1)     (16) 

 

𝑦 𝑝𝑟𝑒𝑑  𝑡 = 𝑏1 𝛼𝑢 𝑚 + 𝛽(𝑒𝛾𝑦𝑝𝑟𝑒𝑑 (𝑡)

− 𝛾𝑦𝑝𝑟𝑒𝑑 (𝑡))  

 (17) 

5 DETERMINATION OF γ  

In considering a linear system, an exponential 

discrete time decaying system like the one presented 

in Figure 5 can be described as of the order of one 

with its unique pole on the real positive axis. The 

closer the pole to one the higher the delay of the 

system.  

 

 

Figure 5: Banana data sets. 

To find a trustworthy 𝛾 parameter that 

characterizes the respiration heat of bananas. The 

presented Feedback-Hammerstein model of linear 

order one and the FH parameter adaptation and 

prediction algorithms are run using  given 

experimental data sets. The Mean Squared Error 

(MSE) of the prediction over n samples, equivalent 

to fifteen days, is stored for several values of γ and 

fixed number of training days. If the stored values of 

the MSE are plotted, the local minimums are 

determined by the observation of  the MSE vs. γ 

curves. In Figure 6, it can be seen  that in the above 

mentioned plot for five days of training and for the 

data set 1, a local minimum exists for a value γ of 

0.0587. 

𝑀𝑆𝐸 =  
1

𝑛
 (𝑦𝑟𝑒𝑎𝑙  𝑡 − 𝑦𝑝𝑟𝑒𝑑  𝑡 )2   

𝑛

𝑡=𝑚

 (18) 
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Figure 6: Prediction accuracy vs. γ. 

6 RESULTS  

For validation of the model and algorithms several 

figures of merit are considered. The accuracy and 

the speed of convergence are of paramount 

importance; however, quantization and noise 

robustness are also highly desirable for 

implementation in a WSN. Only the linear orders of 

one and two are considered to avoid computation of 

complex conjugate poles that would characterize 

oscillations. 

 

To observe the speed of convergence and the 

accuracy of the predictions with respect to the 

number of training days, parameter estimation and a 

prediction in Matrix form are done (See Table 1) for 

a fixed number of training days. Subsequently, MSE 

vs. Training days graphs are plotted.  Assuming a 

quantization level of 0.2
O
C, a Matlab script was 

written to assign the nearest value of the 

quantization grid to the input and the output datasets.  

The results of the predictions using the quantized 

datasets are overlapped with the results of non-

quantized. 

Similarly, to determine the noise robustness, 

MSE versus the signal to noise ratio (SNR) is 

plotted. Several noise levels of white noise were 

added to the output of the data set 1, and the 

resulting signals were applied to PAA and prediction 

algorithms with fixed number of training days.  

 

SNR(dB)=10log 
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒
  (19) 

 

Simulations were done for two types of data sets. 

First, the experimental data of bananas were used to 

include the presence of organic heat. Secondly, the 

data sets corresponding to a cheese experiment, 

which does not present organic heat, were 

considered. A summary of all simulation results is 

presented on Table 2.  

6.1 FH vs. Linear Models 
in the Presence of Organic Heat 

From the simulations it is observed in Figures 7 and 

8 that if linear methods are applied to the banana 

datasets, the accuracy of the results for different 

sensor positions of are not sufficient. Quantization 

robustness is improved with the linear order of one 

and the speed of convergence is better using CFF. In 

the best of cases acceptable prediction accuracy can 

only be achieved after more than five days of 

training.   

 

It is also observed in Figures 8 and 9 that FH 

identification algorithms are the best to achieve fast 

convergence speeds. In the best cases, less than 3 

days of training is sufficient to achieve good 

predictions. However, the plots are made for the data 

from three days onwards to avoid the visualization 

of the effects in MSE due to the set point variations 

in the reefer supply temperature. Linear system 

orders of one are in all cases better than order of 

two, both in the speed of convergence and the 

quantization robustness.  Decreasing Gain must be 

optimal to preserve the accuracy and the 

quantization robustness.   

 

 

Figure 7: ARX of order one in the presence of organic 

heat. 

Concerning the noise models, results of the 

simulation of Feedback-Hammerstein with MA 

process are worse than when modeled as white noise 

(WN). It affects the accuracy and the quantization 

robustness 
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Figure 8: FH of order one  in the presence of organic heat. 

 

Figure 9: FH of order two  in the presence of organic heat. 

6.2 FH vs. Linear Models 
in the Absence of Organic Heat 

In the case of cheese data set, the linear methods 

accuracy results are better than that of the Feedback-

Hammerstein as can be observed in Figure 10. 

Modeling noise as white gives better quantization 

robustness than modeling it as MA process.  

 

The use of forgetting factors does not have a big 

impact in the results of ARX predictions; however, 

Constant Forgetting Factor is slightly better for 

ARMAX predictions.  Linear orders do not affect 

the simulated predictions, but an order of two is 

selected because it can model more accurately if the 

behavior of the system is not purely decaying. 

 

Figure 10: Comparison of FH and linear methods in the 

absence of organic heat. 

 
Figure 11: Comparison of  linear methods with MA and 

WN models. 

6.3 Noise Robustness 

The noise was added to validate FH and linear 

models; also for both of them the accuracy is 

compared with and without the MA model.  

Maximum Signal-to-Noise Ratio to obtain a good 

prediction is observed to be around 43 dB for all of 

them with the exception of ARX which has a 

maximum value of 47 Decibels as shown in Table 2.  

