
ANTECEDENCE GRAPH APPROACH TO CHECKPOINTING 
FOR FAULT TOLERANCE IN MULTI AGENT SYSTEM 

Rajwinder Singh 
Department of Computer Science and Enginnering, Chandigarh Engineering College, Landran, Mohali, Punjab, India 

Ramandeep Kaur and Rama Krishna Challa 
Department of Computer Science, National Institute of Technical Teachers’ Training and Research, Chandigarh, India 

Keywords: Mobile Agent System, Antecedence Graphs, Fault Tolerance, Checkpointing, Message Logs. 

Abstract: Checkpointing has been widely used for providing fault tolerance in multi-agent systems. But the traditional 
message passing based checkpointing and rollback algorithms may suffer from problems of excess 
bandwidth consumption and large overheads. In order to maintain consistency of multi agent system, the 
checkpointing is forced on all participating agents that may result in blocking of agents’ operations to carry 
out checkpointing. These overheads could be considerably reduced if the checkpointing would be forced 
only on selective agents instead of all agents. This paper presents a low latency, non-blocking checkpointing 
scheme which marks out dependent agents using Antecedence graphs and then checkpoints are forced on 
only these agents. To recover from failures, the antecedence graphs and message logs are regenerated and 
normal operations continued. The proposed scheme reports less overheads and reduced recovery times as 
compared to existing schemes. 

1 INTRODUCTION 

A mobile agent (MA) (Nwana, 1996) is a program 
that represents a user in a computer network and can 
migrate autonomously from node to node, to 
perform some computation on behalf of the user. Its 
tasks, which are determined by the agent application, 
can range from online shopping to real-time device 
control to distributed scientific computing. Most of 
these applications require high degree of reliability 
and consistency. Therefore, fault tolerance is a key 
issue in designing an MA system. We consider the 
scenario of multi-agent system that consists of 
several collaborating agents and amalgamate the 
concept of checkpointing and antecedence graphs 
for fault tolerance in multi agent systems. 

As mobile agent systems scale up, their failure 
rate may also be higher. Several techniques have 
been proposed for providing fault tolerance in multi-
agent systems (Lyu et al, 2004) Rollback recovery 
could be based on either message logging or 
checkpointing (Elnozahy, 1999). Log based 
algorithms require that each agent periodically saves 
its local state and logs the messages it received after 

having saved the state. Checkpointing is one of the 
widely used fault tolerance techniques and may be 
classified into Synchronous (Meth and Tuel, 2000), 
Asynchronous (Bhargava and Lian, 1998) and 
Quasi-Synchronous (Manivannan and Singhal,1999) 
algorithms.  

Majority of the above approaches suffer from 
the overhead that result from forcing all the agents in 
multi-agent system to checkpoint. To overcome the 
problem of recovery latency and blocking, we 
propose coordinated checkpoint algorithm that is 
able to force the most limited number of agents 
carrying out process, for putting checkpoint. The 
concept of antecedence graphs (Khokhar et al, 2006) 
for fault tolerance in distributed systems was 
originally introduced in Manetho (Elnozahy,1993) 
which utilized antecedence graphs and message for 
mechanism for fault tolerance in distributed systems. 
But the overhead due to size of antecedence graph 
with large number of agents involved may cause 
greater overheads in case of multi-agent systems. 
Our proposed scheme significantly resolves the 
associated problem of overhead combining 
antecedence graph approach with non-blocking 

139
Singh R., Kaur R. and Krishna Challa R. (2010).
ANTECEDENCE GRAPH APPROACH TO CHECKPOINTING FOR FAULT TOLERANCE IN MULTI AGENT SYSTEM.
In Proceedings of the 12th International Conference on Enterprise Information Systems - Software Agents and Internet Computing, pages 139-142
DOI: 10.5220/0002898601390142
Copyright c© SciTePress



 

checkpointing done by coordinating the time of 
checkpointing. 

The rest of the paper is organized as follows: 
Section 2 describes the basic framework of the 
proposed scheme. Section 3 illustrates the algorithm 
of proposed scheme of checkpointing and recovery. 
Finally in Section 4, we give the performance 
analysis and results of comparison with existing 
schemes followed by conclusion about the 
effectiveness of proposed scheme in Section 5. 

2 SYSTEM FRAMEWORK 

The system consists of cooperating multiple agents 
(on a single or multiple mobile hosts) which form 
MA group and collaborate with each other to 
perform a single computationally complex task by 
passing messages between each other as shown in 
figure 1. 

 
Figure 1: Multi Agent Group. 

