
LEARNING FROM ‘TAG CLOUDS’
A Novel Approach to Build Datasets for Memory-based Reasoning Classification

of Relevant Blog Articles

Ahmad Ammari and Valentina Zharkova
School of Computing, Informatics and Media, University of Bradford, U.K.

Keywords: Blogs, Memory-based reasoning, Singular value decomposition, Tag clouds.

Abstract: The advent of the Social Web has created massive online media through turning the former information
consumers to present information producers. The best example is the blogosphere. Blog websites are a
collection of articles written by millions of blog writers to millions of blog readers. Blogging has become a
very popular means for Web 2.0 users to communicate, express, share, collaborate, and debate through their
blog posts. However, as a consequence to the very massive number of blogs as well as the so diverse topics
of blog posts available on the Web, most blog search engines encounter the serious challenge of finding the
blog articles that are truly relevant to the certain topic that blog readers may look for. To help handling this
problem, an intelligent approach to blog post search that takes advantage from the concept of ‘tag clouds’
and leverages many open source libraries, has been proposed. A Memory-Based Reasoning model has been
built using SAS Enterprise Miner to assess the approach effectiveness. Results are very encouraging as
retrieval precision has indicated a significant improvement in retrieving relevant posts to the user compared
with traditional means of blog post retrieval.

1 INTRODUCTION

Blogs are one of web 2.0 outcomes. Over the past
few years, blog websites, collectively known as the
‘blogosphere,’ have evolved from simple personal
web pages to professional sources for various types
of information, including politics, economics, sports,
technology, engineering, statistics and every other
field of human activity. Organizations have created a
rich diversity of informational blogs which many see
as a means to bypass the traditional media, such as
radio, television and newspapers (Depken et al,
2008). Blog writers, or ‘bloggers’, can easily create,
manage, and maintain posts in their blogs at zero to
very low cost by using free software tools. Access to
blogs is generally free to all web users, allowing
them to read blog posts created by bloggers and
write their comments and reviews, adding an extra
wealth of information sharing and knowledge
acquisition opportunities.

1.1 The Need for an Efficient Blog
Search

There are currently many blog search engines that
enable users to search for blog posts of interest
either directly at the search engine site, or through
Abstract Programming Interfaces (APIs) that can be
easily integrated into any web application. However,
recent studies suggest that blog search has not yet
reached its full potential and more could be done to
achieve finding blog articles to read that match a
desired topic (Hearst et al, 2008). Moreover, most of
the blogs are not well-connected because bloggers
may write on a variety of subjects (Herring et al,
2005), reducing the efficiency of search for posts
relevant to a specific subject. One of the main ways
used by blog search engines to solve this problem
was ‘user-tagging’ or ‘social-tagging’ (Millen et al,
2006), which is a feature that enables the use of a
keyword or ‘tag’ that is explicitly entered by the
user for each blog post he reads. These tags allow
the blog reader to organize and display their blog
post collection with tags that are meaningful to
them. They also allow the user to search for articles

325
Ammari A. and Zharkova V.
LEARNING FROM âĂŸTAG CLOUDSâĂŹ - A Novel Approach to Build Datasets for Memory-based Reasoning Classification of Relevant Blog Articles.
DOI: 10.5220/0002884003250331
In Proceedings of the 6th International Conference on Web Information Systems and Technology (WEBIST 2010), page
ISBN: 978-989-674-025-2
Copyright c© 2010 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

of a certain subject using a tag relevant to this
subject that has been associated to these articles by
other users who have previously read them. For
example, a programmer who wants to read blog
posts relevant to programming languages can use the
‘programming’ tag to retrieve the posts that have
been associated with this tag by previous readers.
User-tagging has gained wide popularity and has
been even used by researchers to learn user profiles
(Michlmayr et al, 2007) and improve social
navigation (Millen et al, 2006). Although user-
tagging may seem a good solution, a simple
experiment reveals that it is still not enough to
obtain an efficient collection of relevant posts. Out
of 248 blog posts that have been retrieved by the
Technorati Search Engine API (Technorati Blog
Directory) using tags directly related to
programming languages, such as ‘java servlet JSP’,
and ‘perl python PHP Ruby’, only 92 posts (37%)
could be classified as relevant to programming
languages after inspection. This was even less than
the relevance rate obtained (52%) when we used the
query search instead of the tag search.

