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Abstract: In path planning, visibility graph (or visibility line (VL)) method is capable of producing shortest path from
a starting point to a target point in an environment with polygonal obstacles. However, the run time increases
exponentially as the number of obstacles grows, causing this method ineffective for real-time path planning.
A 2D path planning framework based on VL has recently been introduced to find a 2D path in an obstacle-
rich environment with low run time. In this paper we propose 3D path planning algorithms based on the 2D
framework. Several steps are used in the algorithms to find a 3D path. First, a local plane is generated from a
local starting point to a target point. The plane is then rotated at several pre-defined angles. At each rotation,
a shortest path is calculated using 2D algorithms. After rotations at all angles have been done, the shortest
one is selected. Simulation results show that the proposed 3D algorithms are capable in finding paths in 3D
environments and computationally efficient, thus suitable for real time application.

1 INTRODUCTION

Uninhabited Aerial Vehicles (UAVs) are becoming
more popular in accomplishing tasks in adverse en-
vironments. For example UAVs have been used for
military purpose such as reconnaissance and combat
as well as to perform civil tasks such as weather fore-
casting, environmental research, search and rescue
missions and traffic control.

The advantage of UAVs in avoiding human loss
brings ”less” intelligence of the vehicle. In order
to make UAVs more practically useful, it is impor-
tant to raise the autonomy level of UAVs. Autonomy
means the capability of UAVs to make its own de-
cisions based on the available information captured
by sensors, and potentially covers the whole range
of the vehicle operations without human interven-
tion (Frampton, 2008). However, autonomy tech-
nology is still in its early stage and fairly under-
developed (http://www.theuav.com). It is the bottle-
neck for UAVs development in the future. Hence the
problem of autonomy has to be addressed before the
fully autonomous UAVs can be advanced. As path
planning is one of the crucial factors in enhancing the
autonomy level in UAVs, this paper focuses on this
topic.

Researches on path planning among polygonal ob-

stacles have been around probably since the beginning
of mobile robot. They have produced many meth-
ods and algorithms under several categories. Among
them are geometric-based (Omar and Gu, 2009; Cole-
man and Wunderlich, 2008; Tian et al., 2007; Bortoff,
2000; Nilsson, 1984), grid-based (Chen et al., 1995;
LingelBach, 2004) and potential field (Garibotto and
Masciangelo, 1991; Barraquand et al., 1992), to name
but three. One of the popular methods is geometric-
based category under which there is an approach
called visibility lines (VL).

VL was first proposed by Lozano-Perez and Wes-
ley (Lozano-Perez and Wesley, 1979) for path plan-
ning in the environments with polyhedral obstacles.
Since then several researchers (Nilsson, 1984; Huang
and Chung, 2004; Bygi and Ghodsi, 2006) used the
method with some variants. However one major dis-
advantage of VL is the computational effort grows ex-
ponentially as the number of obstacles increases. To
overcome such a problem, Huang and Chung (Huang
and Chung, 2004) introduced Dynamic VG (DVG)
which used local region to plan a path to speed up
the run time. The local region was determined by the
nodes that have maximum distance from a line drawn
from starting point to target point calledS-G line. In
(Omar and Gu, 2009), we proposed 2D path plan-
ning algorithm which was based on VL called Base-
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Line Oriented Visibility Lines(BLOVL). Also there is
a sub-algorithm of BLOVL namedCore. Core’s main
purpose is to find a path from a two-stage process.
First, a group of obstacles that lie on base line (BL)
and their extension are identified. BL is similar toS-
G line in (Huang and Chung, 2004). Second, a path
is calculated using Dijkstra’s algorithm. As the path
planned byCore might not collision-free, BLOVL is
used to further plan it. In addition BLOVL is designed
to be used for real-time path planning.

On the other hand, 3D path planning problems
have been studied extensively for many years. There
were several different approaches available includ-
ing Evolutionary Algorithms (EA) (Hasircioglu et al.,
2008; Mittal and Deb, 2007), VL (Jiang et al., 1993)
and Dubin circles (Ambrosino et al., 2006), to name
but three. In (Hasircioglu et al., 2008) EA and B-
spline curves for off-line 3D path planning were used.
To increase the performance of the path, the number
of generations had to be increased hence increased
the run-time. Like (Hasircioglu et al., 2008), Mittal
and Deb (Mittal and Deb, 2007) presented an off-line
path planner with multi-objective EA and B-spline.
The results of their work were several optimal 3D
paths. (Ambrosino et al., 2006) used Dubin circles to
first obtain estimate of a 3D path. Then the path was
divided into three sub-paths. However, (Ambrosino
et al., 2006) assumed that no obstacle to be avoided
during the path generation.