Each group has a Base Agent (BA) which 
coordinates the participating agents of group and is 
assumed to execute in fail safe mode. It also acts as 
recovery manager and maintains access to persistent 
data storage, where agent checkpoints and recovery 
bookkeeping is held. Under our strategy, each 
mobile agent will send its current antecedence graph 
to the agent that it is sending a message to. The 
mobile agents may perform checkpointing of the 
antecedence graph either when the depth exceeds 
certain threshold or after elapsing of specific time. 
The three basic steps involved in the proposed 
scheme are Formation of Antecedence graph at 

individual agents, Parallel checkpointing and 
Recovery in case of failure. These are discussed in 
detail in the following sections. We assume that all 
the operations executed by the mobile agents are 
idempotent, so the exactly once execution property 
needs not to be considered. 

As an example, let us consider a scenario of a 
multi-agent system as shown in figure 2. For 
simplicity, we are only discussing three agents, 
agent A, agent B and agent C. Each agent, at the 
start of its execution, is at state  Ω0

A,  Ω
0
B and Ω0

C 

respectively. Each message receipt forms a 
deterministic interval. For example, the receipt of 
message m1 from B to C forms the deterministic 
interval and the antecedence graph of state interval 
Ω1

B provides information about what happened 
before. 

 
Figure 2: A multi-agent system with three agents. 

3 PROPOSED CHECKPOINTING 
SCHEME 

The main goal of proposed scheme is to minimize 
the global checkpointing latency and to reduce the 
total recovery time. In proposed scheme, the 
dependence information is accessible to the agent 
which requires for the checkpoint from its 
antecedence graph. When the antecedence graph 
depth exceeds certain threshold or after elapsing of 
certain time, an agent may request for 
checkpointing. For each MAj, we set a variable 
Graph Depth (GDj), which is the depth of requesting 
agent’s antecedence graph at initialization of 
checkpointing. At threshold event, if MAj starts a 
checkpoint request and informs all dependent agents 
(DA) of its antecedence graph.  It carries out this 
request through a MA called CheckAgent (CA) 
which is made for every DA during the start of 
checkpoint agent and the time of sending 
checkpointing request to the DAs.  

When MAj sends this request, it attaches with 
CA, a numeric weight of value 1/| GDj |. In parallel 

m

Ω1
C 

Ω2

Ω1
B 

Ω1
A 

m1 

m2 
m3 

m4 

Ω0
A 

Ω0
B 

Ω0
C 

m1/AG          m2/AG           mn/AG 
 
 
 
 
 
 
 
 
 
 
 
 
 
BA: Base Agent 
MA I : Mobile Agent i (1< i < n) 
mi: message to agent i(1< i < n) 
AG: Antecedence Graph 

Host 1 
    

MA1

Host 2 
   

MA2 

Host 3      
    

MA3 

Host n 
   

MAn

BA
 

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

140



 

the requesting agent as well as dependent agents 
make a temporary antecedence graph of the events 
occurred during execution of checkpointing 
operation. The time of this temporary logging is 
overlapped with actual execution of the transaction 
and checkpointing and so it does not have any extra 
load for system and is therefore non blocking. The 
distinctiveness of our scheme is that the checkpoint 
request is distributed through all the agents in a 
parallel manner. After final checkpointing, the 
previous message logs and antecedence graphs are 
deleted which considerably reduces the size of the 
graph piggybacked on the message thereby helping 
to maintain the efficiency of algorithm in scenario 
where large number of agents participate in 
performing a transaction. After successful 
completion of checkpointing, the involved agents for 
construction of new antecedence graphs may 
continue from the temporarily saved antecedence 
graphs. 

In case of failure the recovering agents request 
the BA to send the maximum length antecedence 
graph. The recovering agent reconstructs its own 
graph from the received last checkpointed 
antecedence graph. If in self state, MAj decides for 
checkpointing, then would call following algorithm: 
Requesting Agent MAj send for GDj  from 
Dependent Agents(DA) 
For each Agent  Ancedence graph(AG)  

Create CheckAgent(CA) 
MAj send a CA with temp-checkpoint 
request and value 1/|GDj | to all MAi ( 
where i < j) 

W=0 
For each agent  AG 

MAj receives reply to temp-check 
request. 

for each reply compute: 
 W=W + 1/|GDj|,  

if W≠1then 
cancel checkpointing & wait for 

threshold event 
else if W=1 then 

At MAj and all DAs: 
Save antecedence graph as 

checkpoint. 
Send the final checkpointed AG to 

BA.  
Discard suceessfully checkpointed 

nodes from AG. 
Continue again from temporary AG. 

At BA:  
Construct maximum length AG from 

received AGs. 
Write it to stable storage. 

The checkpointed state at BA is used to provide 
fault tolerance and recovery in case of agent failure. 