1.2 Contributions

This work is an extension to our work in (Zharkova
et al, 2009). We aim to add ‘intelligence’ to blog
search, so that blog readers can find their desired
articles efficiently. To achieve this, we propose a
web mining ‘predictive searcher’ that first retrieves
a collection of blog posts using a blog search engine
API, then ‘scores’ each post in this collection,
returning only the relevant subset of posts that will
most likely satisfy the user’s search needs.
Contributions toward creating this intelligent
searcher could be summarized as follows:

1. The development of a Java-based text analysis
framework based on (Apache Lucene) to
prepare the data set required to train the
proposed searcher.

2. A novel approach based on the ‘tag-cloud’
concept (Alag, 2009) to classify the prepared
training data set.

3. The use of memory-based reasoning and
singular value decomposition implementations
in the (SAS Enterprise Miner) software to build
the predictive blog searcher.

The rest of this paper is organized as follows:
The novel approach to prepare and classify the
learning dataset used in building the intelligent blog
searcher is described in Section 2. The algorithms
used to build the predictive blog searcher are

described in Section 3. Experimentations and results
are discussed in Section 4. Finally, conclusions are
drawn in Section 5.

2 LEARNING FROM TAG
CLOUDS

2.1 Overview of ‘Tag Clouds’

Tag clouds are visual representations of social tags,
displayed in a ‘cloud-like’ layout. Each tag in the
cloud appears in a relatively different size than the
size of the other tags in the cloud. Figure 1 shows a
sample tag cloud appeared at Flickr.com. The
creator of the tags in a tag cloud can be one of three:
First, a domain expert who has a good knowledge
about the domain of the website where the tag cloud
should appear. Tags created in this way are called
‘professionally-generated’ tags. Second, a user who
is allowed to tag items in the website with keywords.
These tags are called ‘user-generated’ tags. Finally,
tags can be created by a text analysis program that
analyzes the textual content of the website and
generates the tags. These are called ‘machine-
generated’ tags (Alag, 2009). Whoever the creator
of the tag cloud is, the size of each tag in the cloud
always reflects how important this tag is in the
domain that the cloud represents. Importance is
usually defined by either how frequently the tag is
used by users (e.g. as a search query), or how
frequently it occurs in the overall text resources that
make the website content. Tags with higher
frequency are appeared in the cloud with a larger
font than the other tags with less frequency (Hearst
et al, 2008).

Figure 1: A Tag Cloud from (Flickr.com).

Because of this ‘tag size / tag importance’
relationship in the tag cloud, we argue that if we

WEBIST 2010 - 6th International Conference on Web Information Systems and Technologies

326

Figure 2: A Framework to create and classify a Learning Dataset.

have a tag cloud that represents the content of a
specific document within a document collection, and
we inspect a considerable number of relatively large
tags that are strongly relevant to a specific topic of
interest, we can assume that the document
represented by this tag cloud is strongly relevant to
that topic. For example, it is clear that the tags in the
cloud shown in Figure. 1 are strongly relevant to
holidays travel and tourism. Therefore, if this cloud
happens to represent an article in a news or blog
website, it is safe to assume that this article is
strongly relevant to the topic of holidays travel and
tourism.

2.2 The Dataset Creation Framework

Building a data set from a textual collection of blog
articles to train a classifier normally consists of three
main parts:

1. Retrieving a collection of blog posts using a
blog search engine API.

2. Analyzing the unstructured content of the
collection, which is a special data
transformation technique in which each article
is converted to a bag-of-words model (Cios et
al, 2007) by extracting the important terms,
synonyms, and phrases from the article,
stemming the terms to their original linguistic
roots, and computing a numerical weight to each
stemmed term. The result is a term weight
vector representation for each article, and the
transformed data set is usually called a term-
document matrix.

3. Classifying each article in the collection to
either relevant or irrelevant to the topic of
interest that triggered the search. Because
classification is a supervised learning process
(Hornick et al, 2007), we need to add a column,
called the target attribute, to the term-document
matrix to store a value that represents the
relevance of the article to the topic of interest.
We can use a binary data type {1 ≡ relevant, 0 ≡
irrelevant} for the target attribute.

For parts 1 and 2, we customize a Java-based
framework that leverages a couple of open – source
APIs:

• A Technorati Search API is used to retrieve a
collection of blog posts containing specified
keywords of interest that are input by a domain
expert.

• An Apache Lucene API is used to transform the
retrieved collection of blog posts into a term-
document matrix. Each vector in the matrix
represents a blog post and the elements of this
vector are the numerical weights of the
extracted terms of the whole blog collection
with respect to the article that this vector
represents.

