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Abstract: Skyline queries have been proposed to express user’s preferences. Since the size of Skyline set increases as 
the number of criteria augments, it is necessary to rank high dimensional Skyline queries. In this work, we 
propose a new metric to rank high dimensional Skylines which allows to identify the k most interesting 
objects from the Skyline set (Top-k Skyline).  We have empirically studied the variability and performance 
of our metric. Our initial experimental results show that the metric is able to speed up the computation of 
the Top-k Skyline in up to two orders of magnitude w.r.t. the state-of-the-art metric: Skyline Frequency.  

1 INTRODUCTION 

Currently, large amounts of data are made available 
using novel technologies in databases and computer 
networks such as Semantic Web, Grid, Semantic 
Search, and Cloud and Peer-to-Peer computing. For 
example, by the time this paper has been written at 
least 24.07 billion pages are indexed by the Web (De 
Kunder, 2010). The enormous growth in the size of 
data has a direct impact on the performance of tasks 
that process very large datasets and whose 
complexity depends on the size of the input. Even a 
very large subset from the input dataset may be 
irrelevant for the answer. 

Skyline queries enable user’s preferences to be 
expressed naturally and may identify useful data 
from datasets (Börzsönyi et al., 2001).  Even though, 
Skyline may be a good choice for huge data sets, its 
cardinality may become very large as the number of 
criteria or dimensions increases (Bentley et al., 
1978). Thus, the users have to be aware that a 
possibly large subset of the Skyline can be irrelevant 
and useless data must be manually discarded. 
Nevertheless, the size of the answer for high 
dimensional Skyline queries may be decreased. 
Users could limit the number of dimensions but this 
would require a domain knowledge expert. A better 

solution is to efficiently identify which Skyline 
tuples are the k most interesting. Thus, a function to 
score the Skyline interestingness needs to be 
applied. This function may be defined by the user as 
a score function (Balke et al., 2004; Goncalves and 
Vidal, 2005, 2009; Brando et al., 2007) or may be a 
predefined ranking metric (Chan et al., 2006a; Chan 
et al., 2006b; Lin et al., 2007).  

We focus on ranking metrics based on subspaces, 
such as Skyline Frequency metric (SFM) (Chan et 
al., 2006a). In this work, we propose a less 
expensive metric called Top-k Skyline Frequency 
Metric (TKSFM). TKSFM can be very useful in 
decision making applications that require a quick 
and efficient ranking metric. With the help of 
TKSFM, Skyline can be ranked according to 
interestingness of the user’s criteria.  

Finally, the remainder of this paper is organized 
as follows.  Section 2 introduces the basic 
preliminary background information. Section 3 
illustrates the SFM and the definition and 
explanation of the TKSFM. In Section 4, we report 
the results of our experimental study where the SFM 
and TKSFM metrics are compared. Section 5 points 
out conclusions and future work. 
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2 PRELIMINARIES  

In this section we present five formal definitions of 
the basic concepts required to understand the 
foundations of Skyline and Skyline metrics. For 
these definitions we are assuming a space S on a set 
of n dimensions {d1, …, dn}, a subspace S’ or non-
empty subset of the space S, and a dataset DS on S. 
Also, we suppose a tuple t  DS is represented as t = 
(t1, …, tn) where ti is a real number on dimension di. 
For simplicity, we suppose all dimension will be 
preferred if they have the highest values 
(maximization). 

Definition 1 (Dominance). A tuple t = (t1, …, tn)  
DS dominates another tuple u = (u1, …, un)  DS if 

(∀i | 1  i  n : ti  ui ∧ (j | 1  j  n : tj  uj)). 
Definition 2 (Skyline). The Skyline of a space S, 
denoted as SKYS, is the set of the non-dominated 
tuples on S. 

Definition 3 (Skycube). The Skycube or lattice is the 
set of the all Skylines for any subspace S’ of S, i.e., 

Skycube = {∪SKYS’ | S’⊆ S}. 

Definition 4 (Skyline Frequency). The Skyline 
Frequency of a tuple t  DS, denoted by sf(t), is the 
number of subspaces S’ of S in which t is a Skyline 

tuple, this is, sf(t) = (∑ S’ | S’  S ∧ t  SKYS’ : 1). 

Since the Skyline can be huge (Chan et al., 
2006a), the Skyline needs to be ranked by a score 
function to distinguish the top-k tuples in a set of 
incomparable ones. A score function of a tuple t, 
denoted as f(t), is a function that ranks the tuple t 
inducing a totally ordered of the input dataset DS. 