4 PERFORMANCE ANALYSIS 
AND COMPARTIVE STUDY 

In proposed system multiple agents are performing 
in a group. Suppose that MAk is related to MAk + 1 in 
antecedence graph. In the scheme given in (Khokhar 
et al, 2006) as the checkpoint is not optimized the 
requesting agent sends the checkpointing request to 
other all the agents, if MAk starts the checkpointing 
request, the checkpointing request distributes from 
MAk to MA1 through all the MAk-1, MAk-2, …, MA2 
and MA1. In this case, the connection between the 
agent forms a message request path. So the length of 
this path is n-1 that is presented as Lkt(n). In the 
proposed scheme, in the most optimized form, there 
is one dependent agent for the agent that request the 
checkpoint and in the worst form, all the agents are 
dependent to this agent. This is the same n-1 that 
existed in the former scheme. So for this, the 
presented average is shown as: 

Lc(n) = n/2  
Lc(n)/Lkt(n) = lim[ n/2 / (n-1)] = 1 / 2 

Due to space limitation, we are eliminating the 
detailed theoretical part.  

To implement, we have used AGLETS (Lange 
1998) that is a graphical interface for developing the 
distributed multi-agent systems. For the suggested 
scheme implementation, the tasks and the behaviour 
of every agent has been made in the form of classes. 
First for better verification and getting the more 
enhanced results, 170 agents are defined and made 
on the mobile host. Then the agents that manage 
these agents are activated in order to wait for the 
messages for the checkpointing. Each time some of 
these 170 agents are defined as the dependent agent 
and we measure the time of the checkpointing agent 
with the counter that has been provided in the 
graphical interface. We also test this environment 
using the scheme in (Khokhar et al, 2006). In this 
test a checkpoint message is sent to all the agents 
without regarding their dependency to the starting 
agent. Results as shown in figure 3 were obtained 
after the implementation of the checkpointing part of 
proposed scheme with a different list of the 
dependent agents out of these 170 agents. As it can 
be seen, as the number of the dependent agents is 
increased in relation to the total number of agents in 
group, the time increases and approaches to the 
scheme in (Khokhar et al, 2006). 

ANTECEDENCE GRAPH APPROACH TO CHECKPOINTING FOR FAULT TOLERANCE IN MULTI AGENT
SYSTEM

141



 

 
Ti
m
e 
fo
r 
ch
ec
kp
oi
nt
in
g 
(in

 m
ill
is
ec
on

d)
 

 

450
400
 
350
300
 
250 
200
 
150 
100 

 10    20   30   40   50   60  70  80  90  100 110 120 130  140 150 160 170

Number of dependent agents 

Scheme (Khokhar et al, 2006) non  otimized                 
checkpointing 
Proposed Scheme with checkpointing 

 
Figure 3: Comparison of time of checkpointing. 

5 CONCLUSIONS 

In this paper we proposed a strategy to introduce 
fault tolerance in multi agent system through 
checkpointing using antecedence graph approach.  
Our results show that checkpointing done through 
collection list of only dependent agents underlined 
by antecedence graphs could significantly improve 
the efficiency of checkpointing algorithms. 
Comparative analysis of our scheme with previous 
antecedence graph based schemes show reduction in 
recovery time and lower overheads. 

REFERENCES 

Nwana, Hyacinth, S., 1996. Software Agents: An 
Overview. Knowledge Engineering Review. Vol. 11, 
Cambridge University Press. pp. 1 – 40. 

Lyu M. R., Chen, X., Wong. T. Y.,  2004. Design and 
Evaluation of a Fault-Tolerant Mobile-Agent System. 
IEEE CS Press, pp. 32-38. 

Elnozahy, E, Alvisi, N., L., Wang, Y, M., Johnson, D, B., 
1999. Survey of Rollback-Recovery Protocols in 
Message- Passing Systems, Technical Report CMU-
CS-99-148, School Computer Science, Carnegie 
Mellon University. 

Khokhar, M, M., Nadeem, A., Paracha, O,M.,2006. An 
Antecedence Graph Approach for Fault Tolerance in a 
Multi-Agent System. Proceedings of the IEEE 7th 
International Conference on Mobile Data 
Management. 

Elnozahy, E, N., 1993. Manetho: Fault Tolerance in 
Distributed Systems Using Rollback-Recovery and 
Process Replication, PhD Thesis, Rice University, 
Houston, Texas. 

Meth, K, Z., Tuel, W, G., 2000. Parallel checkpoint/restart 
without message logging. Proceeding of IEEE 28th 
Int. Conf. on Parallel Processing, pp. 253-258. 

Bhargava, B., Lian, S, R., 1998. Independent 
checkpointing and concurrent rollback for recovery in 
distributed systems - an optimistic approach, 
Proceeding of 7th IEEE Symp. Reliable Distributed 
Syst.,pp. 3-12. 

Manivannan, D., Singhal, M., 1999. Quasi-synchronous 
checkpointing: Models, characterization, and 
classification, IEEE Trans. Parallel and Distributed 
Syst., 10(7): pp.703-713. 

Lange, B, Banny., 1998. Java Aglets Application 
Programming Interface(JAAPI)  White Paper-Draft 2 , 
IBM Tokyo Research Laboratory. 

 

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

142