In this paper, we propose a 3D path planning al-
gorithm, BLOVL3D which consists of several sub-
algorithms namelyBasePlane, Rotate3D as well as
BLOVL. Basically BLOVL3D find the 3D path from a
series of rotations of local planes. This algorithm and
its sub-algorithms have been realized into a Matlab’s
graphical user interface (GUI) environment for simu-
lation purpose to evaluate its effectiveness. The rest of
this paper is organized as follows. Section 2 reviews
the 2D path planning usingCore and BLOVL algo-
rithms. Section 3 explains our proposed 3D path plan-
ning algorithm in details. Section 4 shows an example
of results from the proposed algorithms. In Section 5
we demonstrate the simulation results in term of run
time. Section 6 concludes the paper.

2 2D PATH PLANNING

In order to make path calculation faster by visibility
lines (VL) means, the number of obstacles used in the
calculation has to be minimized. ThusCore has been
designed to perform this task. Figure 1 illustrates the
process ofCore while Algorithm 1 shows the steps
of it.

Figure 1: Core algorithm.

Algorithm 1: Core.
1: Create a base line (BL) from starting point,ustart

to target point,utarget
2: Construct a set of nodes,NS, from the four cor-

ners of each obstacle that lies on the base line and
their extensions, includingustart andutarget

3: Create a cost matrix,CM from NS
4: Find local path,U(u0, . . . ,um) fromCM using Di-

jkstra’s algorithm whereu0 = ustart and um =
utarget

Core begins with creating a base line (BL) from a
local starting point,ustart to a target point,utarget . The
obstacles that lie on BL and their extension,OBL will
be used for path calculation. The idea on howOBL is
identified is illustrated in Figure 2. In the figure, the
obstacles that intersect with BL are numbered as 1 and
2 while the extended obstacles are 3 and 4. Obstacle 5
is ignored as it is neither on BL nor an extension of the
obstacles on BL. As a resultOBL contains obstacles
with the number of 1, 2, 3 and 4.
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Figure 2: Obstacles identification usingCore.

In Step 2 ofCore, OBL is used to build up a set
of nodes stored inNS. Then each pair of mutually
visible nodes inNS is connected by a line segment
and given a cost based on its Euclidean distance. On
the contrary, two mutually-invisible nodes are given
infinity costs and are thus ignored. Based onNS, in
the next step ofCore, a cost matrix,CM is created.
CM stores the indexes of paired nodes and the lines
segment Euclidean distances (costs). If all pairs of
mutually-visible nodes are connected together by line
segments, they will form a plane with zero altitude as
shown in Figure 3.

Using CM, Dijkstra’s algorithm will then be ap-
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Figure 3: A plane formed by visibility lines with zero alti-
tude.

plied in Step 4 ofCore to find a local optimal path,
U by minimizing the total path length fromustart to
utarget . To ensure that the path is collision-free and
capable to be used for real-time path planning,Core
has to be associated with BLOVL as shown inAlgo-
rithm 2. Figure 4 shows the BLOVL process.

Algorithm 2: BLOVL.
1: Set j = 0 andw j = pstart
2: while w j 6= ptarget do
3: setustart = w j andutarget = ptarget
4: call Core
5: if m = 1 then
6: setw j+1 = u1
7: else
8: setutarget = u1
9: goto line 4

10: end if
11: set j = j+1
12: end while

The first step of BLOVL is setting the current
starting point/waypoint,w j to pstart where j is ini-
tialized to 0. Thenw j is compared with theptarget .
If w j is or at the vicinity ofptarget , then the process
is stopped. Otherwisew j and ptarget will be defined
asustart andutarget respectively. Withustart andutarget
being the input,Core is called to find a local shortest
path,U . Core will be called again if the number of el-
ements inU is greater than 2 as this shows that there
are obstacles betweenustart andutarget . Note that the
element number inU is indicated bym. If m = 1,
it means thatU has 2 elements and the resulted path
is unobstructed fromustart and utarget , and the next
waypointw j+1 will be set tou1. This process will be
repeated untilw j is or near toptarget . Notice that the
resulted path from BLOVL consists of a set of global
waypoints,W = w0, . . . ,wn−1.