Definition 5 (Top-k Skyline). The Top-k Skyline 
tuples of a space S, denoted by TKSS, are the k 
Skyline tuples on S that no other Skyline tuple on S 
may have higher score function value than them: 

TKSS = {t | t  SKYS ∧ (k-|SKYs|u | u  SKYS : f(u) 
> f(t))}, where, x means that exists at most x 
elements in the set. 

The Skyline Frequency may be used as score 
function to rank the Skyline.  In (Chan et al., 2006a), 
the Top-k Frequent Skyline tuples, denoted here by 
TKFS, are defined as the k tuples in DS that no other 
tuple in DS can have larger Skyline Frequency than 

them: TKFS = {t | t  SKYS ∧ (k-|SKYs|u | u  SKYS 
: sf(u) > sf(t))}. 

 

 

3 SKYLINE METRICS 

The three steps to compute the SFM metric are: 1) 
The Skyline for each subspace of the multi-
dimensional criteria is computed; 2) The SFM of 
each tuple t is calculated by summing up the 
number of subspaces for which t is a Skyline tuple; 
3) The Skyline is sorted by SFM values and the best 
k tuples are returned. 

Unfortunately, Skyline Frequency has two 
disadvantages. On one hand, it may require to build 
a lattice of skylines for each non-empty subset of a 
multi-dimensional criteria, this is, 2d − 1 skylines 
(Chan et al., 2006a).  In this sense, several solutions 
have been introduced to reduce cost of the lattice 
computation. In (Chan et al., 2006a), the authors 
proposed to estimate the Skyline Frequency values 
with efficient approximated algorithms. (Yuan et al., 
2005; Pei et al., 2006) define algorithms to 
efficiently calculate the Skycube or the lattice of 
skylines by sharing computation of multiple related 
Skyline subspaces. 

On the other hand, Skyline Frequency benefits 
those tuples that have the best value in at least one 
dimension. Any tuple with this characteristic will 
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are not duplicated. According to Corollary 1 in 
(Yuan et al, 2005), a tuple in a subspace s will be in 
all subspaces for which subspace s is a subset. For 
this reason, all of these tuples could have the same 
Skyline Frequency value (little variability). 

To introduce variability into SFM, we propose a 
new metric called Top-k Skyline Frequency Metric 
(TKSFM). The basis of the lattice for TKSFM is the 
two-dimensional Skylines. Therefore, it does not 
benefit those tuples with the best value in at least 
one dimension as SFM does. Additionally, our 
experimental study shows that our metric is less 
expensive than SFM because it does not need to 
build the whole Skyline for each subspace. 

To exemplify the difference between TKSFM 
and SFM, suppose a lattice for 4 dimensions: A, B, 
C, and D, as shown in Figure 1. SFM value of a 
tuple t is the number of times in which t is in a 
subspace of the lattice. Since the Skyline for each 
subspace must be calculated, the Skyline Frequency 
computation is very costly (Chan et al., 2006a). 

Instead of the skylines for each subspace of the 
lattice, the lattice of the TKSFM is based on Top-k 
Skyline subspaces. Thus, the evaluation cost of the 
metric may be reduced because the Top-k Skyline is 
computed instead of the whole Skyline set 
(Goncalves and Vidal, 2009). 
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Figure 1: Lattice. 

However, the Top-k Skyline subspaces require a 
score function to rank the Skyline (Goncalves and 
Vidal, 2009) in each subspace. We define this 
function as the number of times in which a tuple 
appears in any inferior subspace. Because the tuples 
that have the best value in at least one dimension 
could have the same Skyline Frequency value; we 
decide that infimum of the lattice will be composed 
of two-dimensional skylines to introduce variability 
in our metric. Therefore, the basis of TKSFM is the 
two-dimensional skylines at the lowest bound of the 
lattice and Top-k Skyline for superior levels. 

3.1 Formal Definition and 
Computation 

Given a space S defined by a set of n dimensions {d1, 
…, dn}, we define the Top-k Skyline Frequency 
Metric, denoted by TKSFM,  through the recurrence 
given in the following definition. 

Definition 6 (Top-k Skyline Frequency Metric). 
(Base Case) 
TKSFM1(t) =(∑ S’ | S’  S ∧ |S’| = 2 ∧ t  SKYS’ : 1)  
(Inductive Case) 
TKSFMi(t) =(∑ S’ | S’  S ∧ |S’| = i+1 ∧ t  SKYS’ ∧ 
(k-|SKYs’|u | u  SKYS’: 

1 1TKSFM (u) TKSFM (t)1 1m m
i i
m m
    ): 1)  where 2  i 

 n-1. 