For part 3, a tag cloud generator API (Alag, 2009) is
used to transform each term weight vector in the
term-document matrix into a tag cloud
representation. Then, all the resulted tag clouds are
visualized in a regular web page. In this way, the
domain expert who triggered the search can easily

LEARNING FROM 'TAG CLOUDS' - A Novel Approach to Build Datasets for Memory-based Reasoning Classification of
Relevant Blog Articles

327

Figure 3: The process of searching the blogosphere with the Technorati API.

and quickly inspect each tag cloud and then
accurately determine whether the blog post that the
inspected cloud represents is relevant or irrelevant to
the query that he used to trigger the search. The
whole process of building the learning data set is
described in Figure 2.

2.3 Searching the Blogosphere for
Relevant Posts

Technorati is a popular blog search engine that
provides an API that can be used by web developers
to integrate many blog-related activities into their
applications. Using the API provided by Technorati,
it is possible to search for blog posts using three
different methods: using keywords that are found in
the content, using tags that are associated to posts by
users, or search for posts that are linked to a
particular URL. Moreover, the API allows
developers to retrieve a list of the most popular N
tags, get detailed information about a blog, and even
view information about a Technorati member.

Searching the blogosphere using the Technorati
API involves four main steps:

1. Writing a query string and setting the search
parameters: The search parameters involve
selecting the preferred search method, the
output format, the search language, and the
number of posts to be returned. Two Java
classes are responsible for processing this step:
TechnoratiBlogSearcher, and
TechnoratiSearchBlogQueryParamete.

2. Translating the query string to Technorati-
understandable format and send it to Technorati
search engine: The TechnoratiBlogSearcher
class processes this step.

3. Receiving the XML response containing the
search result. The TechnoratiResponseHandler
class processes this step.

4. Extracting the important content of the retrieved
blog posts, such as the title, name, and excerpt
of each retrieved blog post, merging the
extracted content, and sending it to the text

analyzer. The TechnoratiResponseHandler class
processes this step.

Figure 3 illustrates the four steps of the searching
process.

2.4 Analyzing the Retrieved Posts

Our text analyzer is built over Apache Lucene.
Lucene is an open-source Java-based search engine.
It provides a number of classes that can be used to
build a customized text analysis tool. In order to
transform the retrieved blog posts into a term-
document matrix, our text analyzer performs the
following four main activities:

• Term extraction: the unstructured content is
parsed to generate individual terms. Each term
may be a single word, a small phrase, or a
synonym. Lists of considerable phrases and
synonyms are fed into the analyzer so it can
detect them during the parsing process.

• Unimportant word removal: terms irrelevant
with respect to the main subject of the search
are removed (Cios et al, 2007).

• Stemming: reducing the remaining terms to their
root form by removing common prefixes and
suffixes (Cios et al, 2007). For example, the
words programming, programmers, and
programs share the root program, and so can be
treated as different occurrences of the same
term.

• Term weight calculation: a numerical weight is
computed for each term in each blog post,
generating the term weight vector that
represents the post. This term weighting takes
into account the frequency of appearance of the
term in the post, as well as the total frequency
of appearance of this term in the whole retrieved
posts.

The popular Term Frequency - Inverse Document
Frequency (tf-idf) weighting scheme (Kobayashi et
al, 2008) is used to calculate the term weight ωxy as
follows:

WEBIST 2010 - 6th International Conference on Web Information Systems and Technologies

328

Figure 4: Tag Clouds for Blog Posts classified as (a) relevant, and (b) irrelevant to ‘programming languages’.

߱௫௬ ൌ ௫࣠௬ ൈ log
Ρ
௫ݎ݂

௫࣠௬ is the normalized frequency of term x in the blog
post y, Ρ is the total number of retrieved blog posts,
and ݂ݎ௫ is the frequency of term x in the whole
retrieved posts.
Attributes are often normalized to lie in a fixed
range (e.g. zero to one). Term frequencies are
normalized using the equation below:

௫࣠௬ ൌ
௫௬ݎ݂

ඥ∑ሺ݂ݎ௬ሻଶ

where ݂ݎ௫௬ is the frequency of term x in the blog
post y and ݂ݎ௬ is the frequency of each term in the
blog post y.

2.5 Building the Tag Cloud
Representation

As previously mentioned, to improve the accuracy
and speed of the classification of the training blog
data set by the domain expert, a tag cloud generator
API is implemented to create a tag cloud from each
term weight vector in the term-document matrix.
The first component of our tag cloud generator API
is a tag font-size classifier that divides the available
term weights into a number of ranges of values and
then allocates a specific font size to each term
weight range. The larger the values in the term
weight range, the larger the allocated font size is.
Therefore, each term in the cloud appears in a size
that reflects its relative importance in the blog post.