Figure 4: BLOVL process.

3 ALGORITHM FOR 3D PATH
PLANNING

In practice UAV flies in 3D environments. To en-
sure that the UAV’s paths are free from collision in
such environments, path in 3D has to be planned. For
such a purpose, we have developed 3D path planning
algorithm, BLOVL3D which consists of several sub-
algorithms i.e. BasePlane, Rotate3D and BLOVL.
BLOVL3D uses rotational planes to find 3D paths.
Figure 5 illustrates the process of BLOVL3D andAl-
gorithm 3 shows its steps.

BLOVL3D starts with initializing several neces-
sary parameters i.e.k = 0, Psk = pstart andi = 0. No-
tice thatPs is the global path with several waypoints
that will be built-up along the process. The final value
of k will determine the number of waypoints inPs. i
represents the index of the rotational angles.

In the next step of BLOVL3D, the vector of rota-
tional angle,α is defined. It consists ofb number of
angles.α will determine at which angle the plane will
be rotated. NextPsk is compared withptarget . If Psk
is ptarget or at the vicinity ofptarget the process will
be stopped. Otherwiseustart will be set toPsk while
utarget is ptarget . Note thatustart andutarget are nec-
essary forCore of BLOVL in the later stage of the
algorithm.

In case ofPsk is not the ptarget or not at the
vicinity of it, BasePlane which is shown inAlgo-
rithm 4 is then called.BasePlane generates a local
plane,Px′y′ustart . As shown inAlgorithm 4, the local
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Figure 5: BLOVL3D process.

plane generated byBasePlane always change with the
change inustart hence it is namedPx′y′ustart .

To generatePx′y′ustart usingBasePlane, first a base
line, BL3D is drawn fromustart to utarget . As ustart
andutarget have different altitude, the angleβ between
BL3D and the horizontal global plane,Pxyustart can be
calculated.BL⊥

3D that intersectsustart and orthogonal
to BL3D is then defined. With BL3D andBL⊥

3D as the
x- andy-axis respectively,Px′y′ustart that lies atβ de-
gree fromPxyustart is defined. Then the coordinate of
obstacles lying onPx′y′ustart is projected accordingly.
As Px′y′ustart has been defined, next is to rotate the
plane byαi degree to find a local optimal path,W αi

from ustart to utarget . Rotating this plane is performed
by Rotate3D while finding W αi is accomplished by
BLOVL andCore. Algorithm 5 showsRotate3D.

While i < b + 1, i is increased by 1 andαi is
updated accordingly andRotate3D and BLOVL are
kept called to findW αi. When i = b+ 1, all paths
(and their costs) that have been stored inW α are
compared with each other and path with the lowest
cost,Ws is then selected. Notice thatWs consists of
{Ws0, . . . ,Wsn−1} and the waypoints inWs are ac-

cording to the global coordinate system.
In the next step, the index of global waypoints,k

is increased by 1 and the next global waypoint,Psk
is updated to be the second waypoint of the shortest
path i.e.W s1. i then is initialized back to 0 and the
process as described above are repeated untilPsk is or
at the vicinity ofptarget .

Algorithm 3: BLOVL3D.
1: Setk = 0, Psk = pstart andi = 0.
2: Define the rotational angle vector,α.
3: while Psk 6= ptarget do
4: ustart = Psk; ustart = ptarget .
5: call BasePlane to generate local plane,

Px′y′ustart .
6: while i 6= b+1 do
7: call BLOVL.
8: Save waypoints,W αi generated by BLOVL.
9: Increasei by 1.

10: RotatePx′y′ustart by αi degree.
11: end while
12: Compare all paths in Wα and find the shortest,

Ws. Ws = {Ws0, . . . ,W so}.
13: Increasek by 1 and updatePsk = Ws1. Ini-

tialise i to .
14: end while

Algorithm 4: BasePlane.
1: Draw a base line, BL3D connectingustart and

utarget . Find out the angleβ between BL3D
and the horizontal planePxyustart , which contains
ustart .