The three steps to compute the TKSFM metric 
are: First, the Skyline for each two-dimensional 
subspace is calculated (Base Case). Second, the Top-
k Skyline for each i-dimensional subspace is 
calculated based on the frequency or the number of 
times in which a tuple t appears in all m-dimensional 
subspaces, where 0 < m < i, and 2 < i < n (Inductive 
Case). Third, the best k tuples that have the highest 
frequency will be returned.  

4 EXPERIMENTAL STUDY  

We conducted an experimental study to empirically 
analyze the variability of the TKSFM with respect to 

SFM, and we study performance of lattice 
construction using each metric. The study was 
performed on a table of 10,000 randomly generated 
tuples. Each table contained an identifier and ten real 
values ranged from 0.0 to 1.0.  The attribute values 
were generated following a uniform distribution.  

We randomly generated 30 queries characterized 
by the following properties: (a) only one table in the 
FROM clause; (b) the attributes in the multi-
dimensional function were chosen randomly among 
the attributes of the table; (c) the MAX directive was 
selected; (d) the number of attributes of the multi-
dimensional function was between 7 and 10; (e) k 
value was chose to be 10 and 50. 

We show the number of tuples in common 
between the two Top-k Skyline results obtained 
from applying TSFM and SFM metrics (variability) 
and time for constructing the lattice using both 
metrics. Time was measured using the time Solaris 
command.  

The Bottom-Up Skycube (BUS) algorithm was 
implemented in Java (64-bit JDK version 1.5.0 12). 
BUS was proposed in (Yuan et al., 2005) to compute 
Skyline Frequency values by building the Skycube. 
We adapt BUS to calculate the TKSFM including 
the recurrence given in Definition 5. On the other 
hand, data were stored in relational tables using 
Oracle 9i. The experiments were evaluated on a 
SunFire V440 machine equipped with 2 processors 
Sparcv9 of 1.281 MHZ, 16 GB of memory and 4 
disks Ultra320 SCSI of 73 GB running on SunOS 
5.10 (Solaris 10). 

We studied the common results that are matched 
by both metrics. Thus, we intersect the results sets 
obtained from both metrics and are shown in Figure 
2 and Figure 3. The graphics illustrated in the 
figures show the number of common tuples retrieved 
using both metrics for Top-10 Skyline and Top-50 
Skyline queries, respectively. In general, the number 
of common results using both metrics is between 
40% and 80%. Thus, TKSFM introduces a 
difference between 20% and 60% with respect to 
SFM. This difference is because of SFM benefits 
tuples characterized by the best value in at least one 
dimension while the basis of TKSFM is two-
dimensional Skylines. 

 

Figure 2: Number of Common Results for Top-10 Skyline 
Queries. 
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Figure 3: Number of Common Results for Top-50 Skyline 
Queries. 

Also, we studied the performance associated 
with the lattice construction. Figure 4 and Figure 5 
show the time required to build the lattice when 
TKSFM and SFM are applied. We can observe that 
time for TKSFM is up to two orders of magnitude 
higher than SFM. This overhead for SFM is because 
the algorithm computes the Skyline for each 
subspace completely. Furthermore, between 40% 
and 80% of the results obtained from TKSFM match 
the results obtained from SFM in less time. 

 

Figure 4: Time (seconds) for Top-10 Skyline Queries. 

 

Figure 5: Time (seconds) for Top-50 Skyline Queries. 

Finally, Table 1 shows the results for the t-test in 
terms of time. As the analysis of the t-test shows, the 
difference for time is highly significant (more than 
99% level). 

Table 1: t-test for time. 

 
Average 

k = 10 k = 50 
TKSFM SFM TKSFM SFM 
24.39 616.84 28.53 611.03 

t-test(one-
tailed, paired) 

p-value=0.000091 p-value=0.000113 

5 CONCLUSIONS 

In this work, the Top-k Skyline Frequency Metric 
has been proposed in order to rank high dimensional 
Skylines and its performance and variability has 
been empirically compared to the Skyline Frequency 

Metric. Both metrics are based on subspaces, but 
TKSFM is less expensive and it has been thought to 
not benefit tuples that have only the best value in 
one of the dimensions. Experimental results show 
that TKSFM identify at least 40% and varies at least 
20% of the results obtained from SFM. In the future, 
we plan to study the quality of our metric making a 
study in a real scenario using real data gathered from 
real users. 
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