The second component of the API is an HTML
generator that allows the domain expert to visualize
all the generated tag clouds, separated by a blog post
identifier, in a regular web page. After classification,
each vector in the matrix will contain an additional
element, the target attribute element, that stores a
binary value {1, 0} indicating the relevance or

irrelevance of the associated blog post to the topic of
interest.

3 BUILDING THE SEARCHER

3.1 Memory-based Reasoning
Classification

Memory-based reasoning (MBR) consists of
variations on the nearest neighbor techniques. A
description of MBR is found in (Rachlin et al, 1994).
It has been used in previous research projects to
classify text documents, such as news stories, with
good results obtained (Masand et al, 1992). MBR
solves a new task based on its computed similarity
with other tasks found in previous remembered
examples. In this context, MBR can predict whether
a new unseen blog post is relevant or not by finding
near matches from the learning dataset of posts and
then choosing the best relevance value based a
confidence threshold.

3.2 Performance Improvement with
SVD

As discussed in section 2, analyzing the blog post
collection generates the term-document matrix. For a
collection of text documents such as blog posts, the
generated matrix can contain hundreds of thousands
of words. Such very high dimensional data requires
too much computing time and space to analyze and
model. To improve the searcher performance,
singular value decomposition (SVD) is a popular
feature extraction technique (Cios et al, 2007) that
can be implemented to reduce the dimensions of the
term-document matrix by transforming the matrix
into a lower dimensional and more compact matrix.

LEARNING FROM 'TAG CLOUDS' - A Novel Approach to Build Datasets for Memory-based Reasoning Classification of
Relevant Blog Articles

329

4 EXPERIMENTAL RESULTS

An experiment has been done to address the
evaluation of the proposed tag cloud-based approach
to the learning dataset classification. Two blog post
collections have been retrieved by the Technorati
API and then their textual contents have been
analyzed programmatically using the Apache
Lucene API to create a learning dataset from each
collection. The first collection has been retrieved
using query strings directly relevant to programming
languages, such as ‘classes objects’, ‘perl python
php’, and ‘polymorphism inheritance’. Then, a tag
cloud for each retrieved post has been generated and
inspected by a programmer to classify its relevance
to programming languages. Figure 4 shows four of
the 248 generated tag clouds for the retrieved posts.
The first two clouds (a) have been classified as
relevant, whereas the other two (b) as irrelevant.
129 out of a total of 248 retrieved posts (52%) have
been classified as being relevant to the target subject
(programming languages).

The second collection contains 584 posts that
have been retrieved using user-tagging. The first half
of the posts has been retrieved using user-tags
directly relevant to programming languages and so
has been automatically classified as being relevant to
this topic, whereas the other half has been retrieved
using irrelevant user-tags, such as "Football",
"Swine flu" and "Pop music" and similarly has been
automatically classified as being irrelevant to
programming languages.

Next, SAS Enterprise Miner has been used to
build a predictive model based on each built dataset
described above. First, two supervised data sources
have been created based on the two created datasets.
Second, each dataset has been partitioned to 60% for
training, 20% for validation, and 20% for testing.
Third, SVD with maximum of 50 features
(attributes) has been applied to reduce the
dimensionality of each generated term-document
matrix before building the predictive model. Finally,
The MBR classification node has then been chosen
to build the predictive searcher.

Table 1 shows a comparison of five performance
measures between the training parts of the two data
sets. Table 2 shows this comparison between the
validation parts. Compared to the user-tagging
approach, it is clear that the tag cloud inspection of a
learning dataset leads to a good classification quality
to this dataset, and that the argument proposed in
section 2.1 is valid when applied on blog post
retrieval.

Table 1: Performance of Searchers on Training Data.

Table 2: Performance of Searchers on Validation Data.

Figure 5: Prediction Percentage on Training Data.

Figure 6: Prediction Percentage on Validation Data.

Another two popular measures to assess
information retrieval systems are precision and
recall (Cios et al, 2007). Precision measures the rate
of truly relevant posts from the total posts that the
model has predicted to be relevant.

Recall measures the ability of the model to
retrieve a good rate of relevant posts from the total
original relevant posts available. To compare
between the precision and recall of the two
searchers, we study figure 5 that shows the
prediction percentages of the two searchers on the
training datasets, and figure 6 that shows these
percentages on the validation datasets.