6.4 Prediction Improvement 

The described approach was originally developed 

based on an experiment in 2008 with records for 3 

sensors (data set A). Two new data sets with 16 

sensors each, which were recorded in 2009 

(Jedermann, 2010) in two separate containers (data 

set B and C), were used to cross validate the 

approach.

3 4 5 6 7 8 9 10
0

0.5

1

Training Days

M
S

E

Order of one and DG

 

 

Non-quantized

Quantized

3 4 5 6 7 8 9 10
0

0.5

1

Training Days

M
S

E

Order of one and CFF

 

 

Non-quantized

Quantized

3 4 5 6 7 8 9 10
0

0.5

1

Training Days

M
S

E

Order of two and DG

 

 

Non-quantized

Quantized

3 4 5 6 7 8 9 10
0

0.5

1

Training Days

M
S

E

Order of two and CFF 

 

 

Non-quantized

Quantized

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
0

0.5

1

Trainining Days

M
S

E

Linear ARX of order of one 

 

 

Non-quantized

Quantized

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
0

0.5

1

Trainining Days

M
S

E

FH of linear order of one 

 

 

Non-quantized

Quantized

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
0

0.5

1

Time (Days)

M
S

E

Linear ARX of order of two 

 

 

 Non-quantized

Quantized

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
0

0.5

1

Time (Days)

A
v
e

ra
g

e
 E

rr
o

r

Linear ARMAX of order of two 

 

 

 Non-quantized

Quantized

PREDICTION OF TEMPERATURE INSIDE A REFRIGERATED CONTAINER IN THE PRESENCE OF
PERISHABLE GOODS

25



Table 2: Summary of simulation results. 

 

Accuracy Number 
of 

matrix 
elements 

Convergence 
speed 

Quantization 
Robustness 

Critical 
SNR 

 

Estimation 
for linear 
dataset 

Best 
Forgetting 

Factor 

Best 
Linear 
order 

ARX CFF 2 3 Bad 
 

Good 47dB 
Good 

ARMAX CFF 2 3 + 𝑛𝑐  Bad 
 

Bad 43 dB 

FH and WN 

model 
DG 1 3 Good Good 43 dB 

Bad 
FH and MA 

model 
DG 1 3 + 𝑛𝑐  Good Bad 43 dB 

 

 

Figure 12: Noise Robustness for FH method 

FH algorithm of linear order of one was applied 

to all data sets; neither quantization nor forgetting 

factor is used. For the initial parameter settings, the 

pole and zero of the feed-forward linear system was 

set to 0.9 and 0.0; β was set to 2.   

 

The previously obtained value of γ equal to 

0.0587 is used to predict the temperature inside the 

containers for many spatial positions. The results are 

compared to the predictions for the datasets shown 

in Figure 5 and resumed in Table 3.  A good average 

is observed for the three containers; however, in 

some positions the predictions are not as accurate as 

is observed in the Maximum column.     

Table 3: MSE prediction results for a unique value of γ. 

Container/Result Maximum Minimum Average 

Data set A 0.1893 0.0173 0.0778 

Data set B 1.4558 0.0550 0.4130 

Data set C 0.8888 0.0101 0.2798 

 

A second approach is to select γ according to the 

position of the pallets inside the container. The 

method to find γ, described previously, is applied to 

all the new container datasets. 

It is observed that an improvement in the 

accuracy of the predictions can be made if two 

different values of γ are selected: one for pallets 

close to the door-end, and one for pallets close to the 

reefer supply. In Table 4 it is resumed the prediction 

results if values of  0.0525 and 0.055 are set 

respectively. 

 
Table 4: MSE prediction results for values of γ according 

to the position inside the container. 

Container/Result Maximum Minimum Average 

Data set A 0.1893 0.0173 0.0778 

Data set B 0.4767 0.0279 0.0946 

Data set C 0.5747 0.0201 0.1743 

7 CONCLUSIONS 

A model to represent the factors affecting the 

temperature inside a refrigerated container 

transporting perishable goods was proposed. It 

models the effect of organic heat using a static non-

linear feedback system, the refrigeration by a linear 

dynamic feed-forward system, and the disturbances 

by stochastic processes. This complex model can 

provide an accurate description of the factors 

involved in the physical system.  

 

The selected identification method was adapted 

specifically to reduce the dimensions of the 

matrices. The non-linear exponential function is 

used instead of a polynomial to preserve the 

simplicity of the parameter adaptation and the 

prediction algorithms. The disadvantage of the 
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simplification is  that depending on the kind of fruits 

to be transported, it is required to tune the algorithm 

by a correct selection of γ which has to be known in 

advance. An improvement can be observed in the 

accuracy of the predictions if γ is set according to 

the position of the pallets inside the container. 

 

From the simulation results it is concluded that 

the FH identification algorithm is efficient when the 

cargo emits organic heat. The method of FH of order 

1 is optimal to achieve all figures of merit. It makes 

accurate predictions only after three days of training 

and maintains low dimensions of matrices.  

 

However, if the linear method is applied to the 

banana datasets, a comparable accuracy can only be 

achieved after more than five days of training.  Also, 

it is concluded that when the goods to transport are 

free of organic heat, such as in the case of cheese, it 

is preferable to use a linear system instead. 
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LIST OF ABBREVIATIONS 

ARMAX 

 

ARX 

CFF 

DG 

FF 

FH 

MA 

MSE 

PAA 

WN 

WSN 

Auto Regressive Moving Average 

with External input. 

Auto Regresive with External input. 

Constant Forgetting Factor 

Decreasing Gain 

Forgetting Factor 

Feedback Hammerstein 

Moving Average 

Mean Squared Error 

Parameter Adaptation  

AlgorithmWhite Noise 

Wireless Sensor Node 
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