2: Define a local plane,Px′y′ustart , formed by BL3D

and the straight line,BL⊥
3D which passesustart ,

lies onPxyustart and is orthogonal to BL3D.
3: Define a local coordinate system onPx′y′ustart ,

with ustart as the origin,BL⊥
3D asx-axis and BL3D

as y-axis. Establish the coordinate transforma-
tion between this local coordinate system and the
global one.

4: Project the obstacles onPx′y′ustart .

Algorithm 5: Rotate3D.

1: Rotate the planePx′y′ustart by αi degree.
2: Find out the coordinate transformation between

the new local system and the global one.
3: Project the obstacles on the newPx′y′ustart plane.

4 EXAMPLE

A random scenario with 150 obstacles was gener-
ated as shown in Figure 6. Each obstacle was
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numbered and given a random height. Starting
point’s altitude was set to 20 while the target point’s
altitude was 150. The planes were rotated at
0,10,30,45,60,120,135,150,170. The resulted path
had the waypoints as shown in Table 1.

Table 1: The waypoints.

Number X Y Z
1 26.48 18.29 20.00
2 143.76 171.24 41.05
3 394.24 378.76 69.72
4 576.76 581.24 98.77
5 817.76 834.25 133.93
6 959.76 960.92 150.00

Figure 7 and Figure 8 show the top and 3D views
of the resulted path respectively.

Figure 6: A random scenario with obstacles shown in black.
The blue rectangle is the starting point and the square ma-
genta is the target point.

5 SIMULATION RESULTS

Scenarios with several numbers of obstacles were
simulated randomly to evaluate the performance of
the proposed 3D path planning algorithms. The num-
ber of obstacles used were 50, 75, 100, 125, 150, 175
and 200. To increase the reliability of the results,
ten different random scenarios were generated from
each number of obstacles. The simulations were per-
formed on Intel’s 2.4Ghz Core 2 Duo processor with
2GB DDR2 RAM. As no data for other 3D algorithms
available in the literature using the same scenarios as
we used here, no comparison was done. Thus we
compared the proposed 3D path planning algorithm
performance with that of 2D that was introduced by
(Omar and Gu, 2009) as both algorithms were de-
signed for such scenarios. The results of the simu-
lation were recorded in Table 2.

Figure 7: Top view of the resulted path (in red) with the
rotated planes.

Figure 8: 3D view of the resulted path with the rotated
planes.

From Table 2, using 2D algorithms no substantial
growth in run time as the number of obstacles were in-
creased while by 3D algorithms the calculation time
increased quite significantly. This is due to (i) in-
creased number of obstacles on the base line which
results in increased number of waypoints. (ii) number
of angles used to generate the rotational planes. If the
resulted path hask waypoints and the rotational angle
vector,α consists ofb number of angles, the process-
ing time might be(b−1)× k longer than that of 2D
path planning algorithms.

Table 2: Comparison of 2D and 3D path planning algo-
rithms performance (in sec).

Number of 2D Algorithms 3D Algorithms

obstacles Min Max Ave Min Max Ave

50 0.01 0.25 0.13 0.65 1.84 1.27

75 0.02 0.20 0.15 1.03 6.93 2.63

100 0.04 0.28 0.21 1.97 8.14 4.08

125 0.06 0.39 0.27 2.59 17.54 8.77

150 0.08 0.43 0.35 5.18 22.16 11.63

175 0.15 0.83 0.50 6.82 35.79 21.13

200 0.19 0.98 0.62 7.16 48.77 26.42
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6 CONCLUSIONS

As visibility line (VL) method is effective in produc-
ing path with shortest length, it has been used to de-
velop a three-dimensional (3D) path planning algo-
rithm, BLOVL3D. BLOVL3D governsBasePlane, Ro-
tate3D as well as Base Line Oriented Visibility Line
(BLOVL) algorithms to find a 3D path.BasePlane
algorithm is used to establish a local plane. NextRo-
tate3D algorithm rotates the plane. At each rotation
of the plane, a path with lowest cost is calculated by
BLOVL and recorded. After the local plane has been
rotated at all angles, the resulted paths are compared
to each other and the shortest one will be selected.
The process continues with a new starting point which
is the second waypoint of the previous shortest path.
The process is stopped if the target point has been
reached. Simulations results show that BLOVL3D and
its sub-algorithms are capable to effectively find sub-
optimal paths in term of path length in 3D environ-
ments and is very promising to be applied in real time
3D path planning.
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