Both figures (5 and 6) clearly show that the
predictive searcher (a) that has been trained by the

WEBIST 2010 - 6th International Conference on Web Information Systems and Technologies

330

tag cloud-based dataset is more able than the user
tagging-based searcher (b) to correctly classify those
posts irrelevant (Target = 0) to the topic of interest.
Consequently, it is more likely (higher precision) for
a post collection retrieved by the searcher (a) to
contain more relevant posts than a post collection
retrieved by the searcher (b), if the two searchers
retrieve the same number of posts.

However, the searcher (b) is more able than the
searcher (a) to correctly classify those posts relevant
(Target = 1) to the topic of interest, which means
that it is more likely (higher recall) to read more
posts from the totally available relevant posts if we
use the user tagging-based searcher.

5 CONCLUSIONS

In spite of the many available blog search engines on
the web, a little attention has been paid on how
much the blog posts that these search engines
retrieve are truly relevant to what the users look for.
There is a crucial need to add intelligence to the
searching mechanisms of blog posts in order to
improve their precision and recall results. This work
has proposed an efficient framework based on open
source APIs, as well as on tag cloud inspection, in
order to retrieve, analyze, and classify a collection of
blog posts used to train and build an intelligent
predictive searcher for filtering the results of search
engines, thus improving the relevance rate of the
posts returned to the user.

In comparison with another popular approach to
blog search improvement, user-tagging, results show
that relying on tag cloud inspection to classify a
collection of blog posts for training a predictive blog
searcher is a good decision to take. Moreover, it is
recommended by this work to apply the tag cloud-
based dataset learning approach for building blog
post classification models when precision in the
returned results of the model is more important for
the application domain than recall.

REFERENCES

Alag S., 2009. Collective Intelligence in Action. Manning
Publications, Greenwich

Apache Lucene, http://lucene.apache.org/java/docs/
Cios, K. J., Pedrycz, W., Swiniarski, R. W., Kurgan, L. A.,

2007. Data Mining, a Knowledge Discovery
Approach. Springer, New York

Depken II, Craig A., 2008. “Benford, Zipf and the
blogosphere.”, Applied Economics Letters, 15:9, 689
– 692

Hearst M., Hurst M., Dumais S., 2008. “What should blog
search look like?”, In: Proceedings of the 2008 ACM
workshop on Search in social media, pp. 95 – 98,
California, USA

Hearst M., Rosner D., 2008. “Tag Clouds: Data Analysis
Tool or Social Signaller?”, In: Proceedings of the 41st
Annual Hawaii International Conference on System
Sciences, p.160

Herring S., Kouper I., Paolillo J., Scheidt L., Tyworth M.,
Welsch P., Wright E., Yu N., 2005. “Conversations in
the Blogosphere: An Analysis from the Bottom Up.”,
In: Proceedings of the 38th Hawaii International
Conference on System Sciences HICSS’05

Hornick, M. F., Marcadé, E., Venkayala, S., 2007. Java
Data Mining: Strategy, Standard, and Practice. The
Morgan Kaufmann Series in Data Management
Systems, Morgan Kaufmann, San Francisco

Kobayashi M., Aono M., 2008. “Vector Space Models for
Search and Cluster Mining.”, In: Survey of Text
Mining II, Springer-Verlag, London

Masand B., Linoff G., Waltz D., 1992. “Classifying news
stories using memory based reasoning.”, In:
Proceedings of the 15th annual international ACM
SIGIR conference on Research and development in
information retrieval, p.59-65, Denmark

Michlmayr E., Cayzer S., 2007. “Learning user profiles
from tagging data and leveraging them for
personalized information access.”, In: Proceedings of
the Workshop on Tagging and Metadata for Social
Information Organization, 16th International World
Wide Web Conference

Millen D., Feinberg J., 2006. “Using social tagging to
improve social navigation.”, In: AH2006 workshop,
Social navigation and community-based adaptation,
Dublin, Ireland

Rachlin J., Kasif S., Aha D., 1994. “Toward a better
understanding of memory-based reasoning systems.”
In: Proceedings of the Eleventh International Machine
Learning Conference. Morgan Kaufmann. 242–250

SAS Enterprise Miner: a Data Mining Software,
http://www.sas.com/technologies/analytics/datamining
/miner/

Technorati Blog Directory, http://technorati.com/blogs/
directory/

Zharkova V., Ammari A., 2009. “Combining Tag Cloud
Learning with SVM classification to achieve
Intelligent Search for Relevant Blog Articles”, In:
Proceedings of the 1st International Workshop on
Mining Social Media, paper#7, Sevilla, Spain

LEARNING FROM 'TAG CLOUDS' - A Novel Approach to Build Datasets for Memory-based Reasoning Classification of
Relevant Blog Articles

331

